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COVID-19, a respiratory disease, caused severe human, social, and economic 

loss worldwide. Early-stage diagnosis of COVID-19 can help to mitigate its 

spread and health complications. However, existing diagnosis methods 

involve high costs and can put healthcare professionals at risk of infection. 

To address these challenges, this paper presents a lightweight sound 

separation based on Long Short-Term Memory (LSTM) and lightweight 

Convolutional Neural Network ( CNN) model    for real-time detection and 

classification of COVID19 based on cough sounds. The proposed approach 

does not require the in-person presence of patients, eliminating the risk of 

spreading the virus. Background noises in cough sounds pose a significant 

challenge to classification accuracy. This study acquires cough sound data 

from six credible sources, removes background noises from them using a 

deep learning technique, and finally includes 1,886 COVID-19-positive and 

1,757 COVID-19-negative samples in the dataset. The performance of deep 

learning models i.e., MobileNetV2, MobileNetV3 Small, and EfficientNet-

lite-0 is evaluated using the confusion matrix. Results indicate that 

MobileNetV3 Small outperforms all other models with an accuracy of 99%, 

making it the best choice for real-time detection and classification of cough-

based COVID-19. 

Keywords: Real-time; cough; COVID-19; deep learning; sound separation; 

LSTM; Lightweight CNN; classification 

I. Introduction 

COVID-19 is a respiratory disease caused by the SARS-CoV − 2 coronavirus. Its basic symptoms include 

sore throat, cough, fever, chest pain, breathing difficulty, and loss of taste and smell etc. It was declared 

a global pandemic by the World Health Organization (WHO) in 2020 and continues to have widespread 

personal, societal, and economic impacts on the world [1] .According to WHO, as of March 2025, 7.1 

million people have died due to COVID-19 globally [2]. The symptoms of COVID-19 are similar to 
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symptoms of pneumonia. Therefore, in some cases, people don't follow the protocol recommended for 

COVID-19 patients. This results in health complications and the spread of the virus among healthy 

individuals. Thus, its early detection becomes crucial. 

Early-stage diagnosis of COVID-19 can help treat infected patients and control its spread. Reverse 

Transcriptase Polymerase Chain Reaction (RT-PCR) and CT Scan are the popular methods for 

diagnosing COVID-19 [3]. 

The RT-PCR test is considered the gold standard for diagnosing COVID-19. It offers high diagnostic 

accuracy [4]. However, it has some limitations, such as the need for specialized personnel and 

equipment, exposure to diluted environments, and lack of sensitivity. The requirement for specialized 

personnel and equipment makes it impractical for rapid and large-scale screening [3]. Exposure of 

healthcare professionals to a diluted environment can put them at risk of COVID-19, and lack of 

sensitivity can result in misdiagnosis. 

CT Scan is an effective method for diagnosing COVID19. It provides a clear view of the lung's health, 

which helps understand complications caused by the virus. However, it also has some limitations, such 

as exposure to high radiation, high cost, and dependency on PCR testing. CT Scan involves a high 

radiation dose, which might be dangerous for the health of kids and pregnant women. Apart from that, 

sometimes multiple CT Scans are required for some patients, which put them at risk of long-term health 

complications. The CT Scan involves a high cost, which makes it unaffordable for ordinary people. 

Pneumonia and other viruses also cause lung damage. The findings of the CT Scan report will remain 

the same for all types of viruses. Therefore, PCR testing is used for diagnosing disease. 

Researchers are working to propose accurate, cost effective, practical, and easy-to-use COVID-19 

screening tools that can overcome the limitations of existing diagnostic methods. Deep learning, a 

subset of machine learning. Deep learning models contain multiple layers of neurons, which help them 

learn complex and large datasets. Therefore, for large datasets, deep learning models achieve higher 

accuracy than machine learning models. Deep learning models have wide application for the 

classification of COVID-19. 

Numerous deep learning models use X-rays, CT scans, cough, and other types of data, collected through 

wearable devices to classify COVID-19 with great accuracy. Respiratory diseases affect the acoustic 

features of cough sounds [5], and coughing sounds have different bandwidths and qualities than a whole 

spoken signal. Cough-based COVID-19 detection efficiency of deep learning models can be enhanced by 

utilizing these features [6]. 

II. Related Work 

The COVID-19 pandemic has notably accelerated the development of machine learning and deep 

learning models for non-invasive diagnostics, particularly those leveraging cough sounds. While these 

systems have shown considerable promise. Their performance in real-world environments remains 

hindered by different challenges such as overlapping audio signals, which can significantly degrade 

classification accuracy. 

This section explores some of the recent advancements in cough-based COVID-19 classification, 

emphasizing the role of sound separation techniques as a critical solution to the degraded sound 

problem. 

In [7], the researchers introduced a deep Convolutional neural network (DCNN) capable of classifying 

COVID-19 from various respiratory sounds, including coughs, breaths, and vocalizations. This model 

employed methods of Gammatone Frequency Cepstral Coefficients (GFCCs), Improved Mel-Frequency 

Cepstral Coefficients (IMFCCs), and a Denoising Autoencoder (DAE) to extract clean, informative 

features from raw audio files. Although the system achieved a high classification accuracy of 93% for 

coughs and 95% when incorporating additional respiratory sounds. Its computational complexity limits 

its practicality in real time. 
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The ALCOVID [8] model adopted a two-stage approach encompassing detection and classification. The 

detection component utilizes a Convolutional Neural Network (CNN) to process Mel-spectrogram 

images to detect cough events from other sounds. After that, the identified segments are forwarded to 

cloud-based classifiers for diagnostic evaluation. However, this is vulnerable in noisy environments, 

often discarding data with substantial interference, potentially excluding crucial diagnostic signals. For 

classification purposes, ALCOVID integrates three complementary models to enhance diagnostic 

reliability. The Deep Transfer Learning-based Multi-Class Classifier (DTLMC) distinguishes between 

COVID-19, pertussis, bronchitis, and healthy cases with 92.64% accuracy, leveraging transfer learning 

techniques. The Classical Machine Learning-based Multi-Class Classifier (CMLMC) utilizes a Support 

Vector Machine (SVM) with MelFrequency Cepstral Coefficient (MFCC) features refined through 

