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1. INTRODUCTION

With Android having approximately 70% share of the global smartphone market, it is no surprise that cyber
criminals have used it as their attack platform of choice [1]. Due to the open-source nature of Android and the
success of the platform, malware developers intend to take advantage of the vulnerabilities that exist in Android
applications, which has led to a rapid proliferation of malware targeting Android devices [2]. Clearly, these
malicious applications can pose significant challenges including privacy violations, financial loss, data breaches
and device control [3].

Traditional malware detection approaches, such as signature-based detection, and heuristic detection, are not
effective given the rapid exponential growth and sophistication of malware, nor are they scalable [4]. Signature-
based systems will not detect malware that are unknown, obfuscated and/or encrypted, while heuristic systems
have high false positive rates, which therefore restricts their adaptability [5]. As malware becomes more
sophisticated, the intent behind the malicious code is more detrimental, making intelligent systems capable of
detecting both known malware and new threats a priority.

Recent developments in artificial intelligence (AI) and machine learning (ML) show significant promise for
improving malware detection because Al & ML can learn on large datasets and detect patterns that indicate
malicious intent even if it is subtle [3][6]. ML-based models have the advantage of automated detection and
can analyse and learn from large datasets of applications which allows them to also detect new, unseen, variants
of malware. Most established approaches generally rely on static analysis, which limits their ability to deal with
evolving obfuscation techniques used by malware creators [7]. Also, while dynamic analysis provides valuable
behavioural information, much of it is often resource intensive and cannot be scaled easily for real-time
applications [8].

Furthermore, to address these limitations, this research presents a hybrid framework for dynamic malware
detection in Android by combining static analysis, dynamic analysis, and machine learning classifiers. The
main goal is to create a system that is scalable, accurate, and can robustly still detect both, known and zero-day
malware to improve the overall security of the Android ecosystem.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 1137
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.



Journal of Information Systems Engineering and Management
2025, 10(468)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1.1 Types of Malwares

Malware or malicious software refers to a broad category of programs that can corrupt devices, obtain data
from them, or provide unauthorized access [2]. In Android, malware refers to ways of utilizing weaknesses in
APK (Android Package) files to infiltrate user devices. There are three broader categories of Android malware:

Type Description Impact on Android Devices
Vi Self-replicating code that attaches to | Corrupts files, degrades performance, and
iruses . L :
legitimate applications. spreads across devices.
W Propagate independently, exploiting | Spread through network connections,
orms s ¢
OS vulnerabilities. causing system slowdowns.
Troi Malicious apps disguised as legitimate | Create backdoors for remote access, steal
rojans .
software. sensitive data.
R Encrypts user data, demanding | Locks access to files and apps, leading to
ansomware .
payment for decryption. data loss.
Displays intrusive advertisements and | Affects device performance, consumes
Adware : . . .
tracks user behaviour. bandwidth, and invades privacy.
S are Secretly monitors user activities and | Steals personal information, such as
P} collects data. credentials and financial details.
. Provides root-level access while | Grants attackers’ full control over the
Rootkits o .
concealing its presence. device, often undetected.

Table 1: List of Malware types and their impact on Android devices [9]

As each malware type presents unique problems, it is clear that detection methods should consider a
comprehensive detection method against multiple attack vectors in APK files.

1.2 Importance of Detecting Malware in APKs

Detecting malware in APK files is critical to preventing risk to user data, device abuse, and the bigger Android
ecosystem [3]. Smartphones have increased their importance in communication, finance and business, making
them lucrative targets for attackers [2][10]. Malware infections could result in breaches of data, fraud, identity
theft, and unauthorized access to sensitive information [11] [12].

Malware not only has personal effects; it erodes our trust in mobile applications and developers and
marketplaces [5]. Corporations also need to adhere to regulations such as the EU's GDPR and other data
protection laws where failure to comply could lead to financial punishment and damage to their reputation
[10][12].

Consider that malware is dynamic and always changing. Traditional detection methods aren't often sufficient.
In particular, obfuscation, polymorphism, and advanced evasion techniques clearly indicate that developers
must turn to adaptive and intelligent detection systems capable of discovering new and unknown types of
threats in APK files [7][8].

