Journal of Information Systems Engineering and Management

Design and Optimization of Smart Campus Framework Based on Artificial Intelligence
Na Li 1 * , Thelma D. Palaoag 2, Hongle Du 1, Tao Guo 1
More Detail
1 Ph.D candidate, College of Information Technology and Computer Science, University of the Cordilleras, Baguio, Philippines
2 Doctor, College of Information Technology and Computer Science, University of the Cordilleras, Baguio, Philippines
* Corresponding Author
Research Article

Journal of Information Systems Engineering and Management, 2023 - Volume 8 Issue 3, Article No: 23086
https://doi.org/10.55267/iadt.07.13853

Published Online: 31 Aug 2023

Views: 499 | Downloads: 433

How to cite this article
APA 6th edition
In-text citation: (Li et al., 2023)
Reference: Li, N., Palaoag, T. D., Du, H., & Guo, T. (2023). Design and Optimization of Smart Campus Framework Based on Artificial Intelligence. Journal of Information Systems Engineering and Management, 8(3), 23086. https://doi.org/10.55267/iadt.07.13853
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Li N, Palaoag TD, Du H, Guo T. Design and Optimization of Smart Campus Framework Based on Artificial Intelligence. J INFORM SYSTEMS ENG. 2023;8(3):23086. https://doi.org/10.55267/iadt.07.13853
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Li N, Palaoag TD, Du H, Guo T. Design and Optimization of Smart Campus Framework Based on Artificial Intelligence. J INFORM SYSTEMS ENG. 2023;8(3), 23086. https://doi.org/10.55267/iadt.07.13853
Chicago
In-text citation: (Li et al., 2023)
Reference: Li, Na, Thelma D. Palaoag, Hongle Du, and Tao Guo. "Design and Optimization of Smart Campus Framework Based on Artificial Intelligence". Journal of Information Systems Engineering and Management 2023 8 no. 3 (2023): 23086. https://doi.org/10.55267/iadt.07.13853
Harvard
In-text citation: (Li et al., 2023)
Reference: Li, N., Palaoag, T. D., Du, H., and Guo, T. (2023). Design and Optimization of Smart Campus Framework Based on Artificial Intelligence. Journal of Information Systems Engineering and Management, 8(3), 23086. https://doi.org/10.55267/iadt.07.13853
MLA
In-text citation: (Li et al., 2023)
Reference: Li, Na et al. "Design and Optimization of Smart Campus Framework Based on Artificial Intelligence". Journal of Information Systems Engineering and Management, vol. 8, no. 3, 2023, 23086. https://doi.org/10.55267/iadt.07.13853
ABSTRACT
In this study, an artificial intelligence (AI)--based smart campus framework is built and optimized with the aim of improving user happiness, raising AI model performance, maximizing resource utilization, and promoting smart campus adoption. The study technique employs a mixed-methods approach that combines quantitative data analysis and qualitative user feedback in order to completely evaluate the effectiveness of the framework. Literature reviews, Questionnaires of 544, interviews of 56 persons, and observations are used to collect data on user satisfaction, AI model performance, optimization strategies, and adoption of smart campuses AI models are built using statistical methodology and AI techniques for performance evaluation. In the Smart Campus Framework based on Artificial Intelligence, we gathered the data by constructing IoT sensor networks for real-time monitoring and merging student data to provide insights into academic performance and student engagement. The findings indicate that, on average, users are satisfied, and the performance ratings for the AI models vary from 7.25 to 8.25. The smart campus framework is effective, as evidenced by the optimization metric's 7.53 average score. A score of 7.4 for smart campus adoption combines user knowledge, perceived utility, and perceived ease of use. The practical implications include better user experience, cost optimization, and smart campus architecture. Theoretical implications include the verification of the mixed-methods strategy and the creation of a framework for AI model optimization. The study's findings act as a model for upcoming smart campus research, spurring creativity and change in institutions of higher learning. The study’s limitations suggest that results can be generalized with minor contextual change and this is the biggest challenge for researchers and policy makers.
