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Epileptic seizure detection is a crucial area of research aimed at identifying and predicting seizure events 

through advanced techniques, primarily utilizing electroencephalogram (EEG) signal. Despite significant 

progress, the field faces numerous challenges, including the need for diverse and comprehensive datasets, 

high computational complexity, and difficulties in generalizing models across various patient populations. 

This survey systematically reviews approximately 30 research articles, focusing on the methodologies 

employed, the challenges encountered, and the results obtained in seizure detection. By critically analyzing 

the strengths and limitations of existing approaches such as deep learning, machine learning, and hybrid 

models this research provides valuable insights into current practices and identifies opportunities for 

enhancing the effectiveness and reliability of seizure detection systems in clinical settings. Ultimately, the 

research aims to inform future developments in this vital domain, facilitating improved patient outcomes 

through timely and accurate seizure prediction. 

Keywords: Epileptic seizure detection, Machine learning, deep learning, hybrid models and feature 

extraction. 

 

INTRODUCTION 

Epilepsy is a neurological disorder that affects approximately 50 million people globally, making it one of the most 
prevalent neurological conditions, as reported by the World Health Organization. Characterized by recurrent and 
unpredictable seizures, epilepsy can significantly diminish the quality of life for those living with the condition. 
These seizures can vary widely in type and severity, often leading to challenges in daily activities, social 
interactions, and overall well-being [1]. It is characterized by a propensity for repeated episodes throughout one's 
life. Seizures can occur due to various triggers, including skull fractures, genetic factors, tumors, and other 
influences [2]. Research indicates that epilepsy can affect individuals at any age, although it most commonly begins 
in childhood or after the age of 65. An epileptic seizure is a sudden, temporary disruption in the brain's normal 
functions, marked by excessive and abnormal electrical activity [3-4]. This electrical discharge can lead to a range of 
physical and psychological symptoms, from mild sensations to convulsions and loss of awareness, and can 
occasionally result in unexpected death. It is crucial to accurately identify seizures in individuals with epilepsy for 
proper diagnosis and to formulate personalized treatment plans [5-6]. Early detection and ongoing monitoring of 
seizures can improve quality of life and lower risks. The analysis of EEG signals, which capture the brain's electrical 
activity, aims to assess patients with known seizures to identify the specific type of seizure they are experiencing. 
Epileptic EEG signals offer a dynamic portrayal of neural activity, reflecting the complex patterns linked to seizures 
[7-8]. These signals are detected using electrodes positioned on the scalp, which record the electrical impulses 
generated by the brain's neurons [9]. The raw EEG data often includes noise and extraneous information, 
necessitating preprocessing steps like filtering, artifact removal, and baseline correction to refine the signals and 
improve their quality. After preprocessing, selecting and extracting features becomes essential for detecting 
epileptic seizures through EEG signal classification. By deriving relevant features from the signal data, one gains 
more distinctive insights compared to using the raw signal alone [10-11].  

Machine learning and deep learning methods have demonstrated significant effectiveness in extracting pertinent 
features and classifying them across a range of medical applications, including the diagnosis of epilepsy. Epileptic 
seizures can vary greatly in how they manifest, their intensity, and their duration. The brain's normal functioning 
arises from complex interactions among neurons via electrical impulses. In people with epilepsy, there's a 
propensity for neurons to become overactive and fire inappropriately, resulting in a seizure. Seizures can be 
categorized into various types depending on their features and the specific brain regions involved [12-13]. In 
healthy areas of the brain, we generally see uniform, rhythmic patterns with stable frequency and amplitude, 
indicating typical electrical activity. However, at the site of a tumor, the EEG signals show changes when compared 
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to those from healthy brain regions. These can appear in different forms based on the type and position of the 
tumor [14-15]. However, during a seizure, the EEG signals display unique patterns indicative of abnormal neuronal 
activity characterized by high frequency and amplitude. Predicting seizures presents a significant challenge, 
primarily due to the need to identify specific symptoms and assess whether a patient is likely to experience an 
impending seizure. In terms of phase differentiation, recognizing these symptoms parallels the classification of 
interictal and preictal phases. Consequently, a range of seizure prediction methods has been developed, drawing on 
feature extraction and classification techniques similar to conventional signal analysis [16-17]. However, two critical 
factors greatly influence the effectiveness of these prediction methods. First, the differences between interictal and 
preictal signals are often subtle, making it challenging to detect variations through brief observations. Second, the 
signals can vary significantly over time due to fluctuations in brain activity, further complicating accurate 
predictions [18-20]. 

This survey aims to identify and evaluate various approaches to epileptic seizure detection, emphasizing assessment 
metrics, benefits, and drawbacks in different contexts. It examines key limitations such as data requirements, 
computational complexity, persistent challenges in generalization, and feature extraction issues. The analysis is 
based on approximately 30 studies, focusing on the techniques employed, challenges encountered, results achieved, 
and relevant parameters. The aim of this research is to offer a thorough overview of contemporary methodologies in 
seizure detection, focusing on the strengths and weaknesses of deep learning, machine learning, and hybrid 
approaches. 

This discussion centers on the various sections of the survey aimed at evaluating the literature on epileptic seizure 
prediction methods. Section 2 provides a clear taxonomy that categorizes the different approaches employed in this 
field. In Section 3, summarize the methods used, the assessment metrics applied, the achievements realized, and 
the limitations encountered in existing studies. Section 4 offers a detailed evaluation of these metrics, highlighting 
their effectiveness in measuring predictive performance. Section 5 delves into the research gaps identified 
throughout the review, pointing out areas that require further exploration. Finally, Section 6 concludes the survey, 
summarizing key findings and proposing future directions for research to enhance the accuracy and reliability of 
seizure prediction systems. 

2. Methodology for article selection process: 

The next section presents the methodological details, focusing on the systematic approach used in selecting articles. 
This comprehensive literature review summarizes various seizure detection techniques and highlights the 
methodologies involved in current research. By clearly delineating the selection criteria and processes, this section 
seeks to establish a robust framework for comprehending the advancements and challenges in the detection of 
epileptic seizures. 

