Journal of Information Systems Engineering and Management

Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics
Xubo Ye 1, Mababa Jonilo 2 *
More Detail
1 Ph.D candidate, Graduate School, Angeles University Foundation, Angeles, Philippines
2 Professor, Graduate School, Angeles University Foundation, Angeles, Philippines
* Corresponding Author
Research Article

Journal of Information Systems Engineering and Management, 2023 - Volume 8 Issue 3, Article No: 22638
https://doi.org/10.55267/iadt.07.13946

Published Online: 31 Aug 2023

Views: 439 | Downloads: 174

How to cite this article
APA 6th edition
In-text citation: (Ye & Jonilo, 2023)
Reference: Ye, X., & Jonilo, M. (2023). Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics. Journal of Information Systems Engineering and Management, 8(3), 22638. https://doi.org/10.55267/iadt.07.13946
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Ye X, Jonilo M. Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics. J INFORM SYSTEMS ENG. 2023;8(3):22638. https://doi.org/10.55267/iadt.07.13946
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Ye X, Jonilo M. Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics. J INFORM SYSTEMS ENG. 2023;8(3), 22638. https://doi.org/10.55267/iadt.07.13946
Chicago
In-text citation: (Ye and Jonilo, 2023)
Reference: Ye, Xubo, and Mababa Jonilo. "Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics". Journal of Information Systems Engineering and Management 2023 8 no. 3 (2023): 22638. https://doi.org/10.55267/iadt.07.13946
Harvard
In-text citation: (Ye and Jonilo, 2023)
Reference: Ye, X., and Jonilo, M. (2023). Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics. Journal of Information Systems Engineering and Management, 8(3), 22638. https://doi.org/10.55267/iadt.07.13946
MLA
In-text citation: (Ye and Jonilo, 2023)
Reference: Ye, Xubo et al. "Unleashing the Power of Big Data: Designing a Robust Business Intelligence Framework for E-commerce Data Analytics". Journal of Information Systems Engineering and Management, vol. 8, no. 3, 2023, 22638. https://doi.org/10.55267/iadt.07.13946
ABSTRACT
E-commerce companies are struggling to make use of the enormous amounts of data collected from diverse sources in the big data era. Designing and implementing a strong business intelligence (BI) framework that makes use of big data analytics is essential to overcoming this difficulty. The study examines how cloud computing affects mobile e-commerce, stressing its benefits for real-time data processing, scalability, and analysis. which boosts the competitiveness of Chinese e-commerce businesses. This study's goal is to deploy a comprehensive BI platform designed especially for e-commerce research to unleash the power of big data. Furthermore, the deployment of precision marketing techniques based on the RFM model and historical data analysis increases client segmentation, leading to targeted marketing efforts, greater customer happiness, and higher conversion rates. The major goal of this research is to equip e-commerce companies with the tools they need to take advantage of big data's potential and make decisions that will give them a competitive edge. Data storage, retrieval, and data mining are made possible by the integration of big data technologies, such as relational and distributed databases, along with parallelization via MapReduce. Ordinary, the findings of this newsletter spotlight the importance of embracing massive information technologies and methodologies in the e-trade sector. Leveraging cloud computing, records mining, and enterprise intelligence strategies can free up the capability of tremendous records assets, permitting enterprises to make informed choices, drive innovation, and gain a competitive facet. The paper highlights the value of security safeguards and risk assessment models in e-commerce systems, offering suggestions for spotting and reducing potential dangers and preserving the integrity of the system.
KEYWORDS
REFERENCES
  • Abdelhafez, A. A., Ismael, O., & Elkady, H. (2023). IoT-Based Data Size Minimization Using Cluster-Based-Similarity- Elimination. International Journal of Communication Networks and Information Security (IJCNIS), 15(2), 34-50. https://doi.org/10.17762/ijcnis.v15i2.6151
  • Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26(2), 173-194. https://doi.org/10.1007/s12525-016-0219-0
  • Bose, S., & Bhattacharjee, S. (2022). Big Data , Data Analytics and Artificial Intelligence in Accounting : An Overview. In S. Akter, & S. F. Wamba (Eds.), Handbook of Big Data Research Methods (pp. 32-51). Edward Elgar Publishing. https://doi.org/10.4337/9781800888555.00007
  • Chandrakar, I., & Hulipalled, V. R. (2022). Improved technique for preserving privacy while mining real time big data. International Journal of Communication Networks and Information Security, 14(1), 86-92. https://doi.org/10.17762/ijcnis.v14i1.5187
  • Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188. https://doi.org/10.2307/41703503
  • Chen, H., H.L.Chiang, R., & C. Storey, V. (2018). Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
  • Choi, L. K., Panjaitan, A. S., & Apriliasari, D. (2022). The Effectiveness of Business Intelligence Management Implementation in Industry 4.0. Startupreneur Business Digital (SABDA Journal), 1(2), 115-125. https://doi.org/10.34306/sabda.v1i2.106
  • Du, J. (2022). Project Attribute Information and Initiator’s Commitment in Crowdfunding Message Strategy: An Empirical Investigation of Financing Performance in Agri-Food Crowdfunding. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/SU141912702
  • Duan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. European Journal of Operational Research, 281(3), 673-686. https://doi.org/10.1016/j.ejor.2018.06.021
  • Gawusu, S., Zhang, X., Jamatutu, S. A., Ahmed, A., Amadu, A. A., & Djam Miensah, E. (2022). The dynamics of green supply chain management within the framework of renewable energy. International Journal of Energy Research, 46(2), 684-711. https://doi.org/10.1002/er.7278
  • Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., ... & Amira, A. (2023). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929-5021. https://doi.org/10.1007/s10462-022-10286-2
  • Jahani, H., Jain, R., & Ivanov, D. (2023). Data science and big data analytics: A systematic review of methodologies used in the supply chain and logistics research. Annals of Operations Research, 1-58. https://doi.org/10.1007/s10479-023-05390-7
  • Jukka, T. (2023). Does business strategy and management control system fit determine performance?. International Journal of Productivity and Performance Management, 72(3), 659-678. https://doi.org/10.1108/IJPPM-11-2020-0584
  • Madhura, K., & Niyaz Panakaje, D. (2022). Customer Perception in Relationship Between Social-Media and Purchasing Behavior of Fashion Products. International Journal of Case Studies in Business, IT, and Education. https://doi.org/10.47992/ijcsbe.2581.6942.0185
  • Karim, M. W., Chowdhury, M. A. M., Al Masud, M. A., & Arifuzzaman, M. (2021). Analysis of factors influencing impulse buying behavior towards e-tailing sites. Contemporary Management Research, 17(2), 97-126. https://doi.org/10.7903/CMR.20457
  • Krafft, M., Kumar, V., Harmeling, C., Singh, S., Zhu, T., Chen, J., Duncan, T., Fortin, W., & Rosa, E. (2021). Insight is power: Understanding the terms of the consumer-firm data exchange. Journal of Retailing, 97(1), 133-149. https://doi.org/10.1016/j.jretai.2020.11.001
  • Langerhuizen, D. W. G., Brown, L. E., Doornberg, J. N., Ring, D., Kerkhoffs, G. M. M. J., & Janssen, S. J. (2021). Analysis of Online Reviews of Orthopaedic Surgeons and Orthopaedic Practices Using Natural Language Processing. The Journal of the American Academy of Orthopaedic Surgeons, 29(8), 337-344. https://doi.org/10.5435/JAAOS-D-20-00288
  • Lawani, A., Reed, M. R., Mark, T., & Zheng, Y. (2019). Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston. Regional Science and Urban Economics, 75, 22-34. https://doi.org/10.1016/j.regsciurbeco.2018.11.003
  • Li, Y., Xu, Z. S., & Wang, X. X. (2023). Methods and applications of sentiment analysis with online reviews. Kongzhi Yu Juece/Control and Decision, 38(2), 304-317. https://doi.org/10.13195/J.KZYJC.2022.1788