Principal Component Analysis (PCA), and achieved 88.76%  accuracy. The Deep Transfer Learning-

based Binary Classifier (DTLBC) specifically differentiates COVID-19 coughs, attaining 92.85% 

accuracy. Importantly, when classifier outputs conflict, the system provides an "inconclusive" result to 

reduce diagnostic errors. The authors in [9] proposed a lightweight deep learning model tailored for 

embedded systems to detect COVID-19 through cough analysis. Designed for real-time, on-device 

deployment, the model prioritizes computational efficiency without sacrificing accuracy and essential 

attributes for scalable, non-clinical screening during pandemics. The architecture incorporates 

quadratic convolutional layers and kernel separation techniques, striking a balance between 

performance and resource consumption. Tested on the Virufy dataset [10], the model achieved a 

remarkable accuracy of 97.5% . However, its performance under noisy or uncontrolled conditions 

remained unverified, raising concerns about its generalizability. 

The authors in [11] introduced a deep learning framework that transforms cough sounds into scalogram 

images to capture their time-frequency characteristics. They acquired COUGHVID dataset[19], which 

contained 1,457 samples ( 755 COVID-19 positive, 702 healthy). They implemented and evaluated the 

performance of six DL models, i.e., GoogleNet, ResNet18, ResNet50, ResNet101, MobileNetV2, and 

NasNetMobile. Preprocessing involved filtering extraneous low and high-frequency noise to enhance 

signal clarity. Among the tested models, ResNet18 achieved the highest accuracy of 

94.9%, with sensitivity and specificity values of 94.44% and 95.37%, respectively. 

These limitations indicate a clear need to develop techniques to extract and improve target sounds 

within complex acoustic environments. Sound Separation (SSep) is an advanced technique that is used 

as a preprocessing step for extracting distinct audio sources from complex audio signals. Combining 

SSep with sound event detection (SED) reduces interference and allows the identification of overlapping 

sounds, which makes a notable improvement in the accuracy and robustness of detection systems. SSep 

provides clean and identifiable inputs. In the past, this ability was limited to speech and music only, but 

now is expanded to sound separation. Integrating SSep with the audio processing pipeline shows a 

promising way forward, especially in real-world scenarios where background interference creates 

challenges that must be overcome while keeping important diagnostic information accessible [12]. 

Model compression [13] allows for quick inference, energy efficiency, and environment friendly 

deployment in real-time settings. Pruning removes unimportant parameters, which reduces memory 

requirements and speeds up computations. It is crucial for real-time applications that need low latency 

and high reliability. Standard pruning methods require a series of pruning and retraining cycles. 

Sparsity constraints lack generalizability, involve high computational costs, and are hyperparameter 

sensitive [14]. To overcome these limitations, the authors [14] introduced a single-shot pruning 

technique that uses a connection sensitivity approach to determine the significance of network 

connections during evaluation and efficient pruning without extensive retraining. Mathematically, the 

connection sensitivity 𝑆(𝜃𝑞) is defined as: 

𝑆(𝜃𝑞) = lim
𝜖→0

 
|𝐿(𝜃0) − 𝐿(𝜃0 + 𝜖𝛿𝑞)|

𝜖
= |𝜃𝑞

𝜕𝐿

𝜕𝜃𝑞
| (1) 
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Here 𝜃𝑞 represents the 𝑞-th weight in the initial parameter set 𝜃0, and 𝛿𝑞 is a one-hot vector indicating 

a perturbation in only the 𝑞-th element. This quantifies the impact of each weight on the loss function. 

Unlike traditional methods, SNIP prunes connections with nominal effect on the loss function prior to 

training, which ensures computational efficiency and integrity of the model. 

Source separation methods separate single sound sources from a combination of audio signals. Here, 

source means every single original signal in the combined audio signals, and the process that recovers 

these sources is called Blind Source Separation (BSS). Single channel separation is a complex form of 

BSS, where only a single combined audio signal is available. This scenario poses a significant challenge 

due to the entanglement of multiple sources in both the time and frequency domains [15]. 

Our research focuses on the complexity of real-world acoustic environments, where overlapping signals 

are common. In such environments, the target sound is masked by the other competing signals, 

specifically when these signals have the same amplitudes. This significantly hinders the perception and 

interpretation of the sound of interest. To address this challenge, audio separation is applied to extract 

individual sources from a complex signal. 

III. Methodology 

This study aims to optimize lightweight deep learning models for the real-time detection and 

classification of COVID-19 based on cough sounds. Detection of cough in an acoustic environment 

remains a great challenge. To address this challenge, we applied a mask-based sound separation model 

as a preprocessing step to isolate cough sounds. The sound separation models involve high costs. To 

handle this, we applied pruning techniques to reduce model complexity without degrading sound 

quality. Then, we implemented three lightweight deep learning models, that is, MobileNetV2, 

MobileNetV3-Small, and EfficientNet-Lite-0 for cough sound classification and evaluated their 

performance. Figure 1 illustrates our proposed methodology. 

 

Fig. 1: Proposed Methodology 
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A. Dataset 

This study used six datasets that encompass a wide range of COVID-19-related cough sounds, collected 

in various geographical regions and demographic groups. 

Generally, crowdsourced data contains irrelevant samples. A pre-trained eXtreme Gradient Boosting 

(XGBoost) classifier was employed to shortlist the 

recordings, retaining only those with a cough probability score above 0.80 [16]. This threshold ensured 

that the majority of the detected coughs were genuine. Such a balance minimizes bias and errors in 

cough detection, enhancing the classifier's utility for researchers [16]. 

IATos Dataset [17] includes audio samples from individuals undergoing COVID-19 testing at public and 

private healthcare facilities. The collected data contained recordings from 2,821 participants, all of 

whom were found to be positive or negative via RT-PCR. The sample featured a nearly even gender 

distribution with 61.1% aged between 21 and 40 . Participants, recruited from febrile emergency units, 

testing centers, isolation facilities, and private clinics, were asked to submit one cough sample daily for 

three days. Each sample was collected within three days of the RT-PCR test, ensuring strong temporal 

alignment with diagnosis. 