KEYWORDS
REFERENCES
  • Ahmed, V., Alnaaj, K. A., & Saboor, S. (2020). An investigation into stakeholders’ perception of smart campus criteria: The American University of Sharjah as a case study. Sustainability (Switzerland), 12(12). https://doi.org/10.3390/su12125187
  • Alhayani, B., Kwekha-Rashid, A. S., Mahajan, H. B., Ilhan, H., Uke, N., Alkhayyat, A., & Mohammed, H. J. (2023). 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system. Applied Nanoscience (Switzerland), 13(3), 1807-1817. https://doi.org/10.1007/s13204-021-02152-4
  • Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80-91. https://doi.org/10.1016/j.cities.2019.01.032
  • Barroso, S., Bustos, P., & Núñez, P. (2023). Towards a cyber-physical system for sustainable and smart building: a use case for optimising water consumption on a SmartCampus. Journal of Ambient Intelligence and Humanized Computing, 14(5), 6379-6399. https://doi.org/10.1007/s12652-021-03656-1
  • Cavus, N., Mrwebi, S. E., Ibrahim, I., Modupeola, T., & Reeves, A. Y. (2022). Internet of Things and Its Applications to Smart Campus: A Systematic Literature Review. International Journal of Interactive Mobile Technologies, 16(23), 17-35. https://doi.org/10.3991/ijim.v16i23.36215
  • Chagnon-Lessard, N., Gosselin, L., Barnabe, S., Bello-Ochende, T., Fendt, S., Goers, S., Silva, L. C. P. Da, Schweiger, B., Simmons, R., Vandersickel, A., & Zhang, P. (2021). Smart Campuses: Extensive Review of the Last Decade of Research and Current Challenges. IEEE Access, 9, 124200-124234. https://doi.org/10.1109/ACCESS.2021.3109516
  • Chui, K. T., Lytras, M. D., & Visvizi, A. (2018). Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies, 11(11), 1-20. https://doi.org/10.3390/en11112869
  • Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., & Zomaya, A. Y. (2020). Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet of Things Journal, 7(8), 7457-7469. https://doi.org/10.1109/JIOT.2020.2984887
  • Eltamaly, A. M., Alotaibi, M. A., Alolah, A. I., & Ahmed, M. A. (2021). Iot-based hybrid renewable energy system for smart campus. Sustainability (Switzerland), 13(15), 1-18. https://doi.org/10.3390/su13158555
  • Farzaneh, H., Malehmirchegini, L., Bejan, A., Afolabi, T., Mulumba, A., & Daka, P. P. (2021). Artificial intelligence evolution in smart buildings for energy efficiency. Applied Sciences (Switzerland), 11(2), 1-26. https://doi.org/10.3390/app11020763
  • Fernández-Caramés, T. M., & Fraga-Lamas, P. (2019). Towards next generation teaching, learning, and context-aware applications for higher education: A review on blockchain, IoT, Fog and edge computing enabled smart campuses and universities. Applied Sciences (Switzerland), 9(21). https://doi.org/10.3390/app9214479
  • Fortino, G., Russo, W., Savaglio, C., Shen, W., & Zhou, M. (2018). Agent-oriented cooperative smart objects: From IoT system design to implementation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(11), 1949-1956. https://doi.org/10.1109/TSMC.2017.2780618
  • Ghadami, N., Gheibi, M., Kian, Z., Faramarz, M. G., Naghedi, R., Eftekhari, M., Fathollahi-Fard, A. M., Dulebenets, M. A., & Tian, G. (2021). Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustainable Cities and Society, 74, 103149. https://doi.org/10.1016/j.scs.2021.103149