 

Figure 1: Process flow diagram for the Systematic literature review Figure 1: Schematic representation for the 
article selection process 
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The proposed review utilizes a systematic literature review methodology to ensure a comprehensive and 
reproducible approach, aligning with PRISMA guidelines. As illustrated in Figure 1, the PRISMA-based review 
process outlines the steps taken in selecting relevant articles. Initially, a comprehensive search of data sources 
yielded 870 documents published between 2020 and 2024, focusing on the latest advancements in Epileptic seizure 
prediction.  Each publication's full text, abstract, and title undergo meticulous assessment to determine their 
relevance to the research topic. During this evaluation, we exclude review articles, those of low quality, and 
publications lacking adequate analysis based on specific eligibility criteria. Ultimately, 30 papers are selected for in-
depth examination. By implementing a rigorous and systematic approach to the literature review, we ensure that 
the chosen studies adhere to high standards of research integrity and fulfill inclusion criteria. The PRISMA flow 
diagram provides a visual representation of the search and selection process, illustrating the number of records 
identified, included, and excluded, along with clear justifications for each exclusion. This structured methodology 
greatly enhances the credibility and reliability of our evaluation. By focusing on recent literature, the review aims to 
uncover existing research gaps while also highlighting the latest advancements and trends in the field. 

A. Taxonomy of for Epileptic seizure prediction techniques: 

Figure 2 features a taxonomy diagram that illustrates the array of methods used in epileptic seizure prediction, 
including DL, ML, and hybrid models. This diagram effectively categorizes these techniques, highlighting their 
specific applications and providing a detailed overview of how these technologies converge and enhance the field of 
seizure detection. By mapping out the relationships among various approaches, the diagram serves as a valuable 
tool for understanding the complexities and innovations within seizure prediction methodologies. 

 

Figure 2: Taxonomy diagram of Epileptic seizure detection techniques 

i) Deep learning model: Imene Jemal et al. [1] introduced an understandable deep learning model aimed at 
predicting epileptic seizures through the analysis of EEG signals. The model incorporates signal processing 
techniques like frequency sub-band and spatial filters, making the learned weights align with meaningful, clinically 
relevant EEG features. Layer-wise relevance propagation further enhances transparency by revealing important 
features that influence predictions. Its key advantage is interpretability, making it suitable for clinical use, though it 
may face challenges with complex or noisy data and limited adaptability due to its reliance on predefined signal 
processing methods. Omaima Ouichka et al. [2] introduced five deep learning models designed to forecast epileptic 
seizures based on intracranial electroencephalogram (iEEG) data. The models include a standard Convolutional 



59  

 

 

 J INFORM SYSTEMS ENG, 10(8s) 

Neural Network (CNN), as well as fusion models combining two, three, and four and a transfer learning model 
using ResNet50. The main advantage of these models is their high accuracy, which is crucial for providing timely 
interventions in epilepsy management. However, the fusion models may require substantial computational 
resources and need further validation across different datasets to assess generalizability and robustness. B. 
Jaishankar et al. [4] developed a deep learning model for predicting epileptic seizures using EEG recordings from 
23 individuals of varying ages, consisting of 17 females and 5 males, sampled at 256 samples per second. This model 
leverages raw EEG signals for feature extraction, effectively minimizing computational complexity and execution 
time. To further enhance the model's performance, an Adaptive Grey Wolf Optimizer (AGWO) is employed to refine 
discriminative features, thereby improving prediction accuracy. Key advantages include high accuracy, reduced 
false alarms, and lower computational demands, although its reliance on specific datasets may limit generalizability 
and pose implementation challenges for real-time applications. Hepseeba Kode et al. [5] introduced a seizure 
detection model that employs deep learning algorithms, particularly focusing on a One-Dimensional Convolutional 
Neural Network (1D CNN) to classify time-series EEG signals. The 1D CNN achieved an impressive accuracy of 99% 
among the tested classifiers, significantly enhancing real-time seizure detection by directly analyzing EEG signals 
without the need for extensive preprocessing. However, the model's dependence on specific datasets may limit its 
generalizability across diverse patient populations and varying seizure types. Additionally, its inherent complexity 
and the requirement for extensive parameter tuning could present challenges for clinical implementation. Dhouha 
Sagga et al. [11] presented a seizure detection method using two models CNN and Xception, focusing on analyzing 
EEG signals to improve epilepsy diagnosis. The results demonstrate that the proposed CNN model surpasses the 
performance of the Xception model, achieving superior accuracy, precision, recall, and F1 score. The advantages of 
the CNN model include its superior performance metrics, making it effective for seizure detection. However, 
potential disadvantages may include the requirement for substantial training data and computational resources, as 
well as limitations in generalizing to other datasets or populations outside the study's scope. Kuldeep Singh1 and 
Jyoteesh Malhotra2 [12] introduced a two-layer Long Short-Term Memory (LSTM) network model designed to 
forecast epileptic seizures by utilizing multichannel EEG signals. This model takes advantage of spectral power and 
average spectrum amplitude characteristics obtained from different EEG frequency bands. The model's 
performance is validated against several classifiers, achieving high classification accuracy, sensitivity, and 
specificity. This approach can significantly improve the quality of life for epileptic patients by enabling real-time 
seizure prediction. However, potential challenges include model complexity, the requirement for extensive training 
data, and difficulties in real-time clinical implementation. Puranam Revanth Kumar et al. [16] developed a Bi-
LSTM network for seizure detection that effectively manages the nonstationary nature of EEG data while reducing 
processing costs through local mean decomposition (LMD) and statistical feature extraction. The model utilizes two 
LSTM networks that process information in opposite directions, enhancing prediction accuracy by incorporating 
both past and future data. It demonstrated high performance metrics, including accuracy, sensitivity, and 
specificity, making it a valuable tool for early seizure detection. However, it faces challenges such as the need for 
extensive training datasets and the complexity of real-time implementation.  Ranjan Jana and Imon Mukherjee [21] 
introduced a compact, wearable device for predicting seizures, which employs a 1D CNN to extract features and 
classify raw EEG signals. The device is designed to attain high classification accuracy while decreasing the number 
of EEG channels from twenty-two to three, achieving an 86.36% reduction. The NSGA-II algorithm identifies the 
optimal EEG channel set, enhancing efficiency for low-power applications. The proposed method demonstrates 
excellent performance and accuracy, making it suitable for practical seizure prediction while ensuring energy 
efficiency and portability. However, the reliance on a limited number of channels may impact the robustness and 
generalizability of the model in diverse patient populations and varying seizure types. Yating Jiang et al. [22] 
presented a seizure prediction model called TASM_ResNet. This model combines a time-wise attention simulation 
module with a pre-trained ResNet, making use of intracranial EEG signals The use of an improved focal loss 
function addresses data imbalance issues, enhancing the model's performance. Compared to existing CNN models, 
TASM_ResNet achieves a higher average AUC, demonstrating its effectiveness. However, the model's reliance on 
converting EEG data to image-like formats may lead to information loss and its performance in real-world clinical 
settings requires further validation. Jamal Nazari et al. [23] introduced a CNN designed to predict the preictal 
period in epileptic patients, especially those with infrequent seizures that complicate the recording of preictal 
signals. By employing few-shot learning, the model can adapt and learn from a limited number of samples while 
utilizing prior knowledge from generalized methods. The findings indicate a strong sensitivity and minimal false 
prediction rates, emphasizing the model's success in predicting seizures. However, the reliance on few samples may 
restrict its robustness and generalizability across a wider patient population, and further validation in larger clinical 
settings is needed. Yiping Wang et al. [24] introduced the SEEG-Net model, a multiscale convolutional neural 
network designed to detect pathological activities in invasive stereo electroencephalography (SEEG) for drug-
resistant epilepsy (DRE). This model effectively tackles challenges such as sample imbalance and cross-subject 
domain shifts by employing a focal domain generalization loss function. This approach enhances sensitivity and 
facilitates the learning of consistent domain features, improving the overall detection capabilities for individuals 
with DRE. The model demonstrates state-of-the-art performance in sensitivity and robustness across various 
datasets, while also offering interpretability through methods like Grad-CAM++. However, its reliance on specific 
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clinical datasets may limit generalizability, necessitating further validation in broader clinical contexts. Chenqi Li 
[25] developed a low-latency parallel CNN architecture for the detection and prediction of epileptic seizures, 
achieving a dramatic reduction in the number of network parameters, ranging from 2 to 2,800 times fewer than 
leading models. This architecture demonstrates high accuracy for seizure detection and prediction across various 
datasets and is executed on analog crossbar arrays utilizing Resistive Random-Access Memory (RRAM) devices, 
leading to a significant reduction in latency. Advantages include efficient power consumption and a compact 
design. However, challenges related to hardware scalability and real-world data variability remain potential 
concerns.  