CCS (COVID-19 Cough Sub-Challenge) [18] was developed via a web and Android app to crowdsource 

cough and respiratory sound samples globally. Participants self-reported their COVID-19 status, 

symptoms, demographics, and relevant medical history. It includes both positive and healthy samples, 

with the latter encompassing healthy individuals and those with other respiratory conditions such as 

asthma. Negative cases were verified through self-reported negative COVID-19 tests. This wide-ranging 

control group strengthens the dataset's capacity to differentiate COVID-specific audio biomarkers. 

Positive cases were defined by reported COVID-19 tests and typical symptoms like fever, dry cough, or 

breathing difficulty. The clear labeling supported the training of classification models that can 

distinguish between COVID-19 and non-COVID-19 respiratory sounds. 

Coswara Dataset [16] contains respiratory audio recordings and health metadata from 2,635 

participants. The data were collected between April 2020 and February 2022. It spans data of non-

COVID-19, COVID-19 positive, and recovered individuals from varied regions and age groups. The non 

COVID group included healthy individuals and those with other respiratory ailments such as asthma or 

colds, increasing model robustness. COVID-19 positive participants were classified into asymptomatic, 

mild, and moderate symptom categories, offering nuanced insights into symptom severity and their 

acoustic signatures. For consistency purposes, we considered only heavy cough samples from COVID-

19 positive and non-COVID-19 groups. 

The COUGHVID dataset [19] includes more than 25,000 cough recordings collected worldwide between 

April and December 2020. Each submission includes metadata on age, gender, respiratory conditions, 

and COVID-19 status. Over 2,800 recordings were annotated by physicians, who identified cough types 

(wet/dry), associated symptoms, and likely diagnoses (e.g., COVID-19, asthma). The dataset also 

features automated cough probability scores and self-reported information, supporting comprehensive 

analysis and labeling. 

The AICovidVN dataset [20] contains cough recordings from individuals in Vietnam, classified into 

COVID-19 positive and COVID-19 negative classes. 

UK COVID-19 Vocal Audio dataset [21] includes cough samples collected through the "Speak up and 

help beat coronavirus" survey. Participants were recruited via NHS Test and 

Trace and the REACT-1 study. Each audio sample is linked to PCR test results, ensuring high reliability. 

Table I shows details of positive and negative COVID-19 cases in all six datasets discussed in this section. 
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TABLE I: Details of Six COVID-19 Datasets 

Dataset Positive Samples Negative Samples 

CSS 158 567 

IATos 2078 1493 

Coswara (Heavy) 19 151 

AlcovidVN 462 737 

COUGHVID 547 547 

UK COVID-19 645 650 

 

B. Data Preprocessing 

The acquired datasets were divided into two subsets. One subset was used for sound separation and the 

other for classification. The sound separation model was used to extract cough sounds from noisy and 

overlapping sound recordings and produce clean and isolated cough segments for further analysis. To 

maintain the integrity of the experimental design and prevent overfitting and data leakage, all cough 

recordings were excluded from the training, validation, and testing phase of the separation model. By 

separating both subsets, we ensured methodological consistency, bias reduction, improved robustness, 

and generalizability of the classification model in real world scenarios. The subset developed for sound 

separation was meticulously designed to support the creation of a robust deep learning model capable 

of detecting and isolating cough sounds within a complex acoustic environment. It comprised two 

primary components, that is, input mixtures and ground truth references. 

The input mixtures were generated by combining isolated cough sounds with various noises, including 

conversations and ambient sounds typical of indoor offices and classrooms. These noises were sourced 

from Pixabay [22], Soundsnap [23] [24], and the LibriSpeech ASR corpus provided by OpenSLR [25] 

[26], ensures a wide and realistic range of acoustic environments. Pixabay provided ambient sound 

recordings, such as student activities and classroom chatter. However, Soundsnap provided even more 

specialized sound recordings, such as teacher instructions and varied classroom atmospheres that 

include quiet study areas and bustling lecture halls. The LibriSpeech ASR corpus offered low-noise, 

high-quality English speech recordings, suitable for clean speech conditions. This diversity allowed the 

dataset to simulate both straightforward and challenging acoustic scenarios. The ground truth 

references contained clean isolated cough sounds, including positive and negative COVID-19 samples, 

systematically organized for integration with background sounds. 

The scarcity of large and well-annotated datasets is a significant challenge in sound separation research. 

No existing dataset provides large-scale cough sound mixtures combined with indoor background noise, 

making model training and evaluation difficult. Traditional datasets, based on real-world recordings, 

offer limited control over variables such as event timing, overlap, and signal-to-noise ratio (SNR), 

restricting their utility in developing robust separation models. Moreover, 

conventional data augmentation methods typically alter the soundscape as a whole without modifying 

individual sound events. 

To address these limitations, we employed Scaper [27], an open-source Python library designed for 

procedural soundscape synthesis and augmentation. It enabled the generation of a controlled and 
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varied dataset by using a soundbank of isolated coughs and noises, functioning as a probabilistically 

controlled audio sequencer. Furthermore, it allowed precise control over parameters such as the 

number, timing, duration, overlap, and SNR of cough events. Using Scaper, we generated a 

standardized, diverse, and reproducible dataset tailored for training and evaluating cough sound 

separation models. The breakdown of the dataset is given below: 

• Training Set: 12,000 mixtures created from 3,519 cough recordings and 729 noise samples. 

• Validation Set: 1,500 mixtures created from 400 cough recordings and 913 noise samples. 

• Test Set: 1,000 mixtures created from 492 cough recordings and 716 noise samples. 

Each 5 -second mixture was sampled at 44.1 kHz , a standard for high-quality audio, and constructed 

using event specifications defining properties such as event type, timing, and SNR. The target class was 

"Cough". SNR values ranged uniformly from -5 dB to +5 dB , enabling a spectrum from subtle to 

prominent cough sounds. We applied data augmentation at the event level. Pitch shifting was drawn 

from a uniform distribution between -2 and +2 semitones, and time stretching varied from 0.9x to 1.1x 

speed. Each transformation had a 50% probability of being applied, ensuring varied and naturalistic 

sound variations. Furthermore, cough events were randomly positioned to prevent overfitting to 

specific temporal patterns. 