  • Lutfi, A., Alrawad, M., Alsyouf, A., Almaiah, M. A., Al-Khasawneh, A., Al-Khasawneh, A. L., ... & Ibrahim, N. (2023). Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling. Journal of Retailing and Consumer Services, 70, 103129. https://doi.org/10.1016/j.jretconser.2022.103129
  • Ma, G., Ma, J., Li, H., Wang, Y., Wang, Z., & Zhang, B. (2022). Customer behavior in purchasing energy-saving products: Big data analytics from online reviews of e-commerce. Energy Policy, 165, 112960. https://doi.org/10.1016/J.ENPOL.2022.112960
  • Malhotra, D., & Rishi, O. (2021). An intelligent approach to design of E-Commerce metasearch and ranking system using next-generation big data analytics. Journal of King Saud University-Computer and Information Sciences, 33(2), 183-194. https://doi.org/10.1016/j.jksuci.2018.02.015
  • Maroufkhani, P., Iranmanesh, M., & Ghobakhloo, M. (2023). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems, 123(1), 278-301. https://doi.org/10.1108/IMDS-11-2021-0695
  • Muchenje, G., & Seppänen, M. (2023). Unpacking task-technology fit to explore the business value of big data analytics. International Journal of Information Management, 69, 102619. https://doi.org/10.1016/j.ijinfomgt.2022.102619
  • Pancić, M., Ćućić, D., & Serdarušić, H. (2023). Business Intelligence (BI) in Firm Performance: Role of Big Data Analytics and Blockchain Technology. Economies, 11(3). https://doi.org/10.3390/economies11030099
  • Riegger, A. S., Klein, J. F., Merfeld, K., & Henkel, S. (2021). Technology-enabled personalization in retail stores: Understanding drivers and barriers. Journal of Business Research, 123, 140-155. https://doi.org/10.1016/j.jbusres.2020.09.039
  • Rosas, N. G. T., Paredes, S. A. V., Gonzales, J. L. R., Kaviska, R. S., Cano, A. A. C., & Taherdoost, H. (2023). Business Intelligence as a Key Driver of E-business Enterprises; Prospects and Challenges. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 1000-1006). IEEE. https://doi.org/10.1109/ICICT57646.2023.10134229
  • Shamim, A., Qureshi, M. A., Jabeen, F., Liaqat, M., Bilal, M., Jembre, Y. Z., & Attique, M. (2021). Multi-attribute online decision-making driven by opinion mining. Mathematics, 9(8). https://doi.org/10.3390/MATH9080833
  • Shittu, E., & Weigelt, C. (2022). Accessibility in sustainability transitions: U.S. electric utilities’ deployment of solar. Energy Policy, 165. https://doi.org/10.1016/j.enpol.2022.112942
  • Smink, A. R., Van Reijmersdal, E. A., Van Noort, G., & Neijens, P. C. (2020). Shopping in augmented reality: The effects of spatial presence, personalization and intrusiveness on app and brand responses. Journal of Business Research, 118, 474-485. https://doi.org/10.1016/j.jbusres.2020.07.018
  • Song, J., Xia, S., Vrontis, D., Sukumar, A., Liao, B., Li, Q., Tian, K., & Yao, N. (2022). The Source of SMEs’ Competitive Performance in COVID-19: Matching Big Data Analytics Capability to Business Models. Information Systems Frontiers, 24(4), 1167-1187. https://doi.org/10.1007/S10796-022-10287-0
  • Sri, V. D. S., & Vemuru, S. (2022). A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns. International Journal of Communication Networks and Information Security, 14(1s), 136-152. Retrieved from https://ijcnis.org/index.php/ijcnis/article/view/5637
  • Williams, S. (2016). Business intelligence strategy and big data analytics: a general management perspective. Morgan Kaufmann. https://doi.org/10.1016/C2015-0-01169-8
  • Yao, X., Zhou, J., Zhang, J., & Boër, C. R. (2017). From intelligent manufacturing to smart manufacturing for industry 4.0 driven by next generation artificial intelligence and further on. In 2017 5th international conference on enterprise systems (ES) (pp. 311-318). IEEE. https://doi.org/10.1109/ES.2017.58
  • Yu, R., Wu, C., Yan, B., Yu, B., Zhou, X., Yu, Y., & Chen, N. (2021). Analysis of the Impact of Big Data on E-Commerce in Cloud Computing Environment. Complexity, 2021. https://doi.org/10.1155/2021/5613599
  • Zhuang, W., Wang, M. C., Nakamoto, I., & Jiang, M. (2021). Big Data Analytics in E-commerce for the US and China Through Literature Reviewing. Journal of Systems Science and Information, 9(1), 16-44. https://doi.org/10.21078/JSSI-2021-016-29
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.