Journal of Information Systems Engineering and Management

Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach
Na Li 1 * , Thelma D. Palaoag 2, Tao Guo 1, Hongle Du 1
More Detail
1 Ph.D candidate, College of Information Technology and Computer Science, University of the Cordilleras, Baguio City, Philippines
2 Doctor, College of Information Technology and Computer Science, University of the Cordilleras, Baguio City, Philippines
* Corresponding Author
Research Article

Journal of Information Systems Engineering and Management, 2023 - Volume 8 Issue 4, Article No: 23373
https://doi.org/10.55267/iadt.07.14046

Published Online: 30 Oct 2023

Views: 607 | Downloads: 458

How to cite this article
APA 6th edition
In-text citation: (Li et al., 2023)
Reference: Li, N., Palaoag, T. D., Guo, T., & Du, H. (2023). Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach. Journal of Information Systems Engineering and Management, 8(4), 23373. https://doi.org/10.55267/iadt.07.14046
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Li N, Palaoag TD, Guo T, Du H. Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach. J INFORM SYSTEMS ENG. 2023;8(4):23373. https://doi.org/10.55267/iadt.07.14046
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Li N, Palaoag TD, Guo T, Du H. Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach. J INFORM SYSTEMS ENG. 2023;8(4), 23373. https://doi.org/10.55267/iadt.07.14046
Chicago
In-text citation: (Li et al., 2023)
Reference: Li, Na, Thelma D. Palaoag, Tao Guo, and Hongle Du. "Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach". Journal of Information Systems Engineering and Management 2023 8 no. 4 (2023): 23373. https://doi.org/10.55267/iadt.07.14046
Harvard
In-text citation: (Li et al., 2023)
Reference: Li, N., Palaoag, T. D., Guo, T., and Du, H. (2023). Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach. Journal of Information Systems Engineering and Management, 8(4), 23373. https://doi.org/10.55267/iadt.07.14046
MLA
In-text citation: (Li et al., 2023)
Reference: Li, Na et al. "Usability Evaluation and Enhancement of the AI-Powered Smart-Campus Framework: A User-Centred Approach". Journal of Information Systems Engineering and Management, vol. 8, no. 4, 2023, 23373. https://doi.org/10.55267/iadt.07.14046
ABSTRACT
This study employs a user-centred approach to improving the user experience and maximizing the system functionality of an AI-powered smart-campus framework. The study aims to conduct the usability evaluation of the framework and identify areas for improvement. The focus areas include AI-powered features, user interactions, and design concepts. The study used Likert scale evaluations to measure user satisfaction and perceived usability. The identification and application of improvement measures resulted in positive outcomes. The feedback integration technique involves collecting and analyzing user feedback to identify areas for improvement. This feedback is then used to make iterative improvements to the framework. The study found that the feedback integration technique increased user happiness through iterative improvements. The redesign valve interface strategy involves redesigning the valve interface to make it more user-friendly. The study found that the redesign valve interface strategy raised perceived usability. Workflow optimization involves streamlining the workflow to make it more efficient. The study found that workflow optimization reduced completion times. The study used the UMM to evaluate the planning, design, implementation, and feedback aspects of the AI-powered smart-campus framework. The study found that the framework had advanced design maturity, indicating good integration of user personas and workflows. The framework also showed intermediate maturity in planning, with consistency in implementation but space for improvement. The study also highlighted the theoretical connections between UMM dimensions and quantitative metrics. This alignment between qualitative principles and quantitative measures is important for demonstrating the value of user-centred design.
KEYWORDS
REFERENCES
  • Adeyemi, O. J., Popoola, S. I., Atayero, A. A., Afolayan, D. G., Ariyo, M., & Adetiba, E. (2018). Exploration of daily Internet data traffic generated in a smart university campus. Data in Brief, 20, 30-52. https://doi.org/10.1016/j.dib.2018.07.039