The noise loudness was randomized using the reference loudness level of the background noise 

parameter in Scaper. It determines how loud the background audio will be about the sound events. This 

parameter is crucial in controlling the overall mix balance and ensuring variability in data. 

The dataset used for classification was generated employing a technique aligned to the sound separation 

task while using unique cough sounds to promote diversity and prevent data leakage. This dataset 

created a realistic classroom environment by integrating cough sounds with other complex noises. This 

combination was processed using our trained sound separation model, which produced clean and noise-

free cough segments. To support model generalization and maintain data integrity, new cough and noise 

samples were included for training the sound separation model. The final dataset consisted of 1,886 

COVID-19-positive and 1,757 COVID-19-negative samples. Figure 2 illustrates our methodology for data 

preprocessing. 

Separation of audio source signals from a combined single-channel signal involves the approximation 

of individual sources from their combined mixture [15]. Mathematically, expressed as: 

𝑥(𝑡) = ∑  

𝑠

𝑖=1

 𝑦𝑖(𝑡) (2) 
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Fig. 2: Proposed method for data Preprocessing 

Here, 𝑥(𝑡) and 𝑦𝑖(𝑡) denote the combined observed signal and the individual source signals. The total 

sources are denoted by 𝑆, implying that the mixture combines all the sources. To simplify the problem, 

we assume that the mixture contains only two different sources [15], denoted 𝑠1(𝑡) and 𝑠2(𝑡), leading 

to: 

𝑥(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡) (3) 

This assumption mitigates the complexity of the separation task and makes it more computationally 

friendly. To proceed with further analysis and process the combined signal, the Short-Time Fourier 

Transform (STFT) is applied to convert the time-domain signal into a time frequency (TF). This 

transformation differentiates overlapping sounds by decomposing the signal into its frequency 

components [15]. The STFT representation of the mixed signal is given by: 

𝑋(𝑛, 𝑓) = 𝑆1(𝑛, 𝑓) + 𝑆2(𝑛, 𝑓) (4) 

Here 𝑋(𝑛, 𝑓)  denotes the STFT of the mixed signal, while 𝑆1(𝑛, 𝑓)  and 𝑆2(𝑛, 𝑓)  are the STFT 

representations of the original source signals. Here, 𝑛 denotes the frame index (time segments), and 𝑓 

denotes the frequency index [15]. In source separation, the STFT representations of the sources remain 



Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 870 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

unknown and must be estimated from the combined observed signal. Here, we assume that only the 

magnitude spectrogram of the STFT is available, ignoring the phase information. This simplification 

facilitates the reconstruction of time-domain waveforms. The magnitude spectrogram of the measured 

audio signal is approximated [15] as: 

|𝑋𝑛| ≈ |𝑆1(𝑛, 𝑓)| + |𝑆2(𝑛, 𝑓)| (5) 

Where |𝑋𝑛|  represents the magnitude spectrogram of the mixed signal, and |𝑆1(𝑛, 𝑓)|  and |𝑆2(𝑛, 𝑓)| 

denotes the magnitude spectrograms of the source signals. This approximation assumes that the 

observed magnitude spectra are a simple summation of the sources' magnitude spectra while ignoring 

phase information. 

To approximate the unknown spectrograms 𝑆1(𝑛, 𝑓) and 𝑆2(𝑛, 𝑓) from the observed mixed spectrogram 

𝑋(𝑛, 𝑓), deep neural networks (DNNs) are used to predict a time-frequency mask for each source. The 

masks are then applied to the observed mixture by multiplication by elements, effectively separating 

the individual STFT magnitude components corresponding to each speaker or sound source [15]. Once 

the magnitude STFT of a source is estimated, the Inverse ShortTime Fourier Transform (ISTFT) is 

employed to reconstruct the time-domain waveform. However, since phase information is not directly 

estimated, the resynthesized signal can contain noisy phase components of the original mixture. The 

STFT of a signal is computed as [15]: 

𝑋(𝑡, 𝑓) = ∑  

𝑁

𝑛=1

 𝑥[𝑛 + 𝑡𝐿]𝑤[𝑛]exp⁡ (
−𝑗2𝜋𝑛𝑓

𝑁
) (6) 

Here 𝑥[𝑛 + 𝑡𝐿] denotes the input signal in different time frames, 𝑤[𝑛] is a window function that ensures 

smooth segmentation, and the exponential term corresponds to the Fourier basis function, 

transforming the signal into the frequency domain. After acquiring the estimated spectrograms, ISTFT 

is applied to reconstruct the time-domain signals, is mathematically defined as [15]: 

𝑆̂(𝑛, 𝑓) =
1

𝑁
∑  

𝑁

𝑓=1

  𝑆𝑆(𝑡, 𝑓)exp⁡ (
𝑗2𝜋𝑛𝑓

𝑁
) (7) 

Where 𝑆𝑠(𝑡, 𝑓) represents the estimated spectrogram of a source, and the exponential term acts as the 

inverse Fourier basis function, converting the representation of the frequency domain to the time 

domain [15]. 

The preprocessing step applies the Short-Time Fourier Transform (STFT) with a window length and a 

hop length 

of 512 and 128 respectively. This facilitates the extraction of spectral features from the audio signal. The 

neural network works in 257 frequency bins, representing the helpful portion of the spectrogram, using 

a sigmoid activation function to predict the mask. The model architecture includes two LSTM layers, 

each with 50 hidden units. The network predicts time frequency masks that are used for the mixed 

spectrogram to detach individual sources. It develops a single audio channel, suitable for monophonic 

audio. The Adam optimizer, which contains a learning rate of 1e − 3, is used to update the weights, 

while the L1 loss function finds the absolute difference between the actual and predicted magnitude 

sources. The model takes 50 training epochs, and both the training and processes validation datasets in 

mini-batches of 32 samples. Given the training data, the mixed signal magnitude spectrogram, 𝑋, is 

used as the input to the model, while the clean spectrograms of individual sources, 𝑆 are used as the 

target output. The network's goal is to learn a mask that accurately identifies the proportion of each 

time-frequency bin in 𝑋𝑡𝑟 that corresponds to a specific source. 

