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1. INTRODUCTION 

 
With Android having approximately 70% share of the global smartphone market, it is no surprise that cyber 
criminals have used it as their attack platform of choice [1]. Due to the open-source nature of Android and the 
success of the platform, malware developers intend to take advantage of the vulnerabilities that exist in Android 
applications, which has led to a rapid proliferation of malware targeting Android devices [2]. Clearly, these 
malicious applications can pose significant challenges including privacy violations, financial loss, data breaches 
and device control [3]. 
Traditional malware detection approaches, such as signature-based detection, and heuristic detection, are not 
effective given the rapid exponential growth and sophistication of malware, nor are they scalable [4]. Signature-
based systems will not detect malware that are unknown, obfuscated and/or encrypted, while heuristic systems 
have high false positive rates, which therefore restricts their adaptability [5]. As malware becomes more 
sophisticated, the intent behind the malicious code is more detrimental, making intelligent systems capable of 
detecting both known malware and new threats a priority. 
Recent developments in artificial intelligence (AI) and machine learning (ML) show significant promise for 
improving malware detection because AI & ML can learn on large datasets and detect patterns that indicate 
malicious intent even if it is subtle [3][6].   ML-based models have the advantage of automated detection and 
can analyse and learn from large datasets of applications which allows them to also detect new, unseen, variants 
of malware.  Most established approaches generally rely on static analysis, which limits their ability to deal with 
evolving obfuscation techniques used by malware creators [7]. Also, while dynamic analysis provides valuable 
behavioural information, much of it is often resource intensive and cannot be scaled easily for real-time 
applications [8]. 
Furthermore, to address these limitations, this research presents a hybrid framework for dynamic malware 
detection in Android by combining static analysis, dynamic analysis, and machine learning classifiers. The 
main goal is to create a system that is scalable, accurate, and can robustly still detect both, known and zero-day 
malware to improve the overall security of the Android ecosystem. 
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The growing incidence and complexity of Android malware pose serious challenges to 
mobile security. Since obfuscation and zero-day threats usually go beyond the scope 
of detection by signature or heuristic solutions, the researchers considered a hybrid 
approach to malware detection that integrates static and dynamic analysis with 
machine learning classifiers to enhance the accuracy and robustness of the detection 
mechanism. Permissions, API calls, and runtime behaviors were extracted from APK 
files and subjected to classification by Random Forest and XGBoost. The experimental 
results favoured the Random Forest and XGBoost classifiers, with 100% accuracy, 
precision, recall, and F1-score, thus far better than the traditional methods. The 
interpretability of the models through SHAP (SHapley Additive exPlanations) further 
improved by pinpointing key features that influence the final detection decision. The 
proposed framework is scalable and flexible, making it suitable for real-time mobile 
security use cases and app store screening procedures. The framework instigates the 
furtherance of proactive and intelligent Android malware detection, thus contributing 
to mobile ecosystem security. 
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1.1 Types of Malwares 
Malware or malicious software refers to a broad category of programs that can corrupt devices, obtain data 
from them, or provide unauthorized access [2]. In Android, malware refers to ways of utilizing weaknesses in 
APK (Android Package) files to infiltrate user devices. There are three broader categories of Android malware: 
 

Type Description Impact on Android Devices 

Viruses 
Self-replicating code that attaches to 
legitimate applications. 

Corrupts files, degrades performance, and 
spreads across devices. 

Worms 
Propagate independently, exploiting 
OS vulnerabilities. 

Spread through network connections, 
causing system slowdowns. 

Trojans 
Malicious apps disguised as legitimate 
software. 

Create backdoors for remote access, steal 
sensitive data. 

Ransomware 
Encrypts user data, demanding 
payment for decryption. 

Locks access to files and apps, leading to 
data loss. 

Adware 
Displays intrusive advertisements and 
tracks user behaviour. 

Affects device performance, consumes 
bandwidth, and invades privacy. 