ii) Machine learning model: David Zambrana-Vinaroz et al.  [7] introduced a seizure prediction model that 
uses Ear EEG, ECG, and PPG signals collected from a wearable device, making it applicable in both static and 
outpatient environments. When evaluated in a clinical setting, the model applies supervised machine learning 
methods to categorize a patient’s condition as normal, pre-seizure, or in the midst of a seizure. A confirmed 
simplified version of the model, which is based on Boosted Trees, demonstrated impressive prediction accuracy and 
sensitivity. However, challenges include the need for accurate data collection, variability in patient responses, and 
the necessity for extensive clinical validation prior to widespread use. Ummara Ayman et al. [17] presented an 
Extreme Learning Machine (ELM) designed for the automated identification of epileptic seizures from EEG signals. 
The process involves three steps: preprocessing the EEG dataset, training the ELM model to address overfitting, 
and automatically extracting features for classification. The advantages include high classification performance and 
reduced reliance on manual feature extraction, enhancing usability in clinical settings. However, challenges may 
include generalizability across diverse patient populations and the need for extensive training data for real-world 
applications. 

iii) Hybrid models:  

Song Cui et al. [8] introduced a framework for predicting epileptic seizures by analyzing synchronization patterns 
in EEG signals through the use of bag-of-wave (BoWav) feature extraction. It constructs interictal and preictal 
codebooks through a clustering algorithm to model local EEG segments, projecting these segments onto the 
codebooks to express synchronization patterns with histogram features. An extreme learning machine (ELM) is 
utilized for classification. The model's advantages include improved prediction accuracy through synchronization 
pattern analysis, while disadvantages involve reliance on high-quality EEG data and the need for further validation 
across diverse patient populations. Xiao Wu et al. [3] proposed a method for predicting epileptic seizures that 
integrates Successive Variational Mode Decomposition (SVMD) with transformer models. They expanded SVMD 
into a multidimensional framework to perform time-frequency analysis on multi-channel EEG signals, which 
facilitates the adaptive extraction of shared band-limited intrinsic modes across different channels. This integration 
improves the model's accuracy in forecasting seizures. While the use of SVMD improves the precision of signal 
decomposition and transformers strengthen temporal pattern recognition, the approach has some disadvantages. It 
is computationally intensive and may require significant resources, and its performance across diverse EEG 
datasets needs further validation to ensure robustness in real-world applications. Marcin Kołodziej et al. [6] 
presented an automated seizure detection system utilizing artificial intelligence techniques on intracranial 
electroencephalographic (iEEG) signals. It investigates different methodologies, encompassing both conventional 
machine learning techniques like support vector machines and sophisticated deep learning architectures such as 
CNN and LSTM networks. The CNN model delivered exceptional results, boasting an accuracy of 99%, a precision 
of 98%, a sensitivity of 100%, and a specificity of 99%. While the model shows great potential for accurate seizure 
detection, challenges include the complexity of feature extraction, the need for extensive training data, and issues 
related to interpretability.  Wenbin Hu et al. [10] presented an algorithm for classifying epileptic states that 
segments the preictal period into several subintervals, differentiating these from ictal (seizure) and interictal states. 
Their approach includes computing amplitude spectrums of EEG signals across 18 channels, generating a mean 
amplitude spectrum (MAS) map, and employing a CNN for feature extraction, followed by an SVM for 
classification. The approach aims to improve seizure prediction accuracy by providing a more detailed classification 
of the preictal state. However, it may be complex and dependent on specific datasets, which could limit its 
generalizability. Yahong MA and et al. [20] introduced a multi-channel feature fusion model that integrates CNN 
and Bi-LSTM for classifying and forecasting seizures in individuals with epilepsy. This model successfully captures 
spatial features via CNN and temporal features through Bi-LSTM, while an attention mechanism assigns weights to 
various electrode channels to improve prediction accuracy. The method requires minimal preprocessing and 
demonstrates superior performance compared to existing techniques. However, it faces challenges in automatic 
screening of electrode channels and may require further refinement for real-time application. Taranjit Kaur and 
Tapan Kumar Gandhi [26] introduced an automated seizure detection system that utilizes EEG image 
representations generated from continuous wavelet transform (CWT) and transfer learning. The model fine-tunes a 
pre-trained deep learning network on these EEG images and uses a SVM for classification. Key advantages include 
high classification accuracy, sensitivity, and specificity, surpassing state-of-the-art systems and decreasing the 
analysis time for neurophysiologists. However, challenges include ensuring generalization across diverse clinical 
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scenarios and the model's reliance on the quality of EEG image representations. Yayan Pan et al. [27] introduced 
two novel methods for automating seizure detection, which leverage empirical mode decomposition (EMD) and 
power spectral density (PSD) of EEG signals. Their goal is to improve detection accuracy in situations where data is 
restricted. By employing EMD components as inputs for multiple specially designed convolutional neural networks 
(CNNs), the methods significantly outperform traditional deep learning techniques in few-shot learning situations. 
Experimental results demonstrate substantial improvements in accuracy, sensitivity, and specificity, particularly 
when the number of training samples is reduced. However, the complexity of EMD preprocessing and the 
dependency on the quality of EEG data could impact the model's effectiveness. Dominik Raab et al. [28] introduced 
XAI4EEG, a hybrid deep learning framework that is explainable and designed for detecting epileptic seizures 