  • Hamid, T., Chhabra, M., Ravulakollu, K., Singh, P., Dalal, S., & Dewan, R. (2022). A Review on Artificial Intelligence in Orthopaedics. Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022, 365-369. https://doi.org/10.23919/INDIACom54597.2022.9763178
  • Han, X., Yu, H., You, W., Huang, C., Tan, B., Zhou, X., & Xiong, N. N. (2022). Intelligent Campus System Design Based on Digital Twin. Electronics (Switzerland), 11(21), 1-20. https://doi.org/10.3390/electronics11213437
  • Huang, L. S., Su, J. Y., & Pao, T. L. (2019). A context aware Smart classroom architecture for smart campuses. Applied Sciences (Switzerland), 9(9). https://doi.org/10.3390/app9091837
  • Ikidid, A., Fazziki, A. El, & Sadgal, M. (2023). Multi-agent and fuzzy inference-based framework for traffic light optimization. International Journal of Interactive Multimedia and Artificial Intelligence, 8, 2-88. https://doi.org/10.9781/ijimai.2021.12.002
  • Isaac Abiodun, O., Jantan, A., Esther Omolara, A., Victoria Dada, K., AbdElatif Mohamed, N., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Cell.Com, 4, e00938. https://doi.org/10.1016/j.heliyon.2018
  • Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2022). Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications. IEEE Journal on Selected Areas in Communications, 40(1), 5-36. https://doi.org/10.1109/JSAC.2021.3126076
  • Li, B. hu, Hou, B. cun, Yu, W. tao, Lu, X. bing, & Yang, C. wei. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology and Electronic Engineering, 18(1), 86-96. https://doi.org/10.1631/FITEE.1601885
  • Li, G., Zheng, C., Han, D., & Li, M. (2021). Research on Smart Campus Architecture Based on the Six Domain model of the Internet of Things. Journal of Physics: Conference Series, 1861(1). https://doi.org/10.1088/1742-6596/1861/1/012038
  • Li, X., Wan, J., Dai, H. N., Imran, M., Xia, M., & Celesti, A. (2019). A Hybrid Computing Solution and Resource Scheduling Strategy for Edge Computing in Smart Manufacturing. IEEE Transactions on Industrial Informatics, 15(7), 4225-4234. https://doi.org/10.1109/TII.2019.2899679
  • Liang, L., Ye, H., & Li, G. Y. (2018). Toward intelligent vehicular networks: A machine learning framework. IEEE Internet of Things Journal, 6(1), 124-135.
  • Liang, Y., & Chen, Z. (2018). Intelligent and Real-Time Data Acquisition for Medical Monitoring in Smart Campus. IEEE Access, 6, 74836-74846. https://doi.org/10.1109/ACCESS.2018.2883106
  • Lu, P., Chen, S., & Zheng, Y. (2012). Artificial intelligence in civil engineering. Mathematical Problems in Engineering, 2012, 1-23. https://doi.org/10.1155/2012/145974
  • Luckyardi, S., Jurriyati, R., Disman, D., & Dirgantari, P. D. (2022). A Systematic Review of the IoT in Smart University: Model and Contribution. Indonesian Journal of Science and Technology, 7(3), 529-550. https://doi.org/10.17509/ijost.v7i3.51476
  • Lv, Z., Han, Y., Singh, A. K., Manogaran, G., & Lv, H. (2021). Trustworthiness in Industrial IoT Systems Based on Artificial Intelligence. IEEE Transactions on Industrial Informatics, 17(2), 1496-1504. https://doi.org/10.1109/TII.2020.2994747
  • Management, D., & Homes, S. (2019). Analytics-Assisted Smart Power Meters Considering. Sensors, 19(9), 1-26.