Spyware 
Secretly monitors user activities and 
collects data. 

Steals personal information, such as 
credentials and financial details. 

Rootkits 
Provides root-level access while 
concealing its presence. 

Grants attackers’ full control over the 
device, often undetected. 

Table 1: List of Malware types and their impact on Android devices [9] 
 

As each malware type presents unique problems, it is clear that detection methods should consider a 
comprehensive detection method against multiple attack vectors in APK files. 
 
1.2 Importance of Detecting Malware in APKs 
Detecting malware in APK files is critical to preventing risk to user data, device abuse, and the bigger Android 
ecosystem [3]. Smartphones have increased their importance in communication, finance and business, making 
them lucrative targets for attackers [2][10]. Malware infections could result in breaches of data, fraud, identity 
theft, and unauthorized access to sensitive information [11] [12]. 
Malware not only has personal effects; it erodes our trust in mobile applications and developers and 
marketplaces [5]. Corporations also need to adhere to regulations such as the EU's GDPR and other data 
protection laws where failure to comply could lead to financial punishment and damage to their reputation 
[10][12]. 
Consider that malware is dynamic and always changing. Traditional detection methods aren't often sufficient. 
In particular, obfuscation, polymorphism, and advanced evasion techniques clearly indicate that developers 
must turn to adaptive and intelligent detection systems capable of discovering new and unknown types of 
threats in APK files [7][8]. 
 
1.3 The Role of Machine Learning in Malware Detection 
Machine learning (ML) has become a promising technique for improving malware detection, as it allows 
systems to learn from large volumes of data and identify patterns that are indicative of malicious activities 
[13][6]. Unlike traditional signature-based approaches, ML models have the ability to generalize from historical 
data, and thus identify unseen variants of malware [6]. 
When it comes to Android malware detection, ML approaches apply static analysis on the static features of the 
app (e.g., permissions, APIs invoked in the code) [7] and dynamic analysis on the behaviors exhibited (system 
interactions and network interactions) [5][8]. Performing static and dynamic analysis collectively provides 
better detection accuracy while reducing false positives than traditional methods [14]. 
Machine learning malware detection is not without challenges: 

• Data dependency - the effectiveness of ML models follows the quality, diversity, and reliability of the 
training dataset [3][5]. 

• Resource constraints - it can be difficult enough to run complex ML models in a mobile context and low 
processing power can be a major issue [8][13]. 

• Evasion techniques - malware developers are constantly developing new ways to avoid detection, and 
therefore ML models need to be updated and retrained continually [7][14]. 
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Nevertheless, hybrid frameworks of detection utilizing static analysis and dynamic analysis with ML classifiers 
have shown more effective performance and more promising scalability [7][14]. There are practical possibilities 
of obtain a formidable robbed adaptive malware detection system for the Android ecosystem with these models. 
 
 

2. LITERATURE REVIEW 
 
Typically, malware detection methods are classified as static, dynamic, or a hybrid of the two approaches. Each 
has specific benefits and challenges to address the ever-evolving landscape of Android malware threats. 
2.1 Static Analysis 
Static analysis can be described as analysing a program's code, metadata, and resources without executing it. 
Many tools exist for this purpose, including Androguard and ApkTool [5]. These tools have the ability to extract 
static features from applications, such as permissions, API calls, and Android application manifest information. 
A primary benefit of static analysis is the speediness and limited computational power required to perform the 
analysis. However, static analysis has serious limits on its efficacy against malware that is obfuscated or 
packaged in a way that hides its malicious code [3]. 
Research on static analysis has included the Drebin framework by Arp et al., where they found that performing 
lightweight static feature extraction and combining this information with various machine learning classifiers 
increased performance [7]. Drebin deploys clear and interpretable reasoning and achieved good detection 
rates, but its limitations pertain to being static feature only -- opening pathways for advanced evasion. 
 