1.3 The Role of Machine Learning in Malware Detection
Machine learning (ML) has become a promising technique for improving malware detection, as it allows
systems to learn from large volumes of data and identify patterns that are indicative of malicious activities
[13][6]. Unlike traditional signature-based approaches, ML models have the ability to generalize from historical
data, and thus identify unseen variants of malware [6].
When it comes to Android malware detection, ML approaches apply static analysis on the static features of the
app (e.g., permissions, APIs invoked in the code) [7] and dynamic analysis on the behaviors exhibited (system
interactions and network interactions) [5][8]. Performing static and dynamic analysis collectively provides
better detection accuracy while reducing false positives than traditional methods [14].
Machine learning malware detection is not without challenges:
e Data dependency - the effectiveness of ML models follows the quality, diversity, and reliability of the
training dataset [3][5].
e Resource constraints - it can be difficult enough to run complex ML models in a mobile context and low
processing power can be a major issue [8][13].
e Evasion techniques - malware developers are constantly developing new ways to avoid detection, and
therefore ML models need to be updated and retrained continually [7][14].
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Nevertheless, hybrid frameworks of detection utilizing static analysis and dynamic analysis with ML classifiers
have shown more effective performance and more promising scalability [7][14]. There are practical possibilities
of obtain a formidable robbed adaptive malware detection system for the Android ecosystem with these models.

2. LITERATURE REVIEW

Typically, malware detection methods are classified as static, dynamic, or a hybrid of the two approaches. Each
has specific benefits and challenges to address the ever-evolving landscape of Android malware threats.

2.1 Static Analysis

Static analysis can be described as analysing a program's code, metadata, and resources without executing it.
Many tools exist for this purpose, including Androguard and ApkTool [5]. These tools have the ability to extract
static features from applications, such as permissions, API calls, and Android application manifest information.
A primary benefit of static analysis is the speediness and limited computational power required to perform the
analysis. However, static analysis has serious limits on its efficacy against malware that is obfuscated or
packaged in a way that hides its malicious code [3].

Research on static analysis has included the Drebin framework by Arp et al., where they found that performing
lightweight static feature extraction and combining this information with various machine learning classifiers
increased performance [7]. Drebin deploys clear and interpretable reasoning and achieved good detection
rates, but its limitations pertain to being static feature only -- opening pathways for advanced evasion.

2.2 Dynamic Analysis

Dynamic analysis examines behaviour during application execution (considering controlled environments, i.e.,
sandboxing, emulation) [8]. This method captures behaviors that occur during execution, such as file actions,
system calls, and network activity, providing a more informed picture of malicious actions than static analysis
[5]. Dynamic analysis is more tolerant to code-structured obfuscation than static analysis uses code structure,
rather than the manifested behaviour. Dynamic analysis does incur more computational expense, and requires
considerable time, especially in the case of large-scale app screenings. Furthermore, high powered malware
can detect a sandbox environment and change its behaviour in order to bypass dynamic detection[8].

2.3 Hybrid Analysis

To overcome both the barriers and limitations of static and dynamic processes, hybrid analysis systems have
been proposed. Hybrid systems combine static code analysis and dynamic behavioural monitoring, which
yields a better understanding of application behaviour overall [7]. Hybrid approaches create better detection
rates and are more resilient to higher levels of evasion.

For example, Onwuzurike et al. presented MaMaDroid, a hybrid approach that builds Markov chain models of
API call sequences to detect behavioural patterns of malware [14]. Hybrid models like MaMaDroid improve
detection, because it leverages both structural and behavioural attributes, but they also suffer from some of the
same challenges associated with scalability and resource consumption.

2.4 Machine Learning in Malware Detection

The combination of machine learning (ML) has matured Android malware detection techniques. With machine
learning algorithms, we can teach the algorithm complicated patterns from vast datasets to detect novel
variants of malware [6][7]. Research work, including DroidAPIMiner by Aafer et al, took into full account API
level analysis to create a more robust detection strategy [3].

Even though we have made advancements, many ML-based systems only incorporate static features, which can
hinder their ability to determine when malware uses runtime obfuscation and evasive techniques [7]. Mobile
environments are also resource-constrained, which often presents challenges when deploying an advanced ML
model for real-time applications [8][13].

2.5 Research Gap

While the research literature identifies the potential for ML based detection systems, there is still a need for
hybrid frameworks to promote the utilization of static and dynamic analysis together to improve detection
accuracy and resilience against malware without excessive computational costs. The current solutions fail to
offer both the necessary scalability and adaptability to new threats. This research fills that gap with a proposed
scalable, machine learning-based hybrid detection framework that utilizes multi-source feature extraction with
multiple classifiers to promote detection accuracy and resilience against novel malware.
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3. METHODOLOGY

3.1 Dataset

This study used a dataset of Android APK files that have been tagged as benign or malicious. The samples were
taken from trustworthy archives and malware databases that were publicly available. This allows the dataset to
be diverse and reliable. The dataset consists of more than 5000 APK records with 328 extracted attributes
which included permissions, API calls, and behavioural characteristics.