C. Sound Separation model 
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We developed a deep learning model to isolate a cough sound mixed with other sounds using time-

frequency masking. We used pruning to optimize the model by improving its computational efficiency 

while maintaining performance. The model follows a sequential approach, where the input magnitude 

spectrogram of the mixture is changed into a log-scaled decibel (dB) representation stabilizing training 

by reducing the dynamic range of the spectrogram values. 

The changed spectrogram is given to a Batch Normalization layer, which normalizes the feature 

distribution, preventing internal covariate shifts and speeding up the convergence during training. 

Then, Recurrent Stack is used to acquire temporal dependencies in the audio signal. These layers 

processing work on sequential spectrogram frames and capture long-term dependencies in the audio, 

and given an input sequence 𝑋𝑡, the LSTM updates its hidden state as defined in the equation: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑐𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑡 + 𝑗𝑡 ⊙ 𝑖𝑡
ℎ𝑡 = tanh⁡(𝑐𝑡) ⊙ 𝑜𝑡

 

Here, 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  denote the forget, input and output gates, respectively, while 𝑐𝑡  is the cell state. The 

matrices 𝑊,𝑅  are the trainable weight parameters, 𝑏  denotes the bias vector, and 𝜎  is the sigmoid 

activation function [15]. A unidirectional design was used to ensure real-time processing, which allowed 

the model to process sequential data efficiently without the need for future context, making it suitable 

for real-time applications [28]. Furthermore, pruning was applied to the linear transformation in the 

embedding layer using SNIP, which significantly reduced the number of active parameters and further 

optimized computational efficiency. Following the recurrent stack, the output is mapped to a mask 

space using the 

embedding layer, which applies a linear transformation defined as: 

𝐸 = 𝑊𝑐𝐻 + 𝑏𝑒 (9) 

Here, 𝐻  denotes the hidden representation of the recurrent neural network and 𝐸  denotes the 

embedding used to generate the final mask. The activation function (default: sigmoid) ensures that the 

mask values remain between 0 and 1 , is defined as: 

𝑀̂ = 𝜎(𝐸) (10) 

Finally, the predicted mask applied to the original magnitude spectrogram to estimate the separated 

source defined as: 

𝑆̂ = 𝑀 ∘ 𝑋 (11) 

Here, 𝑀 denotes the predicted mask, 𝑋 denotes the input spectrogram, and 𝑆̂ represents the estimated 

source. But when applying SNIP with pruning level equal to 0.01 in the linear layer, the function will be 

defined as: 

𝐸 = 𝑊𝑒𝐻 + 𝑏𝑒 (12) 

Here, 𝐻 denotes the hidden representation of the recurrent neural network (RNN), and 𝐸 denotes the 

embedding space for mask generation, which contains only 1% of its original weights, as 99% of the 

parameters in 𝑊𝑒  have been pruned. The mathematical and computational consequences of this 

pruning are given below: 

• Firstly, the weight matrix 𝑊𝑒 contains zeros, which significantly reduces the memory footprint. 

• Secondly, the model does not gain efficiency unless specialized sparse matrix computations are used. 

This is because dense operations still treat zero values as active parameters. 
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• Finally, substantial parameter reduction acts as an implicit regularizer, which mitigates overfitting and 

enhances generalization. Furthermore, because of pruning, a potential accuracy trade-off arises. With 

only 1% of the integrated parameters retained, the ability to generate accurate masks may be impacted. 

Since the mask is computed using the equation: 

𝑀̂ = 𝜎(𝐸) (13) 

Pruning affects the variability of 𝐸, which can reduce the generated mask structure and influence the 

final separation quality. The pruned mask is then applied to the original magnitude spectrogram to 

approximate the separated source, defined as: 

𝑆̂ = 𝑀 ⊙ 𝑋 (14) 

Here, 𝑀 denotes the predicted mask. 𝑋 denotes the input spectrogram, and 𝑆̂ denotes the estimated 

separated source. 

D. Classification Models 

This study implements and evaluates the performance of the MobileNetV2, MobileNetV3-Small, and 

EfficientNet-Lite-0 architectures for real-time cough-based classification of COVID-19. These 

architectures were chosen for their lightweight design, low computational requirements, and efficiency 

in real-time settings. Such models are suitable for scenarios where memory, processing power, and 

energy are constrained and high real-time accuracy is the requirement. All models were trained using 

the same dataset, preprocessing pipeline, and hyperparameters to ensure fair evaluation. 

MobileNetV2 [29] is an advanced iteration of MobileNet that introduced a depthwise separable 

convolutions technique that significantly reduces computational cost, specifically designed for mobile 

and embedded applications where computational efficiency is crucial. It proposed an inverted residual 

and linear bottleneck layer, which improves accuracy and performance while maintaining a lightweight 

structure. It contains three primary components, i.e., standard convolutional layers, inverted residual 

blocks, and fully connected layers. The inverted Residual Block is the core component of the proposed 

architecture. The model first grows the input channels before using depthwise convolutions, making 

sure that most computations occur in a high-dimensional space while maintaining a low-dimensional 

bottleneck at the end. The depthwise convolution significantly minimizes computation by processing 

each input channel in a different way instead of applying a full convolution across all channels [30]. The 

application of skip connections is another key characteristic of the inverted residual block. It supports 

information flow through the network without modification. ReLU6 is a variant of ReLU that caps 

values at 6 to improve robustness against quantization errors. The first layer of the network is a 3 × 3 

standard convolution with a stride of 2 , which increases the receptive field while downsampling the 

input. This is followed by a sequence of inverted residual blocks. The network progressively improved 

the depth of the channel while mitigating spatial dimensions, making it efficient in both computational 

cost and memory footprint. The final stage of MobileNetV2 contains a convolutional layer 1 × 1, a global 

average pooling layer, and a fully connected classifier. The global average pooling layer mitigates the 

spatial dimensions to 1 × 1 , effectively transforming feature maps into a compact feature vector, 

followed by a dropout layer that minimizes overfitting before the final classification. MobileNetV2 

achieves a remarkable balance between accuracy, computational efficiency, and memory footprint that 

makes it an ideal architecture for realworld applications requiring energy efficiency and quick inference. 

