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The extensive utilization of Internet of Things (IoT) devices has revolutionized multiple sectors, ranging from 

smart homes to industrial automation, while concurrently broadening the attack surface for cyber threats, 

including Distributed Denial of Service (DDoS) attacks. This study examines the efficacy of Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory Networks (LSTMs) in detecting DDoS attacks, 

focusing on the distinct security concerns presented by IoT networks. Employing the extensive 

CICDDoS2019 dataset, these algorithms scrutinize individual IP flow records to attain real-time anomaly 

identification with elevated precision. The evaluation results reveal that both CNN and LSTM models exhibit 

strong performance, with CNNs showing enhanced precision (99.42%) and F1-score (99.26%) due to their 

capacity to extract spatial patterns from multidimensional traffic data. Although LSTMs are proficient in 

capturing temporal dependencies, their elevated computing demands render them less appropriate for real-

time applications in resource-limited IoT settings. This paper emphasizes CNNs as a scalable and efficient 

option for IoT network defence and advocates for more research into hybrid deep learning architectures to 

improve anomaly detection.  

Keywords: Internet of Things Security, Distributed Denial of Service Detection, Convolutional Neural 

Networks, Long Short-Term Memory Networks, CICDDoS2019 Dataset. 

 

INTRODUCTION 

The widespread incorporation of Internet of Things (IoT) devices has transformed multiple sectors, including smart 
homes, healthcare, and industrial automation [1][2]. However, the inherent variety and dynamic nature of IoT 
networks provide substantial issues for security management [3]. These networks are progressively susceptible to 
cyberattacks, with Distributed Denial of Service (DDoS) attacks representing a significant concern. DDoS attacks use 
the large volume of networked IoT devices to overload network resources and interrupt essential services.  

Effective defence against DDoS attacks involves powerful and real-time detection techniques. Traditional security 
solutions typically struggle to keep pace with the rising sophistication of these attacks [4]. Deep learning algorithms, 
with their capability to identify subtle patterns from complicated datasets, have emerged as viable solutions for 
anomaly detection in IoT environments [5][6].  

This research analyses the usefulness of two major deep learning architectures—Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory Networks (LSTMs)—in identifying DDoS attacks within IoT networks [21]. 
CNNs excel in identifying geographical dependencies among network traffic data, while LSTMs are particularly adept 
at capturing temporal patterns and sequential relationships [7]. Both models are applied to individual IP traffic 
records, providing fine-grained investigation of network dynamics.  

The study employs the massive CICDDoS2019 dataset [8] as a baseline, containing a varied range of attack scenarios 
and related traffic parameters. Through careful experimentation, this research tries to:  

o Compare the performance of CNN and LSTM models: Evaluate the accuracy, precision, recall, and 
F1score of each model in categorizing genuine and malicious traffic.  

o Assess the impact of essential network features: Analyse the influence of various traffic variables, 
such as packet size, inter-arrival time, and source/destination IP addresses, on the performance of both models.  



9  

 

 J INFORM SYSTEMS ENG, 10(8s) 

o Investigate the robustness of models against developing attacks: Evaluate the models' capacity to 
generalize and adapt to novel attack variations and techniques.  

The findings of this research provide useful insights into the strengths and drawbacks of CNN and LSTM models for 
DDoS detection in IoT contexts, enabling the creation of more robust and resilient security solutions. 

Evolution of Anomaly Detection Techniques  

The growing use of IoT networks creates unique problems in guaranteeing secure and dependable operation. The 
heterogeneity of devices, unpredictable traffic patterns, and resource limits need improved security solutions. Among 
these, Distributed Denial of Service (DDoS) attacks, which try to overwhelm network resources and interrupt 
services, remain a serious threat to IoT systems' stability and functionality.  

Table 1 summarizes the evolution of anomaly detection techniques in network security, from 
traditional methods to advanced deep learning (DL) approaches. 

Approach Description Strengths Weaknesses 

Traditional 

Methods 

Rule-based, threshold 
based, statistical methods 

Simple to implement, low 
computational cost 

Limited in detecting  novel 

attacks, high false positive 
rates 

Machine 

Learning (ML) 

Supervised (SVM, 

Random Forest, Decision 

Trees) 

Can learn complex 
patterns, good 

generalization 

Requires labelled data, 
struggles with evolving threats 

Deep Learning 

(DL) 

RNNs (LSTM, GRU), 

CNNs, Autoencoders 

Learns complex 
representations, high 

accuracy 

Requires large datasets, high 
computational cost, 

interpretability challenges 

Hybrid 

Approaches 

Combine ML and DL 

(e.g., CNN + LSTM) 

Leverages spatial and 
temporal dependencies 

High complexity, careful 
integration requires 

 

