Journal of Information Systems Engineering and Management

The NAO Robot in Slippery Scenarios: A Strategy
G. Franco 1, A. Coimbra 1, M. Crisóstomo 1, João P. Ferreira 2 *
More Detail
1 Department of Electrical and Computer Eng., UC, Institute of Systems and Robotics - UC, Coimbra, PORTUGAL
2 Department of Electrical Engineering - ISEC, Institute of Systems and Robotics - UC, Coimbra, PORTUGAL
* Corresponding Author
Research Article

Journal of Information Systems Engineering and Management, 2021 - Volume 6 Issue 1, Article No: em0133
https://doi.org/10.29333/jisem/9572

Published Online: 16 Jan 2021

Views: 324 | Downloads: 235

How to cite this article
APA 6th edition
In-text citation: (Franco et al., 2021)
Reference: Franco, G., Coimbra, A., Crisóstomo, M., & Ferreira, J. P. (2021). The NAO Robot in Slippery Scenarios: A Strategy. Journal of Information Systems Engineering and Management, 6(1), em0133. https://doi.org/10.29333/jisem/9572
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Franco G, Coimbra A, Crisóstomo M, Ferreira JP. The NAO Robot in Slippery Scenarios: A Strategy. J INFORM SYSTEMS ENG. 2021;6(1):em0133. https://doi.org/10.29333/jisem/9572
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Franco G, Coimbra A, Crisóstomo M, Ferreira JP. The NAO Robot in Slippery Scenarios: A Strategy. J INFORM SYSTEMS ENG. 2021;6(1), em0133. https://doi.org/10.29333/jisem/9572
Chicago
In-text citation: (Franco et al., 2021)
Reference: Franco, G., A. Coimbra, M. Crisóstomo, and João P. Ferreira. "The NAO Robot in Slippery Scenarios: A Strategy". Journal of Information Systems Engineering and Management 2021 6 no. 1 (2021): em0133. https://doi.org/10.29333/jisem/9572
Harvard
In-text citation: (Franco et al., 2021)
Reference: Franco, G., Coimbra, A., Crisóstomo, M., and Ferreira, J. P. (2021). The NAO Robot in Slippery Scenarios: A Strategy. Journal of Information Systems Engineering and Management, 6(1), em0133. https://doi.org/10.29333/jisem/9572
MLA
In-text citation: (Franco et al., 2021)
Reference: Franco, G. et al. "The NAO Robot in Slippery Scenarios: A Strategy". Journal of Information Systems Engineering and Management, vol. 6, no. 1, 2021, em0133. https://doi.org/10.29333/jisem/9572
ABSTRACT
In this paper, a strategy for adapting the NAO robot to different floors with different slipperiness degrees is presented while following a desired human-like Zero Moment Point trajectory. The robot’s gait is generated based on the HRSP software package and it aims to be as human-like as possible. The gait parameters such as the step length and walking speed are optimized in order to generate gaits with adequate RCoF for the floor’s ACoF, which minimizes the slipping probability, and as such avoiding undesired falls. This choice of gait parameters is based on the analysis of the ground reaction forces and human behavior. Also, gait adaptation is further improved in order to follow a desired Zero Moment Point trajectory, through the use of a controller that offsets the hip and ankle joint angles. The novelty of this work lies on the fact that machine learning techniques are used to adapt the gait parameters and joint corrections to make the robot more resistant to both slipping and external disturbances.
KEYWORDS
REFERENCES
  • Abrams, H. (2005). Robots: From Science Fiction to Technological Revolution (1st ed., pp. 130). Harry N Abrams Inc.
  • Akhtaruzzaman, M. A. and Shafie, A. A. (2010). Evolution of Humanoid Robot and Contribution of Various Countries in Advancing the Research and Development of the Platform. In Proceedings of the International Conference on Control, Automation and Systems, Gyeonggi-do, Korea. https://doi.org/10.1109/ICCAS.2010.5669646