through the analysis of multivariate EEG time series. The framework enhances interpretability by highlighting 
decision-relevant areas in EEG data. A user study demonstrated that XAI4EEG notably shortened the validation 
time for predictions while enhancing interpretability, trust, and confidence in comparison to conventional SHAP 
plots. However, the complexity of integrating domain knowledge and differing user interpretations may present 
challenges in clinical applications. Milind Natu et al. [29] introduced the Hybrid Cross Layer Attention Based 
Convolutional Bidirectional Gated Recurrent Unit (HCLA_CBiGRU) model for detecting seizures from EEG signals. 
This innovative model integrates convolutional and recurrent neural networks, allowing it to effectively capture 
both spatial and temporal features within complex EEG data. To enhance its performance, a combined dataset was 
curated from public sources, with noise and artifacts meticulously removed during preprocessing, ensuring cleaner 
input for more accurate seizure detection. The HCLA_CBiGRU achieved impressive performance metrics: 98.5% 
accuracy, 98.5% sensitivity, and 98.9% specificity, surpassing existing methods. However, its complexity may pose 
challenges in interpretability and require significant computational resources for clinical deployment. Ferdaus 
Anam Jibon et al. [30] introduced a hybrid framework designed for detecting epileptic seizures, which combines a 
linear graph convolutional network (LGCN) with DenseNet. This approach tackles the difficulties associated with 
the irregular and unordered nature of EEG recordings. The model demonstrates an impressive accuracy of 98% and 
a specificity of 98.60% on the CHB-MIT EEG dataset, outperforming current leading techniques. While the model 
shows significant performance improvements, it may also present challenges such as complexity, requiring 
substantial computational resources and expertise, as well as interpretability issues inherent to advanced deep 
learning techniques. Noor Kamal Al-Qazzaz et al. [15] introduced an automated seizure prediction model that 
utilizes EEG signals. This model extracts features based on time-domain analysis and entropy, including the Hurst 
exponent and Tsallis Entropy. It consists of two sessions: the first utilizes machine learning classifiers (SVM) for 
feature classification, while the second employs deep learning recurrent neural networks (GRU, LSTM, and 
BiLSTM) for enhanced classification accuracy. The strategy seeks to accurately distinguish between children with 
epilepsy and those without, emphasizing the benefits of deep learning in enhancing performance. That said, 
obstacles such as the need for extensive datasets and the difficulty of deploying these models in real-time clinical 
settings remain. Petros Koutsouvelis et al. [9] introduced a CNN-Transformer model for predicting epileptic 
seizures by detecting preictal spatiotemporal dynamics in EEG signals. The model features a Continuous Input-
Output Performance Ratio (CIOPR) metric for evaluating predictive performance and identifying the optimal 
preictal period for labeling EEG segments. It achieves high sensitivity, specificity, and AUC values, while also 
examining how different preictal period definitions affect prediction accuracy. However, challenges include reliance 
on large datasets for training and evaluation, as well as the complexity of integrating multiple data types for clinical 
implementation. Sateesh Kumar Reddy Chirasani1 and Suchetha Manikandan [13] introduced a convolutional 
architecture integrated with a hierarchical attention mechanism for EEG signal classification to detect seizures. The 
model comprises three parts: a feature extraction layer for generating convoluted feature maps, a hierarchical 
attention layer for obtaining weighted features, and a classification layer for distinguishing between healthy and 
seizure subjects. The advantages of this approach include high classification accuracy and reduced computational 
complexity compared to existing methods. However, challenges may arise in generalizing the model to diverse EEG 
datasets and implementing the hierarchical attention mechanism in real-time applications. Jee Sook Ra et al. [14], 
developed a model for predicting epileptic seizures that integrates synchroextracting transformation with singular 
value decomposition (SET-SVD) to improve the time-frequency resolution of EEG signals. This model employs a 
one-dimensional convolutional neural network (1D-CNN) for classifying pre-seizure activity, showing enhanced 
accuracy, sensitivity, and specificity over conventional short-term Fourier transform (STFT) approaches. The 
advantages of this approach include the ability to extract more detailed information from EEG signals, while 
potential disadvantages may involve the complexity of the SET-SVD method, which could impact computational 
efficiency and real-time clinical application. Loukas Ilias et al. [18] introduced two innovative methods for 
classifying healthy, interictal, and ictal cases of epilepsy without extensive feature extraction. The first method uses 
STFT to convert single-channel EEG signals into a three-channel image, analyzed with pretrained models like 
EfficientNet. The second method features a multimodal deep neural network that processes EEG signals through 
two branches of CNN to capture low and high-frequency features, alongside the STFT-derived image. A gated 
multimodal unit assesses the significance of each modality. This approach aims to improve classification accuracy 
while reducing the need for time-consuming feature extraction, though it may depend on the availability of 
sufficient labeled data for effective training. Xin Xu et al. [19] proposed a personalized seizure prediction technique 
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that combines a Deep Residual Shrinkage Network (DRSN) with a Gated Recurrent Unit (GRU) to analyze EEG 
signals during the pre-ictal phase, segmented into multiple temporal windows. This innovative approach leverages 
automatic feature extraction through soft threshold denoising and incorporates an attention mechanism within the 
neural network, enhancing its ability to focus on relevant patterns in the data for more accurate seizure prediction.  
The method demonstrates effective performance when tested on selected patients and presents innovative ideas, 
although it has some gaps compared to the best existing epilepsy prediction methods. 