MobileNetV3 is an improved version of MobileNetV2, proposed by [31] using network architecture 

search (NAS). This technique was used to search for the best kernel size and find the optimized 

MobileNet architecture to fulfill the low resourced hardware platforms in terms of size, performance, 

and latency. The MobileNetV3 introduced building blocks inspired by the previous versions [32]. 



Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 873 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

A significant innovation in MobileNetV3 is the introduction of the 𝐡-swish activation function, an 

efficient approximation of the swish function. The original swish function is defined as swish(𝑥) = 𝑥 ⋅

𝜎(𝑥), where 𝜎(𝑥) is the sigmoid function. While swish has been shown to improve performance over 

ReLU, its computational cost makes it less suitable for mobile applications. The h -swish function, on 

the other hand, is defined as h-swish (𝑥) = 𝑥 ⋅
ReLU6(𝑥+3)

6
, where ReLU 6 (𝑥) = min(max(0, 𝑥),6). This 

formulation eliminates the need for the expensive exponential operations inherent in the sigmoid 

function, making ℎ-swish significantly more efficient while retaining similar performance benefits. 

The MobileNetV3 block contains the inverted residual block, which includes a depthwise separable 

convolution block and a squeeze-and-excitation block [33]. The inverted residual block is inspired by 

the bottleneck blocks [34], where it uses an inverted residual connection to connect the input and output 

features on the same channels and improves the feature representations with low memory usage. The 

depthwise separable convolutional contains a depthwise convolutional kernel applied to each channel 

and a 1 × 1 pointwise convolutional kernel with batch normalization layer (BN) and the ReLU or ℎ -

swishh-swish activation functions. The squeeze-and-excitation (SE) block is used to pay more attention 

to the relevant features on each channel during training. 

MobileNetV3-Small is the best suitable model for low latency and resource-constrained settings. It 

contains three main sections, i.e., the stem, the bottleneck blocks, and the head. The stem contains an 

initial 3 × 3 convolution layer with stride 2 , followed by hard-swish activation to acquire low-level 

image features while mitigating spatial dimensions. This early downsampling is critical, as it helps 

minimize computational costs in later stages. The bottleneck blocks, which form the network's core, 

utilize inverted residuals with linear bottlenecks. Each bottleneck block consists of an expansion layer, 

depthwise convolution for spatial filtering, an optional SE block for channel-wise feature recalibration, 

and a projection layer to reduce feature depth. These blocks are carefully designed to balance efficiency 

and feature extraction, using ReLU activation in early layers for speed and switching to hard-swish in 

later layers for improved non-linearity. A small variant of MobileNetV3 employs 5 × 5  depthwise 

convolutions more frequently, as these have been found to capture spatial dependencies more 

effectively while maintaining a low computational footprint. Its integrated SE blocks in multiple 

bottleneck layers, allow the network to adjust the importance of different channels dynamically. This 

significantly improves feature selection without adding excessive complexity. Furthermore, hard-swish 

activation replaces traditional ReLU in critical layers, further optimizing the network for speed and 

accuracy. The final head section of the network comprises a 1 × 1 convolution to increase feature depth, 

followed by another SE block, Global Average Pooling (GAP), and a fully connected (FC) layer with 1024 

neurons before passing through a dropout layer to prevent overfitting. The final layer is a softmax 

classifier that outputs predictions based on the number of target classes. 

EfficientNet-Lite-0 [35] [36] is a latest lightweight neural network architecture, designed to improve 

accuracy and computational efficiency, specifically for mobile and resource constrained environments. 

It is an extension of the MobileNetV2 framework and utilizes inverted bottleneck convolutional layers 

(MBConv blocks) as its core components. These MBConv blocks leverage depthwise separable 

convolutions and linear bottlenecks. The compound scaling approach is the 

key innovation of EfficientNet-Lite-0, which improves the performance of the model by uniformly 

scaling three fundamental dimensions, i.e., depth, width, and input resolution. Unlike conventional 

scaling strategies that adjust only one dimension at a time, compound scaling balances all three 

dimensions, which improves efficiency and accuracy. 

EfficientNet employs compound scaling based on the principle that increasing image resolution 

requires proportionally deeper and wider networks to effectively capture fine-grained details. Empirical 

grid search has determined the optimal scaling coefficients for EfficientNet-Lite-0. 
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These coefficients ensure efficient model scaling without increasing the parameter overhead. The 

EfficientNet-Lite-0 architecture composed of standard convolutional layers, MBConv layers with 

varying kernel sizes ( 𝑘 = 3 × 3  and 𝑘 = 5 × 5  ), a final 1 × 1  convolution, global pooling, and fully 

connected layers. The model architecture ensures an optimal balance between accuracy and 

computational cost. 

E. Feature Extraction 

This study employed Mel-spectrogram-based feature extraction to capture the key characteristics of 

cough sounds, leveraging its perceptual alignment with human hearing for effective analysis. Audio 

recordings were resampled to 22,050 Hz, and Mel spectrograms were computed using 128 Mel bands 

with a hop length of 512, and an FFT window size of 2048. Recordings were standardized to 4 seconds 

in duration. Log power scaling (dB) and feature normalization were applied to enhance interpretability 

and reduce variability from recording conditions. 

The extracted spectrograms work as a single-channel input to the selected model for the binary 

classification of cough sounds. The models were trained using 5 -fold stratified cross validation to 

ensure robustness and handle class imbalance. Cross-entropy loss was used as the objective function. 

The dataset was divided into training, validation, and test sets, with 15% held for the final evaluation. 

During each fold, model performance was tracked via training / validation loss and accuracy, and the 

best checkpoint was used for testing. Training and evaluation of the model was conducted using 

Paperspace, a cloud-based platform that provides high-performance GPU resources. A Free-A6000 

instance with 8 CPU cores, 45 GB of RAM, and 48 GB of GPU memory was used, enabling efficient 

handling of largescale deep learning tasks and iterative experimentation without local hardware 

constraints. 

F. Sound Separation Models 

This section presents a detailed evaluation of cough sound isolation using the original and pruned mask-

based separation models, tested on a dataset comprising 1,000 mixtures. Five audio quality metrics-

SDR, ISR, SIR, SAR, and SNR were used in conjunction with computational metrics such as model size, 

throughput, FLOPs representing the total number of arithmetic operations, Multiply-Accumulate 

Operations (MACs) assign equal weight to multiplications and additions, in contrast to FLOPs [37]. 