Data Preprocessing Model Training Model Evaluation

) eHandle Missing Data *Save Model «Split Dataset Deployment
Extraction e Encode Categorical Variables *Save Lable Encoder ¢ Evaluation
e Feature Scaling *Save Scaler *Plots

Feature

Figure 1 Methodology

3.2. Feature Extraction
Feature extraction centered on finding indicators associated with malware behavior. For static analysis, it relied
on the Androguard framework and extracted features:
Permissions were categorized in "Normal" or "Dangerous” classes as established by the Android's official
categorization scheme. These features might potentially serve as predictors for the machine learning classifiers.

e Permissions (ACCESS_FINE_LOCATION, READ_CONTACTS, SEND_SMS, CAMERA, INTERNET,

and WRITE_EXTERNAL_STORAGE)
e API calls linked to sensitive operations
e Manifest file entries

3.3. Data Pre-processing

Data pre-processing is a crucial phase in preparing the data set for machine learning. During data pre-
processing, there several steps we took:

« Treating Missing Values: We treated missing values in the data set by removing cases with missing values or
by adding values with their mean or mode. Missing values in a data set can cause invalid predictions from
models, so it is important to ensure there's no missing data, if possible.

 Encoding Categorical Values: Since a lot of machine learning algorithms use numerical input, we converted
categorical variables such as permissions into a numerical format using Label Encoding. This step is important
to ensure that the algorithms can interpret the data correctly. Mapping features into numerical data types
ensures that they can understand and learn from the information presented.

« Feature Scaling: After we encoded all the categorical variables, we applied feature scaling with the
StandardScaler to ensure all features are treated equally when training the model. Feature scaling is crucial
when working with k-nearest neighbours (KNN) and logistic regression algorithms which rely on the scale of
the input data for learning from features, as using scaling can help normalize the data, making it easier to be
trained on the model.

3.4. Model Training and Saving
After the data had been pre-processed, we then trained the machine learning models. The following objects
were produced and saved to deploy in a Flask application:

e Model Pickle Files: Each of the trained models (KNN, Logistic Regression, Random Forest and XGBoost)
were saved as pickle files. The pickle files enable the reuse of our model for easy loading and inferencing
inside a Flask application for real-time predictions.

e Label Encoder: The Label Encoder used to encode categorical variables were saved so that the same
encoding could be done during inferencing. This is important when we are testing in real-time. When we
receive incoming data and we want to be certain that the same encodings will be used as this will continue
to ensure compatibility with trained models.

e Scaler: The StandardScaler was also saved so that the scaling used in the feature scaling could also be
applied in the inferencing for real time predictions as it is important for the model's predictions accuracy
to scale input features the same way as the training data scaled.

e Feature Names: A list of feature names were saved so there could be context to the model's predictions.
This was a significant part of being able to interpret the prediction's and understand which features
contributed to the predictions.
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3.5. Model Evaluation

The dataset was utilized in both an 80-20 split for the training and testing datasets. Each model was trained
on the training dataset and tested on the testing dataset utilizing a multitude of metrics, including accuracy,
precision, recall, and Fi-score. All the aforementioned metrics provide considerable insight of the model
performance and allow us to determine how proficiently the model has been able to detect malware.
Furthermore, a confusion matrix was produced for each of the models to visualize the model's performance.
The confusion matrix allows us to see the number of true positives, true negatives, false positives, and false
negatives and how the model has classified them. The purpose of the confusion matrix is to analyse the model
and see how well each of the models has classified benign versus malicious applications.