3. Analysis of Epileptic seizure detection techniques:  This survey reviews recent advancements in utilizing 
ML and DL models for epileptic seizure detection. It discusses various methodologies, including CNN and LSTM 
networks, alongside hybrid approaches that combine these architectures for enhanced predictive accuracy. The 
review emphasizes the use of various feature extraction methods to enhance the performance and efficiency of 
models, illustrating their importance in the real-time prediction and detection of seizures from EEG signals. 
Furthermore, it emphasizes how these models contribute to clinical decision-making and patient safety, providing a 
comprehensive overview of their methodologies and their impact on advancing seizure detection technology. 
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Table 1: Summarized Analysis of Epileptic seizure detection techniques 

Author Achievements Dataset Method Challenges 

Imene jemal 
et al. [1] 

Accuracy of 90.9%, sensitivity of 96.1%, 
specificity of 84.7%, FPR of 0.040 and 0.918 

CHB-MIT dataset Interpretable 
deep 
learning 
model 

Deep learning models are not very transparent, 
which complicates the process of understanding 
how classification choices are determined. 

Omaima 
Ouichka et 
al. [2]  

The CNN model achieved an accuracy of 95%. 

Significantly improved seizure prediction 
performance compared to previous studies. 

Intracranial 
Electroencephalogram (iEEG) 
datasets 

CNN However, the fusion models may require 
substantial computational resources and need 
further validation across different datasets to 
assess generalizability and robustness. 

Xiao Wu et 
al. [3]  

It demonstrates strong predictive 
performance on an intracranial EEG dataset, 
achieving an average sensitivity of 0.86 and a 
false positive rate of 0.18 per hour. 

Intracranial EEG dataset SVMD 
combined 
with 
transformers 

Computationally intensive, 

Requires significant resources, 

Performance across diverse EEG datasets needs 
further validation, 

Essential for robustness in real-world 
applications 

B. 
Jaishankar 
et al. [4]  

Attains an accuracy rate of 99%. Lowers the 
False Alarm Rate (FAR) and the time needed 
for predictions.  

Shows an improved balance compared to 
current methods. 

CHB-MIT EEG dataset AGWO with 
integrated 
auto-encoder 
and GA 

Its reliance on specific datasets may limit 
generalizability and pose implementation 
challenges for real-time applications. 

Hepseeba 
kode et al. 
[5] 

Achieved accuracies of 98% (XGBoost), 96% 
(TabNet), 98% (Random Forest), and 99% 
(1D CNN). 

UCI Epileptic Seizure 
Recognition dataset 

1D CNN Reliance on specific datasets limits 
generalizability, 

May not apply to diverse patient populations 
and seizure types, 

Complexity and extensive parameter tuning 
challenge clinical deployment 

Marcin 
Kołodziej et 
al. [6] 

Optimal outcomes for seizure detection using 
CNN: Accuracy of 0.99, Precision of 0.98, 
Sensitivity of 1, Specificity of 0.99.   

For LSTM: Accuracy of 0.98, Precision of 
0.96, Sensitivity of 1, Specificity of 0.99. 

Publicly available iEEG database CNN and 
LSTM 

Challenges include the complexity of feature 
extraction, the need for extensive training data, 
and issues related to interpretability 

David 
Zambrana-

Afterward, a simplified model utilizing 
Boosted Trees was validated, achieving a 

Ear EEG, ECG, and PPG signals 
collected from individuals with 

Boosted Need for accurate data collection, 
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Vinaroz [7] prediction accuracy of 91.5% and a sensitivity 
of 85.4%. 

epilepsy in a clinical setting. Trees Variability in patient responses, 

Extensive clinical validation required before 
widespread use 

Song Cui et 
al. [8] 

Sensitivity stands at 88.24%, and the false 
prediction rate is 0.25 per hour. 

Kaggle Seizure Forecasting 
Challenge Dataset  and 

CHB-MIT Dataset 

 BoWav 
feature 
extraction 
combined 
with ELM 

While disadvantages involve reliance on high-
quality EEG data and the need for further 
validation across diverse patient populations. 

Petros 
Koutsouvelis 
et al. [9] 

Average Sensitivity 99.31%,  

Average Specificity: 95.34%,  

Area Under Curve (AUC) 99.35%, 

F1-Score: 97.46% and  

Average Prediction Time 76.8 minutes before 
onset 

 

CHB-MIT Dataset 

CNN-
Transformer 
Deep 
Learning 
Model 

Reliance on large datasets for training and 
evaluation, 

complexity in integrating multiple data types for 
clinical implementation 

Wenbin Hu 
et al. [10] 

Classification Accuracy 86.25% CHB-MIT Database CNN and 
SVM 

However, it may be complex and dependent on 
specific datasets, which could limit its 
generalizability 

Dhouha 
Sagga et al. 
[11] 

Accuracy 98.47%, 

Precision 99.79%, 

Recall 98.93% and 

F1 Score 98.51%. 

CHB-MIT Database CNN Requires substantial training data, 

high computational resources needed and 

limitations in generalizing to other datasets or 
populations 

Kuldeep 
Singh and 
Jyoteesh 
Malhotra 
[12] 

Average Classification Accuracy is 98.14%, 
Average Sensitivity is 98.51%, and Average 
Specificity is 97.78%. 

CHBMIT EEG database Two-layer 
LSTM 
Network 
Model 

However, potential challenges include model 
complexity, the requirement for extensive 
training data, and difficulties in real-time 
clinical implementation. 

Sateesh 
Kumar 
Reddy 
Chirasani 
and  
Suchetha 
Manikandan 
[13] 

The proposed model achieves an accuracy of 
97.03%, with 0.9747% sensitivity, 0.9604% 
specificity, 0.9634 precision, 0.9694 f-
measure, and 0.9385 MCC. 