  • Agarwal, P., Ravi Kumar, G. V. V., & Agarwal, P. (2020). IoT based framework for smart campus: COVID-19 readiness. Proceedings of the World Conference on Smart Trends in Systems, Security and Sustainability, WS4 2020, 539-542. https://doi.org/10.1109/WorldS450073.2020.9210382
  • Alhayani, B., Kwekha-Rashid, A. S., Mahajan, H. B., Ilhan, H., Uke, N., Alkhayyat, A., & Mohammed, H. J. (2023). 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system. Applied Nanoscience (Switzerland), 13(3), 1807-1817. https://doi.org/10.1007/s13204-021-02152-4
  • Ali, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1-28. https://doi.org/10.3390/electronics9061030
  • Barroso, S., Bustos, P., & Núñez, P. (2023). Towards a cyber-physical system for sustainable and smart building: a use case for optimising water consumption on a SmartCampus. Journal of Ambient Intelligence and Humanized Computing, 14(5), 6379-6399. https://doi.org/10.1007/s12652-021-03656-1
  • Cavus, N., Mrwebi, S. E., Ibrahim, I., Modupeola, T., & Reeves, A. Y. (2022). Internet of Things and Its Applications to Smart Campus: A Systematic Literature Review. International Journal of Interactive Mobile Technologies, 16(23), 17-35. https://doi.org/10.3991/ijim.v16i23.36215
  • Chagnon-Lessard, N., Gosselin, L., Barnabe, S., Bello-Ochende, T., Fendt, S., Goers, S., Silva, L. C. P. Da, Schweiger, B., Simmons, R., Vandersickel, A., & Zhang, P. (2021). Smart Campuses: Extensive Review of the Last Decade of Research and Current Challenges. IEEE Access, 9, 124200-124234. https://doi.org/10.1109/ACCESS.2021.3109516
  • Chen, L. W., Chen, T. P., Chen, D. E., Liu, J. X., & Tsai, M. F. (2018). Smart Campus Care and Guiding with Dedicated Video Footprinting Through Internet of Things Technologies. IEEE Access, 6, 43956-43966. https://doi.org/10.1109/ACCESS.2018.2856251
  • Ciribini, A. L. C., Pasini, D., Tagliabue, L. C., Manfren, M., Daniotti, B., Rinaldi, S., & De Angelis, E. (2017). Tracking Users’ Behaviors through Real-time Information in BIMs: Workflow for Interconnection in the Brescia Smart Campus Demonstrator. Procedia Engineering, 180, 1484-1494. https://doi.org/10.1016/j.proeng.2017.04.311
  • Demertzi, V., Demertzis, S., & Demertzis, K. (2023). An Overview of Cyber Threats, Attacks and Countermeasures on the Primary Domains of Smart Cities. Applied Sciences (Switzerland), 13(2). https://doi.org/10.3390/app13020790
  • Dong, Z. Y., Zhang, Y., Yip, C., Swift, S., & Beswick, K. (2020). Smart campus: definition, framework, technologies, and services. IET Smart Cities, 2(1), 43-54. https://doi.org/10.1049/iet-smc.2019.0072
  • Faritha Banu, J., Revathi, R., Suganya, M., & Gladiss Merlin, N. R. (2020). IoT based Cloud integrated smart classroom for smart and a sustainable campus. Procedia Computer Science, 172(2019), 77-81. https://doi.org/10.1016/j.procs.2020.05.012
  • Farzaneh, H., Malehmirchegini, L., Bejan, A., Afolabi, T., Mulumba, A., & Daka, P. P. (2021). Artificial intelligence evolution in smart buildings for energy efficiency. Applied Sciences (Switzerland), 11(2), 1-26. https://doi.org/10.3390/app11020763
  • Fernández-Caramés, T. M., & Fraga-Lamas, P. (2019). Towards next generation teaching, learning, and context-aware applications for higher education: A review on blockchain, IoT, Fog and edge computing enabled smart campuses and universities. Applied Sciences (Switzerland), 9(21). https://doi.org/10.3390/app9214479
  • Fortes, S., Santoyo-Ramón, J. A., Palacios, D., Baena, E., Mora-García, R., Medina, M., Mora, P., & Barco, R. (2019). The campus as a smart city: University of málaga environmental, learning, and research approaches. Sensors (Switzerland), 19(6). https://doi.org/10.3390/s19061349
  • Hamid, T., Chhabra, M., Ravulakollu, K., Singh, P., Dalal, S., & Dewan, R. (2022). A Review on Artificial Intelligence in Orthopaedics. Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022, 365-369. https://doi.org/10.23919/INDIACom54597.2022.9763178
  • Han, X., Yu, H., You, W., Huang, C., Tan, B., Zhou, X., & Xiong, N. N. (2022). Intelligent Campus System Design Based on Digital Twin. Electronics (Switzerland), 11(21), 1-20. https://doi.org/10.3390/electronics11213437
  • Huang, L. S., Su, J. Y., & Pao, T. L. (2019). A context aware Smart classroom architecture for smart campuses. Applied Sciences (Switzerland), 9(9). https://doi.org/10.3390/app9091837
  • Imbar, R. V., Supangkat, S. H., & Langi, A. Z. (2020, November). Smart campus model: a literature review. https://doi.org/10.1109/ICISS50791.2020.9307570