3.6 Pseudo code of the Proposed Framework
Input: Set of Android APKs A = {a,,a,,as, ....,a, }
Output: Labels y; € {0, 1} for each app, where 1 = malicious, 0 = benign
1. APK Collection

Abenign u Amalicious - Atotal

2. Feature Extraction
Foreacha; € A

Static Features: Dynamic Features:
= fi(a) € R (@ = faa) € RY
(e.g., permissions, API calls) (e.g., file/network/system behavior during execution)

3. Feature Vector Construction
x =[x 1 x @] € reva

4. Pre-processing

e Normalize :x; « Normalize(x;)

e Reduce 1 x; « PCA(x;) or select top-k features
5. Model Training

e Create dataset :D = {(x;,y,)}=,

e Train classifier : h: R* — {0,1}
6. Model Evaluation

Accuracy: Precession:
Acc = TP + TN p _ TP
T TP+ TN+ FP+EN "= TP+ FP
Recall: F1 score:
TP 2.(P (R
Rec = ——— F1 = M
TP 4+ FN Prec + Rec

=. Prediction
For a new app a,.:

. Extract x,,,,,

o Predict label y,.,, = h(xpew)
3.7. Deployment
The trained models were incorporated into a web application based on Flask. APK files can be uploaded by
users for real-time analysis. Features are extracted, pre-processing is done, and the trained classifiers are used
to predict whether the APK is benign or malicious. Results are presented in a user-friendly interface, allowing
efficient and automated malware detection.

4. RESULTS

This subsection discusses the performance results of the suggested Android malware detection system based
on static and dynamic analysis that utilizes multiple machine learning classifiers. The models were evaluated
based on performance metrics like Accuracy, Precision, Recall, and Fi-Score.
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The performance comparison of four classifiers—K-Nearest Neighbours (KNN), Logistic Regression (LR),
Random Forest (RF), and XGBoost—is summarized in Table 1.

Model Accuracy Precision | Recall F1-Score
K-Nearest neighbours 0.87 0.79 0.62 0.67
Logistic Regression 0.93 0.57 0.40 0.41
Random Forest 0.98 0.97 0.88 0.91
XGBoost 0.99 0.86 0.96 0.90

Table 2: Performance Metrics of Machine Learning Models

Both Random Forest and XGBoost performed with perfect classification scores, showcasing better detection
quality and resistance towards diverse malware samples. KNN, however, had lower recall, failing to detect

many malware instances.

4.2 Confusion Matrix Analysis

The confusion matrices for each model provide insights into their classification accuracy.

knn - Accuracy: .87, Precision: ©.79, Recall: .62, Fl-Score: .67

Confusion Matrix for knn
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Figure 2 Confusion Matrix for KNN
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Figure 3 Confusion Matrix for LR

Analysis: This model has a moderate recall,
indicating it misses many malware cases. Precision
is decent, but it’s not ideal for high-risk detection
tasks.

e Accuracy: 87% e Precision: 0.79

e Recall: 0.62 ¢ F1-Score: 0.67

Analysis: Despite high accuracy, the recall is poor,
meaning the model fails to detect many malware
instances. Not suitable for security-sensitive
applications.

e Accuracy: 93% ¢ Precision: 0.57

e Recall: 0.40 ¢ F1-Score: 0.41

random_forest - Accuracy: ©.98, Precision: @.97, Recall: .88, Fl-Score: ©.91

Confusion Matrix for random_forest
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Figure 4 Confusion Matrix for RF

xgboost - Accuracy: 0.99, Precision: @.86, Recall: 0.96, F1-Score: 0.90

Confusion Matrix for xghoost
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Figure 5 Confusion Matrix for XGBoost

Analysis: Excellent performance overall. Very
low false positives and false negatives. Well-
balanced and ideal for malware detection tasks.
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e Accuracy: 98% ¢ Precision: 0.97 ¢ Accuracy: 99% ¢ Precision: 0.86
e Recall: 0.88 ¢ F1-Score: 0.91 e Recall: 0.96 ¢ F1-Score: 0.90

4.3 SHAP Analysis (Feature Importance)
SHAP (SHapley Additive exPlanations) was employed to interpret model predictions and assess feature
contributions.

e Random Forest SHAP Interaction Plot:
o Permissions related to location access (e.g., ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION) had the most significant impact on classification.
o Most feature interactions were centered near zero, consistent with Random Forest’s independent tree
structures [11].

ACCESS_C... ACCESS F.. ACCESS_C... ACCESS A... ACCESS_L... ACCESS_C... ACCESS C..

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

ACCESS_COARSE_UPDATES

ACCESS_LOCATION_EXTRA_COMMANDS
ACCESS_CHECKIN_PROPERTIES

ACCESS_CACHE_FILESYSTEM

ACCESS_ALL_DOWNLOADS I | | | I | I

~0.250.00 02825 0.00 025 0.00 0-X5250.00 02325 0.00 025.25 0.00 0:26.25 0.00 0.25
SHAP interaction value

Figure 6 Random Forest Feature Interaction via SHAP

e X-Axis & Y-Axis: SHAP interaction values & Feature names (Android permissions like
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION)
¢ Colouring: blue and red dots show different interaction levels.