Bonn University EEG Database Convolutiona
l 
Architecture 
with 
Hierarchical 
Attention 
Mechanism 

Challenges in generalizing to diverse EEG 
datasets 

and difficulty implementing hierarchical 
attention mechanism in real-time applications 
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Jee Sook Ra 
and   
Tianning Li, 
YanLi [14] 

Achieved an accuracy of 99.71% on CHB-MIT 
and 100% on Bonn University. Improvements 
over STFT. 

Accuracy increased by 8.12% 

Sensitivity increased by 6.24% 

Specificity increased by 13.91%. 

CHB-MIT Database 

And Bonn University Database 

1D-CNN Complexity of the method, 

potential impact on computational efficiency 

and challenges for real-time clinical application 

Noor Kamal 
Al-Qazzaz et 
al. [15] 

Attained a peak classification accuracy of 90% 
by employing RNN deep learning classifiers 
on the All-time-entropy fusion feature. 

EEG dataset ML and DL 
models 

Requirement for large datasets and 

Complexity of real-time clinical implementation. 

Puranam Re
vanth Kumar
1  and 
B. Shilpa 
[16] 

Accuracy 97%, 

Sensitivity 95.70%, 

Specificity 93.90%, 

G-Mean 94.80% and  

Anticipation Time 10 minutes 

Long-term scalp EEG database. Bi-LSTM Nonetheless, possible obstacles involve the 
requirement for large training datasets and the 
intricacies of executing in real time. 

Ummara 
Ayman et al. 
[17] 

Accuracy: 100% 

AUC (Area Under Curve): 0.99 

Bonn University EEG dataset ELM However, challenges may include 
generalizability across diverse patient 
populations and the need for extensive training 
data for real-world applications. 

Loukas Ilias 
et al. [18] 

Accuracy of 97.00% EEG database of the University of 
Bonn. 

STFT with 
Pretrained 
Model 

Though it may depend on the availability of 
sufficient labeled data for effective training 

Xin Xu et al. 
[19] 

Sensitivity: 90.54% 

AUC (Area Under the Curve) Value: 0.88 

False Prediction Rate: 0.11/h 

CHB-MIT Scalp EEG Dataset DRSN with 
GRU 

Although it has some gaps compared to the best 
existing epilepsy prediction methods. 

Yahong ma 
et al. [20] 

Average accuracy from ten-fold cross-
validation for CHB-MIT is 94.83%, with a 
precision of 94.84%, a recall of 94.84%, and 
an F1-score of 94.83%. The Matthews 
Correlation Coefficient (MCC) for CHB-MIT is 
92.26%. For the UCI Dataset, the average 
accuracy from ten-fold cross-validation is 
77.62%, with precision at 77.66%, recall at 
77.62%, and an F1-score of 77.60%. The MCC 

CHB-MIT EEG Dataset and 

UCI Dataset 

CNN-Bi-
LSTM 

However, it faces challenges in automatic 
screening of electrode channels and may require 
further refinement for real-time application. 
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for the UCI dataset stands at 72.03%. 

Ranjan Jana 
and imon 
mukherjee 
[21] 

Classification Accuracy  0.9651, 

Sensitivity 0.9655, 

Specificity 0.9647 and 

Channel Reduction from 22 channels to 3 
channels (86.36% reduction). 

CHB-MIT database 1D-CNN Reliance on a limited number of channels 

, impact on robustness and generalizability 

and concerns for diverse patient populations and 
seizure types 

Yating Jiang 
et al. [22] 

Average AUC  0.877 UPenn-Mayo Clinic Seizure 
Prediction Challenge Dataset 

TASM_ResN
et 

However, the model's reliance on converting 
EEG data to image-like formats may lead to 
information loss and its performance in real-
world clinical settings requires further 
validation. 

Jamal 
Nazari et al. 
[23] 

Average Sensitivity 95.70%, 

False Prediction Rate (FPR, 10-min Seizure 
Prediction Horizon): 0.057/h 

Average Sensitivity (5-min Seizure Prediction 
Horizon): 98.52% 

FPR, 5-min Seizure Prediction Horizon): 
0.045/h 

CHB-MIT Database Few-Shot 
Learning 
Method 
using CNN 

Reliance on few samples restricts robustness and 
generalizability 

Further validation needed in larger clinical 
settings 

Yiping Wang 
et al. [24] 

Accuracy 93.85, TPR 87.61, FPR 6.24 and 
TNR 95.09. 

Public Benchmark Multicenter 
SEEG Dataset 

Private Clinical SEEG Dataset 

SEEG-Net However, its reliance on specific clinical datasets 
may limit generalizability, necessitating further 
validation in broader clinical contexts 

Chenqi Li 
[25] 

Decrease in network parameters by a factor of 
2 to 2,800 compared to top-tier architectures,   

Power usage is around 2.791W,   

Area occupied measures 31.255 mm² in a 
22nm FDSOI CMOS process,   

Latency reduction: Attained a reduction in 
latency by two orders of magnitude relative to 
leading hybrid Memristive-CMOS deep 
learning accelerators. 

University of Bonn EEG Dataset 

CHB-MIT Dataset 

SWEC-ETHZ Seizure Dataset 

Low-Latency 
Parallel CNN 

However, challenges related to hardware 
scalability and real-world data variability remain 
potential concerns. 

 

Taranjit 
Kaur and 
Tapan 

Classification Accuracy of 98.67% ,  

Sensitivity 100% and Specificity of 96%. 

University of Bonn EEG Dataset SVM Ensuring generalization across diverse clinical 
scenarios, 

reliance on the quality of EEG image 
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Kumar 
Gandhi [26] 

representations 

Yayan pan et 
al. [27] 

Improvement in Accuracy: +23% when 
training samples are reduced to 10% 

Improvement in Sensitivity: +19% 

Improvement in Specificity: +26% 

Publicly Available Epilepsy 
Detection Dataset 

EMD with 
CNN 

However, the complexity of EMD preprocessing 
and the dependency on the quality of EEG data 
could impact the model's effectiveness. 