  • Li, G., Zheng, C., Han, D., & Li, M. (2021). Research on Smart Campus Architecture Based on the Six Domain model of the Internet of Things. Journal of Physics: Conference Series, 1861(1). https://doi.org/10.1088/1742-6596/1861/1/012038
  • Li, X., Wan, J., Dai, H. N., Imran, M., Xia, M., & Celesti, A. (2019). A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing. IEEE Transactions on Industrial Informatics, 15(7), 4225-4234. https://doi.org/10.1109/TII.2019.2899679
  • Liang, Y., & Chen, Z. (2018). Intelligent and Real-Time Data Acquisition for Medical Monitoring in Smart Campus. IEEE Access, 6, 74836-74846. https://doi.org/10.1109/ACCESS.2018.2883106
  • Luckyardi, S., Jurriyati, R., Disman, D., & Dirgantari, P. D. (2022). A Systematic Review of the IoT in Smart University: Model and Contribution. Indonesian Journal of Science and Technology, 7(3), 529-550. https://doi.org/10.17509/ijost.v7i3.51476
  • Management, D., & Homes, S. (2019). Analytics-Assisted Smart Power Meters Considering. Sensors, 19(9), 1-26.
  • Min-Allah, N., & Alrashed, S. (2020). Smart campus—A sketch. Sustainable Cities and Society, 59, 102231. https://doi.org/10.1016/j.scs.2020.102231
  • Muhamad, W., Kurniawan, N. B., & Yazid, S. (2017). Smart campus features, technologies, and applications: A systematic literature review. https://doi.org/10.1109/ICITSI.2017.8267975
  • Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029
  • Polin, K., Yigitcanlar, T., Limb, M., & Washington, T. (2023). The Making of Smart Campus: A Review and Conceptual Framework. Buildings, 13(4). https://doi.org/10.3390/buildings13040891
  • Popoola, S. I., Atayero, A. A., Badejo, J. A., John, T. M., Odukoya, J. A., & Omole, D. O. (2018). Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university. Data in Brief, 17, 76-94. https://doi.org/10.1016/j.dib.2017.12.059
  • Samuel, I. A., Adeyemi-Kayode, T. M., Olajube, A. A., Oluwasijibomi, S. T., & Aderibigbe, A. I. (2020). Artificial Neural Network and Particle Swarm Optimization for Medium Term Electrical Load Forecasting in a Smart Campus. International Journal of Engineering Research and Technology, 13(6), 1273-1282. https://doi.org/10.37624/ijert/13.6.2020.1273-1282
  • Santiko, I., Wijaya, A. B., & Hamdi, A. (2022). Smart Campus Evaluation Monitoring Model Using Rainbow Framework Evaluation and Higher Education Quality Assurance Approach. Journal of Information Systems and Informatics, 4(2), 336-348. https://doi.org/10.51519/journalisi.v4i2.258
  • Shaw, R. N., Das, S., Piuri, V., & Bianchini, M. (2022). Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2022. Springer Nature.
  • Ghildiyal, V. (2023). Developing A Chatbot-Based ESG Scoring System Using NLP And Machine Learning Techniques. https://doi.org/10.13140/RG.2.2.16415.84647
  • Villegas-Ch, W., Molina-Enriquez, J., Chicaiza-Tamayo, C., Ortiz-Garcés, I., & Luján-Mora, S. (2019). Application of a big data framework for data monitoring on a smart campus. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205552
  • Xu, X., Li, H., Xu, W., Liu, Z., Yao, L., & Dai, F. (2022). Artificial intelligence for edge service optimization in Internet of Vehicles: A survey. Tsinghua Science and Technology, 27(2), 270-287. https://doi.org/10.26599/TST.2020.9010025
  • Yang, K., Shi, Y., Zhou, Y., Yang, Z., Fu, L., & Chen, W. (2020). Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface. IEEE Network, 34(5), 16-22. https://doi.org/10.1109/MNET.011.2000045
  • Yi, P., & Li, Z. (2022). Construction and Management of Intelligent Campus Based on Student Privacy Protection under the Background of Artificial Intelligence and Internet of Things. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/2154577
  • Yu, X., Jamali, V., Xu, D., Ng, D. W. K., & Schober, R. (2021). Smart and Reconfigurable Wireless Communications: From IRS Modeling to Algorithm Design. IEEE Wireless Communications, 28(6), 118-125. https://doi.org/10.1109/MWC.001.2100145
  • Zhou, Z., Yu, H., & Shi, H. (2020). Optimization of Wireless Video Surveillance System for Smart Campus Based on Internet of Things. IEEE Access, 8, 136434-136448. https://doi.org/10.1109/ACCESS.2020.3011951
  • Zhu, D. (2017). Analysis of the Application of Artificial Intelligence in College English Teaching. 882-885. https://doi.org/10.2991/caai-17.2017.52
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.