Typically, FLOPs ≈ 2 × MACs to assess computational load. Furthermore, throughput and latency were 

employed to evaluate inference speed, responsiveness, and the number of trainable parameters 

reflecting model complexity to 

assess the efficiency and resource consumption of the models [38]. 

• SDR evaluates total distortion-unwanted changes in the waveform of the audio and is defined as: 

SDR = 10log10⁡
‖𝑠‖2

‖𝑒spat + 𝑒interf + 𝑒artifif ‖
2 (15) 

• SAR measures artificing-unintended sounds introduced through digital processing and is defined as: 

SAR = 10log10⁡
‖𝑠 + 𝑒spat + 𝑒interf ‖

2

‖𝑒artifif ‖
2

(16) 

• SIR quantifies interference-noise from other unwanted sources in the extracted signal and is defined 

as: 

SIR = 10log10⁡
‖𝑠 + 𝑒spat ‖

2

‖𝑒interf ‖
2

(17) 

• ISR assesses spatial accuracy-how closely the perceived sound location matches the original and is 

defined as: 
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ISR = 10log10⁡
‖𝑠‖2

‖𝑒spat ‖
2 (18) 

• SNR quantifies the level of sensor noise relative to the target signal and interference and is defined as: 

SNR = 10log10⁡
‖𝑠 + 𝑒interf ‖

2

‖𝑒noise ‖
2

(19) 

These metrics, expressed in decibels ( dB ), quantify various forms of distortion in the extracted signal. 

The clean source signal 𝑠  is approximated by 𝑠̂ = 𝑠 + 𝑒spat + 𝑒interf + 𝑒noise + 𝑒artif , where each error 

term corresponds to a specific distortion type. 

G. Performance Evaluation of Models 

The performance of deep learning models was evaluated using confusion matrix, which is composed of 

True Positives, False Positives, True Negatives, and False Negatives. From which key metrics were 

derived: accuracy (overall correctness), precision (true positives over predicted positives), recall (true 

positives over actual positives), specificity (true negatives over actual negatives), and F1-score 

(harmonic mean of precision and recall) 

IV. Results and Discussion 

It is evident from the results of the test dataset of 1,000 mixtures that both the original and pruned 

models significantly improved cough sound isolation over the raw mixtures. This study highlights the 

effectiveness of the proposed cough separation method in improving the quality of isolated cough from 

mixed audio tracks. Before applying the separation method, the SDR was -2.35, indicating a severe 

distortion in the cough sounds. After applying the model, the SDR improved 

to 5.99 , confirming that the separation process significantly decreased distortions and improved the 

quality of the extracted cough sounds. Similarly, the SIR increased from -1.31 to 9.29, highlighting the 

model's ability to isolate the cough components from other background noises. The SNR improved from 

-2.11 to 6.54, demonstrating a substantial reduction in unwanted noise. However, the SAR dropped 

from 189.25 to 3.93, indicating the introduction of some artifacts in the process. The ISR also decreased 

from 21.02 to 12.19 , suggesting some loss of spatial information. However, a reduction in SAR and ISR 

may indicate minor trade-offs in separation quality. Significant improvements in SDR, SIR, and SNR 

confirm that the model successfully extracts clear cough sounds, making them suitable for cough 

classification. Pruning was used to improve the computational efficiency of the cough separation model. 

The pruned model was evaluated using the same metrics to determine its affect on separation quality. 

The results showed a slight decrease in SDR, dropping from 5.99 to 5.14, indicating a slight increase in 

distortion. However, SIR improved from 9.29 to 9.80 , suggesting that pruning slightly improved cough 

isolation from background sounds. The SNR decreased from 6.54 to 5.52, indicating a slight increase in 

background noise, while the SAR dropped from 3.93 to 2.73 , showing an increase in artifacts. The ISR 

decreased from 12.19 to 6.33, suggesting a loss of spatial information. Despite these minor trade-offs, 

the pruned model still performs well in cough separation, maintaining high clarity levels and 

interference reduction. The improvement in SIR suggests that pruning may have helped focus the 

model's processing power on isolating cough more effectively . 

TABLE II: Performance comparison between original and pruned sound separation models 

Metric 
W i t h o u t 
separation 

Original sound 
s e p a r a t i o n 

P r u n e d 
separation 

S D R - 2 . 3 5 5 . 9 9 5 . 1 4 

S A R 1 8 9 . 2 5 3 . 9 3 2 . 7 3 

S I R - 1 . 3 1 9 . 2 9 9 . 8 0 
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I S R 2 1 . 0 2 1 2 . 1 9 6 . 3 3 

S N R - 2 . 1 1 6 . 5 4 5 . 5 2 

 

In addition to its impact on separation quality, pruning significantly improved the computational 

efficiency of the model. The number of parameters was reduced from 95.921 K to 82.714 K , leading to 

a 13.76% decrease in model size (from 0.37 MB to 0.32 MB ). This reduction also resulted in (FLOPs), 

which dropped from 334.035 M to 289.729 M , and (MACs), which decreased from 167.018 M to 

144.864 M . The pruning process also optimized the model's inference time on CPU, reducing it from 

0.151 seconds to 0.057 seconds, representing a 62.25% improvement in processing speed. Furthermore, 

throughput increased from 7.26 inferences per second to 8.39 inferences per second, reflecting a 

15.56% boost in efficiency. These improvements indicate that the pruned model can process more audio 

files in less time, making it a more suitable choice for real-time applications or deployment on resource 

constrained devices . 

SDR, SIR, and SNR are considered the most relevant metrics when applying the cough separation model 

as a preprocessing step for cough classification. High SDR ensures that the extracted cough has 

minimum distortion, which ensures classification accuracy. A high SIR confirms that the cough sound 

is well isolated from other noise interference, allowing classification models to focus solely on the 

characteristics of the cough. A high SNR ensures that the extracted cough sounds are free from excessive 

noise, making them suitable for classification. 