  • Almeida, L., Santos, V., and Silva, F. (2018). A novel wireless instrumented shoe for ground reaction forces analysis in humanoids. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, (pp. 36-41). https://doi.org/10.1109/ICARSC.2018.8374157
  • Brandão, M., Hashimoto, K., Santos-Victor, J. and Takanishi, A. (2016). Footstep Planning for Slippery and Slanted Terrain Using Human-Inspired Models. IEEE Transactions on Robotics, 32(4), 868-879. https://doi.org/10.1109/TRO.2016.2581219
  • Cham, R. and Redfern, M. (2002). Changes in gait when anticipating slippery floors. Gait and Posture, 15, 159-171. https://doi.org/10.1016/S0966-6362(01)00150-3
  • Chang, W., Chang, C., Lesch, M. and Matz, S. (2017). Gait adaptation on surfaces with different degrees of slipperiness. Applied Ergonomics, 59(A), 333-341. https://doi.org/10.1016/j.apergo.2016.09.008
  • CM Labs. (n.d.). Vortex Studio Simulation Platform. Available at: https://www.cm-labs.com/vortex-studio/
  • Coppelia Robotics. (2014). V-rep - virtual robot experimentation platform. Available at: http://www.coppeliarobotics.com
  • Coumans, E. (n.d.). Bullet Real-Time Physics Simulation. Available at: https://pybullet.org/wordpress/
  • Elhasairi, A. and Pechev, A. (2015). Humanoid Robot Balance Control Using the Spherical Inverted Pendulum Mode. Frontiers in Robotics and AI, 2, 21. https://doi.org/10.3389/frobt.2015.00021
  • Ferreira, J., Crisóstomo, M. and Coimbra, A. (2009a). Human Gait Acquisition and Characterization. IEEE Transactions on Instrumentation and P'leasurement, 58(9), 2979-2988. https://doi.org/10.1109/TIM.2009.2016801
  • Ferreira, J., Crisóstomo, M. and Coimbra, A. (2009b). ZMP trajectory reference for the sagittal plane control of a biped robot based on a human CoP and gait. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (pp. 1588-1593). https://doi.org/10.1109/IROS.2009.5354408
  • Ferreira, J., Crisóstomo, M. and Coimbra, A. (2010). SVR sagittal balance of a biped robot controlling the torso and ankle joint angles. In Proceedings of the IEEM 2010 - IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1931-1936). https://doi.org/10.1109/IEEM.2010.5674629
  • Ferreira, João P., Franco, G., Coimbra, A. and Crisóstomo, M. (2020). Human-Like Gait Adaptation to Slippery Surfaces for the NAO Robot Wearing Instrumented Shoes. International Journal of Humanoid Robotics, 17(3), 2050007. https://doi.org/10.1142/S0219843620500073
  • Franco, G., Coimbra, A., Crisóstomo, M. and Ferreira, J. (2019). Plan for Automatic Adaptation of NAO Robots to Slippery Floors. In Proceedings of the 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, (pp. 1-5) https://doi.org/10.23919/CISTI.2019.8760942
  • Gouaillier, D., Collette, C. and Kilner, C. (2010). Omni-directional Closed-loop Walk for NAO. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots Nashville, TN, USA. https://doi.org/10.1109/ICHR.2010.5686291
  • Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J. and Maisonnier, B. (2008). The NAO humanoid: a combination of performance and affordability. CoRR. abs/0807.3223.
  • Griffin, R., Bertrand, S., Wiedebach, G., Leonessa, A. and Pratt, J. (2017). Capture Point Trajectories for Reduced Knee Bend using Step Time Optimization. In Proceedings of the 17th ieee-ras international conference on humanoid robots (humanoids). https://doi.org/10.1109/HUMANOIDS.2017.8239533
  • Griffin, R., Wiedebach, G., Bertrand, S., Leonessa, A. and Pratt, J. (2018). Straight-Leg Walking Through Underconstrained Whole-Body Control. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD (pp. 1-5). https://doi.org/10.1109/ICRA.2018.8460751
  • Heiden, T., Sanderson, D., Inglis, J. and Siegmund, G. (2006). Adaptations to normal human gait on potentially slippery surfaces: The effects of awareness and prior slip experience. Gait & posture, 24, 237-246. https://doi.org/10.1016/j.gaitpost.2005.09.004