  • Martínez-López, F. J., & Casillas, J. (2013). Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Industrial Marketing Management, 42(4), 489-495. https://doi.org/10.1016/j.indmarman.2013.03.001
  • Musa, M., Ismail, M. N., & Fudzee, M. F. M. (2021). A survey on smart campus implementation in Malaysia. International Journal on Informatics Visualization, 5(1), 51-56. https://doi.org/10.30630/joiv.5.1.434
  • Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2), 548-568. https://doi.org/10.3390/smartcities4020029
  • Polin, K., Yigitcanlar, T., Limb, M., & Washington, T. (2023). The Making of Smart Campus: A Review and Conceptual Framework. Buildings, 13(4). https://doi.org/10.3390/buildings13040891
  • Rahmanifard, H., & Plaksina, T. (2019). Application of artificial intelligence techniques in the petroleum industry: a review. Artificial Intelligence Review, 52(4), 2295-2318. https://doi.org/10.1007/S10462-018-9612-8
  • Ramchurn, S. D., Vytelingum, P., Rogers, A., & Jennings, N. R. (2012). Putting the “smarts” into the smart grid: A grand challenge for artificial intelligence. Communications of the ACM, 55(4), 86-97. https://doi.org/10.1145/2133806.2133825
  • Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372. https://doi.org/10.1016/j.rser.2015.04.065
  • Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering structures, 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084
  • Sánchez-Torres, B., Rodríguez-Rodríguez, J. A., Rico-Bautista, D. W., & Guerrero, C. D. (2018). Smart Campus: Trends in cybersecurity and future development. Revista Facultad de Ingeniería, 27(47), 104-112. https://doi.org/10.19053/01211129.v27.n47.2018.7807
  • Shaw, R. N. (2022). Lecture Notes in Electrical Engineering 914 Advanced Computing and Intelligent Technologies. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-19-2980-9
  • Sneesl, R., Jusoh, Y. Y., Jabar, M. A., & Abdullah, S. (2022). Revising Technology Adoption Factors for IoT-Based Smart Campuses: A Systematic Review. Sustainability (Switzerland), 14(8), 1-27. https://doi.org/10.3390/su14084840
  • Valks, B., Arkesteijn, M. H., Koutamanis, A., & den Heijer, A. C. (2020). Towards a smart campus: supporting campus decisions with Internet of Things applications. Building Research and Information, 1-20. https://doi.org/10.1080/09613218.2020.1784702
  • Villegas-Ch, W., Molina-Enriquez, J., Chicaiza-Tamayo, C., Ortiz-Garcés, I., & Luján-Mora, S. (2019). Application of a big data framework for data monitoring on a smart campus. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205552
  • Wang, X., Li, X., & Leung, V. C. M. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379-1391. https://doi.org/10.1109/ACCESS.2015.2467174
  • Wang, Y., Saez, B., Szczechowicz, J., Ruisi, J., Kraft, T., Toscano, S., & Nicolas, K. (2017). A smart campus internet of things framework. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017. https://doi.org/10.1109/UEMCON.2017.8249106
  • Woschank, M., Rauch, E., & Zsifkovits, H. (2020). A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093760
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., ... & Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4). https://doi.org/10.1016/j.xinn.2021.100179
  • Yao, K., Unni, R., & Zheng, Y. (2019). Intelligent nanophotonics: Merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8(3), 339-366. https://doi.org/10.1515/nanoph-2018-0183
  • Yi, P., & Li, Z. (2022). Construction and Management of Intelligent Campus Based on Student Privacy Protection under the Background of Artificial Intelligence and Internet of Things. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/2154577
  • Yu, X., Jamali, V., Xu, D., Ng, D. W. K., & Schober, R. (2021). Smart and Reconfigurable Wireless Communications: From IRS Modeling to Algorithm Design. IEEE Wireless Communications, 28(6), 118-125. https://doi.org/10.1109/MWC.001.2100145
  • Zaballos, A., Briones, A., Massa, A., Centelles, P., & Caballero, V. (2020). A smart campus’ digital twin for sustainable comfort monitoring. Sustainability (Switzerland), 12(21), 1-33. https://doi.org/10.3390/su12219196
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/S41239-019-0171-0
  • Zhang, J., & Tao, D. (2020). Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet of Things Journal, 8(10), 7789-7817. https://doi.org/10.1109/JIOT.2020.3039359
  • Zhang, Y., Wang, X., Wang, J., & Zhang, Y. (2021). Deep Reinforcement Learning Based Volt-VAR Optimization in Smart Distribution Systems. IEEE Transactions on Smart Grid, 12(1), 361-371. https://doi.org/10.1109/TSG.2020.3010130
  • Zhou, Z., Yu, H., & Shi, H. (2020). Optimization of Wireless Video Surveillance System for Smart Campus Based on Internet of Things. IEEE Access, 8, 136434-136448. https://doi.org/10.1109/ACCESS.2020.3011951
  • Zhu, D. (2017). Analysis of the Application of Artificial Intelligence in College English Teaching. 882-885. https://doi.org/10.2991/caai-17.2017.52
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.