Dominik 
Raab et al. 
[28] 

Balanced accuracy 90.06%, sensitivity  
84.24%, specificity 97.55% and precision 
84.24% 

 

Neonatal EEG Seizure Database XAI4EEG However, the complexity of integrating domain 
knowledge and differing user interpretations 
may present challenges in clinical applications 

Milind Natu 
et al. [29] 

The proposed model, HCLA_CBiGRU reached 
an accuracy of 98.5%, demonstrating a 
sensitivity of 98.5% and a specificity of 98.9% 
in detecting seizures. 

CHB-MIT EEG Database, 

University of Bonn EEG Dataset 
and  

UCI Machine Learning 
Repository (EEG Eye State) 

HCLA_CBiG
RU 

However, its complexity may pose challenges in 
interpretability and require significant 
computational resources for clinical deployment 

Ferdaus 
Anam Jibon 
et al. [30] 

An accuracy rate of 98% and a specificity rate 
of 98.60%. 

CHB-MIT EEG dataset LGCN  and 
Dense Net 

The complexity of the model demands 
significant computational power and specialized 
knowledge. Additionally, there are challenges in 
interpreting advanced deep learning methods. 
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4 Analysis and discussion 

This section evaluates models for epileptic seizure detection techniques by focusing on key assessment metrics, 
techniques used, as well as the publications and datasets employed. The evaluation metrics quantify model 
performance, while a review of the publications provides context on methodologies used. 

A. Evaluation of dataset: The analysis of datasets utilized by various researchers in this domain is presented in 
Figure 3 and table 2. This figure highlights that the CHB-MIT dataset is the most frequently used dataset in 
epileptic seizure detection techniques. 

Table 2: Analysis concerning dataset 

Dataset Reviewed papers 

CHB-MIT dataset [1][4][7][8][9][10][11][12][14][15][19][20][21][23][25][29] 
[30] 

iEEG datasets [2][3][6] 

UCI Epileptic Seizure Recognition dataset [5][20][29] 

Kaggle Seizure Prediction Challenge Dataset 

 

[8] 

Bonn University EEG Database [13][14][17][18][25][26][29] 

Long-term scalp EEG database. [16] 

UPenn-Mayo Clinic Seizure Prediction Challenge 
Dataset 

[22] 

Public Benchmark Multicenter SEEG Dataset [24] 

Private Clinical SEEG Dataset [24] 

SWEC-ETHZ [25] 

Publicly Available Epilepsy Detection Dataset [27] 

Neonatal EEG Seizure Database [28] 

 

 

Figure 3: Analysis concerning dataset 

B. Evaluation of methods: Figure 4 illustrates that CNN are the most commonly employed method in epileptic 
seizure detection techniques. This emphasizes the growing reliance on CNNs for analyzing EEG data in the 
identification of seizures. Additionally, Table 3 presents an overview of the various methods used in this field, 
highlighting the diversity of approaches in seizure detection. 
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Table 3: Analysis concerning methods 

Methods Reviewed papers 

CNN [1][2][6][10][11] 

SVMD combined with transformers [3] 

AGWO with integrated auto-encoder and GA [4] 

1D CNN [5][14][21] 

LSTM [6][15] 

Reduced model based on Boosted Trees  [7] 

BoWav feature extraction combined with ELM [8] 

SVM [10][15][26] 

CNN-Transformer Deep Learning Model [9] 

Two-layer LSTM Network Model [12] 

Convolutional Architecture with Hierarchical Attention Mechanism [13] 

ELM [17] 

Bi-LSTM [15][16] 

STFT with Pretrained Model [18] 

DRSN with GRU [19] 

CNN-Bi-LSTM [20] 

TASM_ResNet [22] 

Few-Shot Learning Method using CNN [23] 

SEEG-Net [24] 

Low-Latency Parallel CNN [25] 

EMD with CNN [27] 

XAI4EEG [28] 

HCLA_CBiGRU [29] 

LGCN  and Dense Net [30] 

GRU [15][19] 
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Figure 4: Analysis concerning methods 

C. Evaluation of Metrics Achievements: 

As shown in Figure 5, the primary metrics commonly employed in epileptic seizure detection models include 
accuracy, sensitivity, and specificity. These metrics are essential for evaluating the performance of various detection 
techniques. Furthermore, Table 4 presents a comprehensive assessment of these metrics, offering valuable insights 
into the effectiveness of different models in accurately identifying seizures. This evaluation highlights the strengths 
and limitations of each approach, facilitating a deeper understanding of their performance in clinical applications. 

Table 4: Analysis concerning metrics 

Metrics Reviewed papers 

Accuracy [1][2][4][5][6][7][10][11][12][13][14][15][16][17][18][20][21][24][26][27][28][29][30] 

Sensitivity [1][3][6][7][8][9][12][13][14][16][19][21][23][26][27][28][29] 

Specificity [1][6][9][12][13][14][16][21][26][27][28][29][30] 

FPR [1][3][8][19][23][24] 

Precision [6][11][13][20][28] 

AUC [9][17][19][22] 

F1-score [9][11][13][20] 

Average prediction time [9] 

Recall [11][20] 

G-mean [16] 

Anticipation time [16] 

MCC [20] 

TPR [24] 

TNR [24] 
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Figure 5: Analysis concerning achievements 

D. Analysis based on year of publication 

In this section, the analysis focuses on the publication year of the journals reviewed, covering works from 2022 to 
2024, as detailed in Table 5. Notably, the majority of literature related to epileptic seizure detection analysis has 
emerged in 2022. This trend highlights the increasing interest and advancements in the field during that year, with 
further insights presented in Figure 6, which illustrates the distribution of publications over time. 

Table 5: Analysis concerning year of publication 

Publications Reviewed papers 

2022 [1][2][3][7][11][12][13][22][23][28] 

2023 [4][6][8][10][14][16][17][18][19][20][21][26][29][30] 

2024 [5][9][15][22][22][27] 

 

 

Figure 6: Analysis concerning publication 

5. Research gaps and future works: 

This section identifies key research gaps in the field of epileptic seizure detection, highlighting the limitations of 
current models, such as inadequate datasets, challenges in generalization, and issues with real-time 
implementation. It also outlines future directions for research, emphasizing the need for improved model 
interpretability, integration of multi-modal data, and enhanced clinical validation. Addressing these gaps will pave 
the way for more effective and reliable seizure detection systems. 