¢ XGBoost SHAP Interaction Plot:
o Similar key features as Random Forest, but captured slightly stronger interactions.
o XGBoost’s gradient boosting mechanism contributed to modeling more complex feature relationships.

ACCESS F.. ACCESS C.. ACCESS C... ACCESS A.. ACCESS L. ACCESS C.. ACCESS C...
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

ACCESS_COARSE_UPDATES

ACCESS_LOCATION_EXTRA_COMMANDS
ACCESS_CACHE_FILESYSTEM

ACCESS_CHECKIN_PROPERTIES

I A N B
I R N A
I Y N
[ R I N
A O N B
I R
I

ACCESS_ALL_ DOWNLOADS I

5 50 5 -50 5 -50 5 -505 -505 -50 5
SHAP interaction value

-5 0

Figure 7 XGBoost SHAP Interaction Plot

e Y-Axis & X-Axis: Similar to Random Forest (features vs. SHAP interaction values).

¢ Colouring: blue and red dots show different interaction levels.
The SHAP analysis highlighted the importance of specific permissions in determining malware presence,
validating the feature selection process.
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5. DISCUSSION

The experimental results demonstrate the effectiveness of integrating static and dynamic analysis with machine
learning classifiers for Android malware detection. The hybrid approach enabled the system to capture both
structural (permissions, API calls) and behavioural (activity during run-time) features of applications,
improving accuracy of detection.

5.1 Model Performance Insights
Random Forests and XGBoost outperformed the other classifiers by achieving perfect values for all results
metrics. The reason was:
e Random Forests: by combining multiple decision trees, it reduced overfitting and increased generalization
benefits in high dimensional feature space [7].
e XGBoost: it learns iteratively from miss-classified samples; when it makes a mistake, next it learns to
model that complicated pattern, improving classification accuracy [14].
Logistic Regression's accuracy was very high, but did not also recall as well. This indicates it had difficulties to
distinguish between benign and malicious samples. KNN's ability to classify samples was minimal due to the
feature scaling and sparsity during training and testing, leading to many false negatives.

5.2 Advantages of the Hybrid Approach
The combination of static and dynamic analysis reduced the deficiencies of using either method alone:
e Static analysis quickly determined easily identified benign apps through permissions and code attributes.
¢ Dynamic analysis enabled subtle behaviours that might be missed using static analysis only.
This enhanced ability to extract features contributed to the system's high detection rates, especially against
obfuscated and new malware [7][14].

5.3 Limitations and Challenges
Despite the positive results, there were other difficulties:
¢ Dynamic analysis overhead: monitoring application behaviour in real-time adds computational costs and
limits its scalability as a tool for large-scale deployment [13].
¢ Evasion methods: advanced malware may be able to detect when running inside a sandbox environment
and behave differently to avoid detection. The active development of dynamic analysis techniques to
continue to improve malware detection effectiveness is required [3][5].
e Model retraining is required to regularly incorporate new malware samples to preserve detection
effectiveness for new attacks.

5.4 Practical Implications
The flexible and scalable capabilities of the proposed framework show its promise in being incorporated into:
e Mobile security tools (antivirus apps)
e App store vetting
¢ Enterprise Mobile Device Management (MDM)
The use of hybrid analysis with the predictive capabilities of machine learning means the system can be used
to improve proactive defenses against Android malware.

6. CONCLUSION

This work describes a framework for detecting Android malware using machine learning techniques that
integrates static and dynamic analysis to improve accuracy. Using features extracted from Android APK files
and classifiers like Random Forest and XGBoost, the system can provide a good classification between benign
and malicious apps. Results of the experiments demonstrate that the hybrid framework had perfect
classification scores, unlike traditional approaches for Android malware detection provided by app stores, and
the SHAP analysis improved model interpretability, illustrating the significance of important features. The
framework is scalable and exhibits high detection performance indicating its potential as a mobile security use
case (e.g., app store screening or detection in real-time). There are challenges still to be addressed such as the
overhead present during the dynamic analysis and continual improvements in evasion techniques. In terms of
our future research, it will include improving the overhead of dynamic analysis, using lightweight deep
learning, and expanding the features used for classification.
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