2.2 Dynamic Analysis 
Dynamic analysis examines behaviour during application execution (considering controlled environments, i.e., 
sandboxing, emulation) [8]. This method captures behaviors that occur during execution, such as file actions, 
system calls, and network activity, providing a more informed picture of malicious actions than static analysis 
[5]. Dynamic analysis is more tolerant to code-structured obfuscation than static analysis uses code structure, 
rather than the manifested behaviour. Dynamic analysis does incur more computational expense, and requires 
considerable time, especially in the case of large-scale app screenings. Furthermore, high powered malware 
can detect a sandbox environment and change its behaviour in order to bypass dynamic detection[8]. 
 
2.3 Hybrid Analysis 
To overcome both the barriers and limitations of static and dynamic processes, hybrid analysis systems have 
been proposed. Hybrid systems combine static code analysis and dynamic behavioural monitoring, which 
yields a better understanding of application behaviour overall [7]. Hybrid approaches create better detection 
rates and are more resilient to higher levels of evasion. 
For example, Onwuzurike et al. presented MaMaDroid, a hybrid approach that builds Markov chain models of 
API call sequences to detect behavioural patterns of malware [14]. Hybrid models like MaMaDroid improve 
detection, because it leverages both structural and behavioural attributes, but they also suffer from some of the 
same challenges associated with scalability and resource consumption. 
 
2.4 Machine Learning in Malware Detection 
The combination of machine learning (ML) has matured Android malware detection techniques. With machine 
learning algorithms, we can teach the algorithm complicated patterns from vast datasets to detect novel 
variants of malware [6][7]. Research work, including DroidAPIMiner by Aafer et al, took into full account API 
level analysis to create a more robust detection strategy [3]. 
Even though we have made advancements, many ML-based systems only incorporate static features, which can 
hinder their ability to determine when malware uses runtime obfuscation and evasive techniques [7]. Mobile 
environments are also resource-constrained, which often presents challenges when deploying an advanced ML 
model for real-time applications [8][13]. 
 
2.5 Research Gap 
While the research literature identifies the potential for ML based detection systems, there is still a need for 
hybrid frameworks to promote the utilization of static and dynamic analysis together to improve detection 
accuracy and resilience against malware without excessive computational costs. The current solutions fail to 
offer both the necessary scalability and adaptability to new threats. This research fills that gap with a proposed 
scalable, machine learning-based hybrid detection framework that utilizes multi-source feature extraction with 
multiple classifiers to promote detection accuracy and resilience against novel malware. 
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3. METHODOLOGY 
 

3.1 Dataset 
This study used a dataset of Android APK files that have been tagged as benign or malicious. The samples were 
taken from trustworthy archives and malware databases that were publicly available. This allows the dataset to 
be diverse and reliable. The dataset consists of more than 5000 APK records with 328 extracted attributes 
which included permissions, API calls, and behavioural characteristics. 
 

 
Figure 1 Methodology 

3.2. Feature Extraction 
Feature extraction centered on finding indicators associated with malware behavior. For static analysis, it relied 
on the Androguard framework and extracted features: 
Permissions were categorized in "Normal" or "Dangerous" classes as established by the Android's official 
categorization scheme. These features might potentially serve as predictors for the machine learning classifiers. 

• Permissions (ACCESS_FINE_LOCATION, READ_CONTACTS, SEND_SMS, CAMERA, INTERNET, 
and WRITE_EXTERNAL_STORAGE) 

• API calls linked to sensitive operations 

• Manifest file entries 
 
3.3. Data Pre-processing 
Data pre-processing is a crucial phase in preparing the data set for machine learning. During data pre-
processing, there several steps we took: 
• Treating Missing Values: We treated missing values in the data set by removing cases with missing values or 
by adding values with their mean or mode. Missing values in a data set can cause invalid predictions from 
models, so it is important to ensure there's no missing data, if possible. 
• Encoding Categorical Values: Since a lot of machine learning algorithms use numerical input, we converted 
categorical variables such as permissions into a numerical format using Label Encoding. This step is important 
to ensure that the algorithms can interpret the data correctly. Mapping features into numerical data types 
ensures that they can understand and learn from the information presented. 
• Feature Scaling: After we encoded all the categorical variables, we applied feature scaling with the 
StandardScaler to ensure all features are treated equally when training the model. Feature scaling is crucial 
when working with k-nearest neighbours (KNN) and logistic regression algorithms which rely on the scale of 
the input data for learning from features, as using scaling can help normalize the data, making it easier to be 
trained on the model. 
 