 

➢  Numerous current models often overfit to the training data, particularly when they are trained on limited 
datasets. This leads to high accuracy during the training phase, but they struggle to generalize when faced with new, 
unseen data an essential requirement for clinical applications [2]. 
➢ Advanced deep learning models frequently demand substantial computational resources, which makes 
their deployment in real-time clinical environments challenging. High computational demands can limit 
accessibility and increase costs associated with implementing these technologies in healthcare [2]. 
➢ While some models perform well on specific seizure types, they may struggle with other variations or 
atypical presentations. This can lead to missed detections or false alarms, undermining the reliability of the systems 
in clinical practice [3]. 
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➢ The complexity of feature extraction in deep learning models can obscure the clinical relevance of the 
features being utilized. Clinicians may find it challenging to connect model predictions to specific EEG features, 
hampering trust and usability [4]. 
➢ Many models are designed for specific use cases or datasets and may not scale effectively to larger 
populations or different clinical environments. This can limit their utility in broader healthcare settings [4]. 
➢ Variations in how patients experience seizures, differences in their physiological responses, and 
environmental factors can lead to inconsistent model performance. Existing models may not account for this 
variability, impacting their effectiveness [5]. 
➢ There is often a lack of consensus on the best evaluation metrics for assessing model performance in 
seizure detection. This can result in misleading comparisons between studies and hinder progress in the field [5]. 
➢ Many models rely on extensive feature sets, leading to increased training times and complexity. Inefficient 
feature selection can also result in models that do not prioritize the most clinically relevant indicators [6]. 
➢ Current models may not adequately consider the needs and preferences of patients or healthcare providers. 
This oversight can affect acceptance and usability in real-world settings [7]. 
➢ High-quality, annotated datasets are essential for training effective models. However, data annotation can 
be time-consuming and prone to human error, leading to potential inconsistencies that impact model training [8]. 
➢ Many existing models do not seamlessly integrate with current clinical workflows, making it difficult for 
healthcare providers to adopt these technologies into their practice without disrupting existing processes [9]. 
➢ Seizure detection models frequently encounter the issue of imbalanced datasets, where seizures are 
infrequent when compared to non-seizure conditions. This disparity can result in biased predictions and decreased 
accuracy in identifying seizures [10]. 
➢ Current models might not fully represent the timing dynamics of seizure events, as these can greatly differ 
in both duration and characteristics. This limitation can affect the predictive accuracy and timing of detections [11]. 
➢ Many models do not personalize predictions based on individual patient characteristics, such as seizure 
history or comorbidities. This lack of personalization can lead to generalized recommendations that may not be 
effective for all patients [11]. 
➢ Data used to train models may reflect biases related to specific populations, potentially leading to 
disparities in performance across different demographic groups. This can exacerbate existing inequalities in 
healthcare [12]. 

Future works: 

➢ Create comprehensive datasets that encompass various seizure types, demographics, and physiological 
conditions. This can improve model robustness and generalization across different patient populations. 
➢ Implement techniques such as domain adaptation and transfer learning to improve model performance 
across diverse populations and clinical settings. This will help in making models more versatile and applicable in 
real-world scenarios. 
➢ Focus on developing models optimized for real-time processing to ensure immediate seizure detection. This 
involves reducing computational complexity while maintaining accuracy, enabling timely interventions. 
➢ Explore the use of multi-modal data, such as combining EEG with ECG, PPG, and behavioral data, to 
enhance predictive accuracy and provide a more holistic view of the patient’s condition. 
➢ Develop explainable AI (XAI) methods that provide insights into model decisions, helping clinicians 
understand the reasoning behind predictions. This can foster trust and encourage adoption in clinical settings. 
➢ Find ways to enhance model robustness in noisy environments by developing preprocessing techniques 
that filter out artifacts without losing critical information. 
➢ Conduct longitudinal studies that focus on predicting seizures based on historical data, enhancing proactive 
management strategies for epilepsy care. 
➢ Establish clear ethical guidelines for data collection, privacy, and security to address concerns surrounding 
patient data and ensure patient trust in using these technologies. 
➢ Perform rigorous clinical trials to validate the effectiveness of seizure detection models in real-world 
settings. This will aid in establishing their reliability and increase clinician acceptance. 
➢ Involve clinicians and patients in the model design process to ensure that tools are user-friendly and meet 
the needs of end-users. This can improve usability and adoption rates in clinical environments. 
➢ Explore and apply regularization methods, like dropout or early stopping, to help reduce overfitting. 
Additionally, explore model compression and optimization methods to reduce computational overhead. 
➢ Develop standardized evaluation metrics tailored specifically for seizure detection models to facilitate 
better comparisons across studies and improve overall model assessment. 
➢ Investigate personalized models that adapt to individual patient characteristics and seizure histories, 
enhancing prediction accuracy and relevance in clinical practice. 
➢ Employ techniques like synthetic data generation or advanced sampling methods to address class 
imbalance in seizure datasets, improving model training and performance. 
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➢ Design models that can seamlessly integrate into existing clinical workflows, ensuring that they enhance 
rather than disrupt healthcare processes. 
➢ Conduct studies to identify and mitigate biases in training datasets, ensuring that models are fair and 
equitable across different demographic groups. 
➢ Investigate and test new deep learning architectures, such as attention mechanisms or graph neural 
networks, to capture complex relationships within EEG data more effectively. 
➢ Develop models capable of continuous learning from new patient data over time, adapting to changing 
seizure patterns and improving predictive accuracy. 

6. Conclusion: 

In conclusion, this survey underscores the critical importance of epileptic seizure detection as a research domain 
focused on leveraging advanced techniques, particularly through the analysis of EEG data. While significant 
advancements have been made, challenges such as the need for diverse datasets, computational complexity, and the 
generalizability of models remain pressing issues. By systematically reviewing around 30 research articles, this 
study highlights both the strengths and limitations of existing methodologies, including deep learning, machine 
learning, and hybrid models. The findings from this analysis provide a more profound understanding of existing 
practices and also highlight opportunities for improving the effectiveness and reliability of seizure detection 
systems in clinical environments. Ultimately, this research aims to drive future developments in the field, ensuring 
improved patient outcomes through timely and accurate seizure prediction. 
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