  • Kasaei, S., Lau, N., Pereira, A. and Shahri, E (2017). A reliable model-based walking engine with push recovery capability. In Proceedings of the IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, (pp. 122-127). https://doi.org/10.1109/ICARSC.2017.7964063
  • Khadiv, M., Moosavian, S., Yousefi-Koma, A., Sadedel, M. and Mansouri, S. (2017). Optimal gait planning for humanoids with 3D structure walking on slippery surfaces. Robotica, 35(3), 569-587. https://doi.org/10.1017/S0263574715000715
  • Lima, I., Kwonb, O. and Park, J. (2014). Gait optimization of biped robots based on human motion analysis. Robotics and Autonomous Systems, 62(2), 229-240. https://doi.org/10.1016/j.robot.2013.08.014
  • Pratt, J., Carff, J., Drakunov, S. and Goswami, A. (2006). Capture Point: A Step toward Humanoid Push Recovery. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, Genova, (pp. 200-207). https://doi.org/10.1109/ICHR.2006.321385
  • Rodić, A. (2007). Humanoid Robot Simulation Platform (HRSP). Customized software for modeling and simulation of biped locomotion mechanisms. Available at: www.pupin.rs/RnDProfile/hrsp.html
  • Rodić, A., Vukobratović, M., Addi, K. and Dalleau, G. (2008). Contribution to the Modeling of Non-smooth, Multi-point Contact Dynamics of Biped Locomotion - Theory and Experiments. Robotica, 26(02), 157-175. https://doi.org/10.1017/S0263574707003682
  • Sardain, P. and Bessonnet, G. (2004). Forces Acting on a Biped Robot. Center of Pressure-Zero Moment Point. IEEE transactions on systems, man, and cybernetics - Part A: Systems and Humans, 34(5), 630-637. https://doi.org/10.1109/TSMCA.2004.832811
  • Semwal, V. and Nandi, G. (2013). Study of Humanoid Push Recovery Based on Experiments. In Proceedings of the CARE 2013 - IEEE International Conference on Control, Automation, Robotics and Embedded Systems, Proceedings. https://doi.org/10.1109/CARE.2013.6733741
  • Semwal, V. B., Mondal, K. and Nandi (2017). Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. G.C. Neural Comput & Applic, 28, 565. https://doi.org/10.1007/s00521-015-2089-3
  • Smith, R. (n.d.). Open Dynamics Engine. Available at: https://ode.org/
  • Vukobratović M., Borovac, B., Rodić, A., Katić, D. and Potkonjak, V. (2012). A Bio-Inspired Approach to the Realization of Sustained Humanoid Motion. International Journal of Advanced Robotic Systems, 9(5), 201. https://doi.org/10.5772/52419
  • Vukobratovic, M. and Borovac, B. (2004). Zero-Moment Point - Thirty Five Years of its Life. I. J. Humanoid Robotics, 1(1), 157-173. https://doi.org/10.1142/S0219843604000083
  • Vukobratović, M. and Juričić, D. (1968). Contribution to the synthesis of biped gait. In Proceedings of the IFAC Symp. on Technical and Biological Problem on Control, Erevan, USSR. https://doi.org/10.1016/S1474-6670(17)68891-8
  • Vukobratović, M. and Rodić, A. (2007). Contribution to the Integrated Control of Biped Locomotion Mechanisms. International Journal of Humanoid Robotics, 4(1), 49- 95. https://doi.org/10.1142/S0219843607000972
  • Vukobratović, M., Borovac, B., Rodić, A., Katić, D. and Potkonjak, V. (2012). A Bio-Inspired Approach to the Realization of Sustained Humanoid Motion. International Journal of Advanced Robotic Systems, 9, 201-212. https://doi.org/10.5772/52419
  • Vukobratovic, M., Potkonjak, V. and Rodic, A. (2004). Contribution to the Dynamic Study of Humanoid Robots Interacting with Dynamic Environment. Robotica, 22, 439-447. https://doi.org/10.1017/S0263574704000207
  • Wei, Y., Gang, B. and Zuwen, W. (2009). Balance recovery for humanoid robot in the presence of unknown external push. In Proceedings of the International Conference on Mechatronics and Automation, Changchun, (pp. 1928-1933).
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.