3.4. Model Training and Saving 
After the data had been pre-processed, we then trained the machine learning models. The following objects 
were produced and saved to deploy in a Flask application: 

• Model Pickle Files: Each of the trained models (KNN, Logistic Regression, Random Forest and XGBoost) 
were saved as pickle files. The pickle files enable the reuse of our model for easy loading and inferencing 
inside a Flask application for real-time predictions. 

• Label Encoder: The Label Encoder used to encode categorical variables were saved so that the same 
encoding could be done during inferencing. This is important when we are testing in real-time. When we 
receive incoming data and we want to be certain that the same encodings will be used as this will continue 
to ensure compatibility with trained models. 

• Scaler: The StandardScaler was also saved so that the scaling used in the feature scaling could also be 
applied in the inferencing for real time predictions as it is important for the model's predictions accuracy 
to scale input features the same way as the training data scaled. 

• Feature Names: A list of feature names were saved so there could be context to the model's predictions. 
This was a significant part of being able to interpret the prediction's and understand which features 
contributed to the predictions. 

 

Feature 
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3.5. Model Evaluation 
The dataset was utilized in both an 80-20 split for the training and testing datasets. Each model was trained 
on the training dataset and tested on the testing dataset utilizing a multitude of metrics, including accuracy, 
precision, recall, and F1-score. All the aforementioned metrics provide considerable insight of the model 
performance and allow us to determine how proficiently the model has been able to detect malware. 
Furthermore, a confusion matrix was produced for each of the models to visualize the model's performance. 
The confusion matrix allows us to see the number of true positives, true negatives, false positives, and false 
negatives and how the model has classified them. The purpose of the confusion matrix is to analyse the model 
and see how well each of the models has classified benign versus malicious applications. 
 
3.6 Pseudo code of the Proposed Framework 

Input: Set of Android APKs 𝐴 = {𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛 } 
Output: Labels 𝑦𝑖 ∈ {0, 1} for each app, where 1 = malicious, 0 = benign 
1. APK Collection 

𝐴𝑏𝑒𝑛𝑖𝑔𝑛  ∪  𝐴𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠  →  𝐴𝑡𝑜𝑡𝑎𝑙 

 
2. Feature Extraction 
   For each 𝑎𝑖  ∈ 𝐴 

Static Features: 

𝑥𝑖
(𝑠)

=  𝑓𝑠(𝑎𝑖)  ∈  𝑅𝑝 

(e.g., permissions, API calls) 

Dynamic Features: 

𝑥𝑖
(𝑑)

=  𝑓𝑑(𝑎𝑖)  ∈  𝑅𝑞 
(e.g., file/network/system behavior during execution) 

 
3. Feature Vector Construction 

𝑥𝑖 = [𝑥𝑖
(𝑠)

 ∥  𝑥𝑖
(𝑑)

]  ∈  𝑅𝑝+𝑞  

4. Pre-processing 

• Normalize  : 𝑥𝑖  ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥𝑖) 

• Reduce  : 𝑥𝑖  ← 𝑃𝐶𝐴(𝑥𝑖) or select top-k features 
5. Model Training 

• Create dataset : 𝐷 =  {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  

• Train classifier : ℎ: 𝑅𝑘 → {0,1} 
6. Model Evaluation 

Accuracy: 

𝐴𝑐𝑐 =  
TP + TN

TP + TN + FP + FN
 

Precession: 