After applying pruning, the model maintained strong separation performance with only slight trade-

offs in SDR and SNR while improving SIR. A decrease in SAR and ISR suggests a small increase in 

artifacts and a loss of spatial information, but these are less critical for classification tasks. More 

importantly, pruning significantly improved the efficiency of the model, reducing inference time by 

62.25% and increasing throughput by 15.56%. The evaluation demonstrates that both the original and 

pruned models substantially improved the cough sound isolation performance compared to the 

mixture. The original model excels in terms of isolation quality, whereas the pruned model offers 

significant computational savings. The pruning offers a good balance between efficiency and 

performance, making it a practical choice for applications requiring fast and accurate cough separation. 

 

 

Fig. 3: Confusion Matrix for MobileNetV2 

MobileNetV2 achieved an accuracy of 97.8%, a precision of 97.5%, recall of 97.5%, and F1-score of 

97.8%. It correctly classified 259 negative cases and 276 positive cases, whereas, misclassified 5 negative 

cases as positive and 7 positive cases as negative. 
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EfficientNet-Lite-0 achieved an accuracy of 97.9%, with a precision of 97.5%, recall of 98.5%, and F1-

score of 98.0% . The confusion matrix shows that it correctly classified 257 negative cases and 279 

positive cases. Whereas, it misclassified 7 negative cases as positive and 4 positive cases as negative. 

MobileNetV3-Small outperformed both previous models in terms of classification performance, 

achieving the highest accuracy of 99.0% and a precision of 98.9%, recall of 99.2%, 

TABLE III: Model Comparison based on Complexity 

M o d e l 
N o . 
P a r a m s 

Mode
l Size 

FLOPs M A C s 
Latenc
y  ( s ) 

Throughp
ut  (CPU) 

Throughp
ut (CUDA) 

MobileNet
V 2 

2,225,85
8 

8 . 4 9 
M B 

292.64
2  M 

146.32
1  M 

0.0086 
s ec  o n 
(CPU), 
0.0033 
s ec  o n 
(CUDA

) 

57.63inf/s 
o n  C P U 

323.26inf/
s  o n 
C U D A 

MobileNet
V 3  S m a l l 

1,519,61
8 

5 . 8 0 
M B 

54.499 
M 

2 7 . 2 5 
M 

0.0060 
s ec  o n 
(CPU), 
0.0041
9 sec on 
(CUDA

) 

99.94inf/s 
o n  C P U 

245.25inf/
s  o n 
C U D A 

EfficientNe
t - l i t e - 0 

4,651,43
2 

17.74 
M B 

375.117 
M 

187.55
8  M 

0.0083 
s ec  o n 
(CPU), 
0.0030
9 sec on 
(CUDA

) 

73.58inf/s 
o n  C P U 

316.40inf/
s  o n 
C U D A 
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Fig. 4: Confusion matrix for EfficientNet-lite-0. 

 

Fig. 5: Confusion Matrix for MobileNetV3-Small 

 

and F1-score of 99.1%. The confusion matrix it correctly classified 261 negative cases and 281 positive 

cases. Whereas, it misclassified only 3 negative cases as positive and 2 positive cases as negative, 

indicating fewer misclassifications than other models. 

In terms of efficiency, EfficientNet-Lite-0 had 4,651,432 parameters and a model size of 17.74 MB , with 

a FLOPs count of 375.11 M and MACs of 187.558 M . Its inference time was 0.0083 seconds on a CPU, 

achieving a throughput of 73.58 inferences per second. MobileNetV2 had fewer parameters 2,225,858 

and a smaller model size of 8.49 MB , which 

TABLE IV: Performance Evaluation of deep learning model 

Metric MobileNetV2 MobileNetV3-Small EfficientNet-Lite0 

Accuracy 97.8 99.0 97.9 

Precision 97.5 98.9 97.5 

Recall 97.5 99.2 98.5 

F1-score 97.8 99.1 98.0 

 

reduced its computational complexity. The FLOPs count was 292.642 M, and MACs were 146.321M. 

However, its inference time was slightly slower at 0.0086 seconds, resulting in a lower throughput of 

57.63 inferences per second. Furthermore, MobileNetV3-Small was the most computationally efficient 

model, with only 1,519,618 parameters and a significantly smaller model size of 5.80 MB . The FLOPs 

count was reduced to 54.499 M , and MACs were only 27.250 M , making it much less computationally 
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intensive. It also had the fastest inference time of o. 0061 seconds, achieving the highest throughput at 

99.94 inferences per second . 

Results revealed that MobileNetV3-Small is most optimal in terms of both classification performance 

and computational efficiency. It achieved the highest accuracy, precision, recall, and F1 score while 

requiring the least computational resources. The other two models had almost similar performance, but 

the first model had a higher throughput than the second, making it better suited for real-time 

applications. The second model was more lightweight but had slightly lower throughput and inference 

speed. Overall, MobileNetV3-Small is the best choice for real-time detection and classification of cough-

based COVID-19. 

V. Conclusion and Future Work 

This study proposed a Lightweight deep learning  approach for real-time cough detection and COVID-

19 classification. Six datasets i.e., CSS, AITos, Coswara, AlcovidVN, COUGHVID, and UK COVID-19 

were acquired and the proposed lightweight sound separation deep learning model  based on LSTM   

was used to eliminate unwanted noises from cough sounds. After that, Signal-to-Distortion Ratio 

(SDR), Signal-to-Artifacts Ratio (SAR), Signal-to-Interference Ratio (SIR), Image-to-Spatial Ratio 

(ISR), and Signal-to-Noise Ratio (SNR) were used to assess the quality of the cleaned cough sounds. 

MobileNetV2, MobileNetV3 Small, and EfficientNet-lite-0 were implemented to classify cough sounds 

as COVID-19 positive and COVID-19 negative. MobileNetV2, MobileNetV3 Small, and EfficientNet-lite-

0 achieved an accuracy of 97.8%, 99%, and 97.9% respectively. MobileNetV3 Small was proved to be 

the best model in terms of classification accuracy and computational efficiency. In the future, our goal 

is to improve pruning techniques to mitigate their impact on separation quality while improving 

computational efficiency. Furthermore, we plan to explore more advanced separation techniques or 

hybrid models to improve the trade-off between quality and efficiency. 
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