𝑃𝑟𝑒𝑐 =  
TP

TP + FP
 

Recall: 

𝑅𝑒𝑐 =  
TP

TP + FN
 

F1 score: 

𝐹1 =  
2 . (Prec) . (Rec)

Prec + Rec
 

 
7. Prediction 

For a new app 𝑎𝑛𝑒𝑤: 

• Extract 𝑥𝑛𝑒𝑤  

• Predict label 𝑦𝑛𝑒𝑤 = ℎ(𝑥𝑛𝑒𝑤) 
3.7. Deployment 
The trained models were incorporated into a web application based on Flask. APK files can be uploaded by 
users for real-time analysis. Features are extracted, pre-processing is done, and the trained classifiers are used 
to predict whether the APK is benign or malicious. Results are presented in a user-friendly interface, allowing 
efficient and automated malware detection. 
 

4. RESULTS 
 
This subsection discusses the performance results of the suggested Android malware detection system based 
on static and dynamic analysis that utilizes multiple machine learning classifiers. The models were evaluated 
based on performance metrics like Accuracy, Precision, Recall, and F1-Score. 
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4.1 Performance Metrics: 
The performance comparison of four classifiers—K-Nearest Neighbours (KNN), Logistic Regression (LR), 
Random Forest (RF), and XGBoost—is summarized in Table 1. 
 

Model Accuracy Precision Recall F1-Score 

K-Nearest neighbours 0.87 0.79 0.62 0.67 

Logistic Regression 0.93 0.57 0.40 0.41 

Random Forest 0.98 0.97 0.88 0.91 

XGBoost 0.99 0.86 0.96 0.90 

Table 2: Performance Metrics of Machine Learning Models 
 
Both Random Forest and XGBoost performed with perfect classification scores, showcasing better detection 
quality and resistance towards diverse malware samples. KNN, however, had lower recall, failing to detect 
many malware instances. 
 
4.2 Confusion Matrix Analysis 
The confusion matrices for each model provide insights into their classification accuracy. 

 
Figure 2 Confusion Matrix for KNN 

 
Figure 3 Confusion Matrix for LR 

Analysis: This model has a moderate recall, 
indicating it misses many malware cases. Precision 
is decent, but it’s not ideal for high-risk detection 
tasks. 

• Accuracy: 87% • Precision: 0.79 

• Recall: 0.62 • F1-Score: 0.67 
 

Analysis: Despite high accuracy, the recall is poor, 
meaning the model fails to detect many malware 
instances. Not suitable for security-sensitive 
applications. 

• Accuracy: 93% • Precision: 0.57 

• Recall: 0.40 • F1-Score: 0.41 
 

 
Figure 4 Confusion Matrix for RF 

 
Figure 5 Confusion Matrix for XGBoost 

Analysis: Excellent performance overall. Very 
low false positives and false negatives. Well-
balanced and ideal for malware detection tasks. 
 

Analysis: Outstanding recall, making this model 
highly effective at detecting malware. Slightly lower 
precision than Random Forest but overall excellent 
choice for minimizing missed threats. 
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• Accuracy: 98% • Precision: 0.97 

• Recall: 0.88 • F1-Score: 0.91 
 

• Accuracy: 99% • Precision: 0.86 

• Recall: 0.96 • F1-Score: 0.90 
 

 
4.3 SHAP Analysis (Feature Importance) 
SHAP (SHapley Additive exPlanations) was employed to interpret model predictions and assess feature 
contributions. 
 

• Random Forest SHAP Interaction Plot: 
o Permissions related to location access (e.g., ACCESS_FINE_LOCATION, 

ACCESS_COARSE_LOCATION) had the most significant impact on classification. 
o Most feature interactions were centered near zero, consistent with Random Forest’s independent tree 

structures [11]. 

 
Figure 6 Random Forest Feature Interaction via SHAP 

• X-Axis & Y-Axis: SHAP interaction values  & Feature names (Android permissions like 
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION) 

• Colouring: blue and red dots show different interaction levels. 

 

• XGBoost SHAP Interaction Plot: 
o Similar key features as Random Forest, but captured slightly stronger interactions. 
o XGBoost’s gradient boosting mechanism contributed to modeling more complex feature relationships. 

 

 
Figure 7 XGBoost SHAP Interaction Plot 

• Y-Axis & X-Axis: Similar to Random Forest (features vs. SHAP interaction values). 

• Colouring: blue and red dots show different interaction levels. 
The SHAP analysis highlighted the importance of specific permissions in determining malware presence, 
validating the feature selection process. 
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5. DISCUSSION 
 

The experimental results demonstrate the effectiveness of integrating static and dynamic analysis with machine 
learning classifiers for Android malware detection. The hybrid approach enabled the system to capture both 
structural (permissions, API calls) and behavioural (activity during run-time) features of applications, 
improving accuracy of detection. 
 
5.1 Model Performance Insights 
Random Forests and XGBoost outperformed the other classifiers by achieving perfect values for all results 
metrics. The reason was: 

• Random Forests: by combining multiple decision trees, it reduced overfitting and increased generalization 
benefits in high dimensional feature space [7]. 

• XGBoost: it learns iteratively from miss-classified samples; when it makes a mistake, next it learns to 
model that complicated pattern, improving classification accuracy [14]. 

Logistic Regression's accuracy was very high, but did not also recall as well. This indicates it had difficulties to 
distinguish between benign and malicious samples. KNN's ability to classify samples was minimal due to the 
feature scaling and sparsity during training and testing, leading to many false negatives. 
 
5.2 Advantages of the Hybrid Approach 
The combination of static and dynamic analysis reduced the deficiencies of using either method alone: 

• Static analysis quickly determined easily identified benign apps through permissions and code attributes. 

• Dynamic analysis enabled subtle behaviours that might be missed using static analysis only. 
This enhanced ability to extract features contributed to the system's high detection rates, especially against 
obfuscated and new malware [7][14]. 
 
5.3 Limitations and Challenges 
Despite the positive results, there were other difficulties: 

• Dynamic analysis overhead: monitoring application behaviour in real-time adds computational costs and 
limits its scalability as a tool for large-scale deployment [13]. 

• Evasion methods: advanced malware may be able to detect when running inside a sandbox environment 
and behave differently to avoid detection. The active development of dynamic analysis techniques to 
continue to improve malware detection effectiveness is required [3][5]. 

• Model retraining is required to regularly incorporate new malware samples to preserve detection 
effectiveness for new attacks. 

 
5.4 Practical Implications 
The flexible and scalable capabilities of the proposed framework show its promise in being incorporated into: 

• Mobile security tools (antivirus apps) 

• App store vetting 

• Enterprise Mobile Device Management (MDM) 
The use of hybrid analysis with the predictive capabilities of machine learning means the system can be used 
to improve proactive defenses against Android malware. 
 

6. CONCLUSION 
 
This work describes a framework for detecting Android malware using machine learning techniques that 
integrates static and dynamic analysis to improve accuracy. Using features extracted from Android APK files 
and classifiers like Random Forest and XGBoost, the system can provide a good classification between benign 
and malicious apps. Results of the experiments demonstrate that the hybrid framework had perfect 
classification scores, unlike traditional approaches for Android malware detection provided by app stores, and 
the SHAP analysis improved model interpretability, illustrating the significance of important features. The 
framework is scalable and exhibits high detection performance indicating its potential as a mobile security use 
case (e.g., app store screening or detection in real-time). There are challenges still to be addressed such as the 
overhead present during the dynamic analysis and continual improvements in evasion techniques. In terms of 
our future research, it will include improving the overhead of dynamic analysis, using lightweight deep 
learning, and expanding the features used for classification. 
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