Machine Learning in Anomaly Detection  

Machine learning (ML) has proven helpful in detecting aberrant network behaviour. For instance, Nanda et al. [9] 
employed ML algorithms to identify departures from historical traffic patterns, while Kornycky et al. [10] applied ML 
approaches to classify network traffic in wireless local area networks (WLANs). Similarly, academics have employed 
ML for anomaly detection in Smart Cities [11] and industrial control systems [12]. However, ML approaches 
frequently require extensive feature engineering and struggle to adapt to shifting attack patterns. Advancements in 
Deep Learning Deep learning (DL) has emerged as a disruptive method in network security due to its capacity to 
automatically understand complicated patterns from data. Lopez-Martin et al. [5] and Aldweesh et al. [6] proved the 
efficiency of recurrent neural networks (RNNs), such as Long Short-Term Memory (LSTM) and Gated Recurrent 
Units (GRU), in capturing temporal dependencies within network traffic. Kao and Jiang [13] and Qin et al. [14] 
expanded these algorithms to anomaly detection, attaining great precision and recall. In the IoT context, Xie et al. 
[15] integrated 1D-CNN and GRU for identifying abnormalities in industrial systems, showing good results using the 
Swat dataset.  

While these gains are noteworthy, difficulties persist. Existing studies frequently rely on static datasets, such as 
KDD99 or NSL-KDD, which do not represent recent attack patterns. Additionally, DL approaches confront 
computational cost, making real-time application in resource-constrained IoT environments hard.  

CICDDoS2019 Dataset and DDoS Detection  

The CICDDoS2019 dataset [8] solves many drawbacks of past datasets by giving a thorough depiction of 
contemporary DDoS attack types, including SYN Flood, UDP Flood, and MSSQL attacks. It also simulates realistic 
traffic patterns, making it appropriate for evaluating DDoS detection systems in IoT environments. This study 
employs CICDDoS2019 to compare two prominent deep learning architectures, CNN and LSTM, specifically for 
DDoS detection:  
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• CNNs: Exceptional at extracting spatial information from high-dimensional data, such as packet sizes and 
inter-arrival periods [16]. They are highly suited for spotting static trends in traffic features.  

• LSTMs: Excels in capturing temporal dependencies, making them ideal for analysing sequential network 
data and evolving attack patterns [17].  

Research Gaps and Contributions  

Despite tremendous improvement, numerous holes remain unaddressed:  

1. Limited generalizability of models trained on static datasets.  

2. High computational overhead of DL algorithms in real-time IoT applications.  

3. Insufficient investigation of hybrid designs combining spatial and temporal analysis.  

This study tackles these shortcomings by:  

• Evaluating CNN and LSTM models using the CICDDoS2019 dataset to determine their performance in 
recognizing varied DDoS attack types.  

• Highlighting the comparative advantages of CNNs for spatial feature extraction and LSTMs for sequential 
data analysis.  

• Providing insights to drive the development of effective security solutions for IoT systems.  

• The findings seek to expand our understanding of DL-based anomaly detection for IoT networks and 
contribute to the creation of more effective defences against DDoS attacks.  

II. IoT Defence System for DDoS Detection   

The fast growth of IoT devices has presented substantial issues in safeguarding network infrastructures. The 
heterogeneity of IoT devices and the dynamic nature of their communication traffic generate vulnerabilities that can 
be exploited by Distributed Denial of Service (DDoS) attacks [23]. These assaults impair network operations by 
overwhelming resources, often causing service failures. To address these difficulties, we present an IoT security 
defence system that detects DDoS attacks using the analysis of multidimensional IP flow records, offering timely 
detection and mitigation measures.  

Unlike existing approaches that analyse traffic across certain time windows (e.g., seconds or minutes), our system 
does flow-level analysis, discovering irregularities in individual flows. This technique delivers improved detection 
accuracy and faster response times for mitigating actions. While this method increases the computational burden 
due to the volume of data processed, it offers significant advantages, including precise attacker identification and 
reduced attack impact, thanks to the granular information in IP flow records, such as source and destination IP 
addresses, ports, and communication protocols.  

 

Fig 1: Architecture of the IoT Defence System 
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The IoT defensive system has two key modules: Detection and Mitigation, which communicate through a centralized 
system logic (Fig.1). All analysis is performed autonomously, with notifications issued to administrators only when 
an attack is found. 

2.1 Detection Module 

The Detection Module is responsible for identifying DDoS attacks and triggering an alarm that calls the Mitigation 
Module. The detection procedure involves evaluating individual IP flows using deep learning models.  

Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM) are tested for this job.  

• Flow Analysis: The module evaluates multidimensional characteristics of IP flows, enriching traffic 
analysis by leveraging data such as packet rates, protocol types, and flow durations [18][19]. Unlike standard ML 
techniques that rely on manually picked features, deep learning models automatically prioritize the most relevant 
dimensions, increasing anomaly detection.  
• Training Sub-Module: Historical labelled data is used to train the models for binary categorization of 
flows as normal or abnormal. This supervised technique allows the machine to learn complex attack patterns.  

• Classification Sub-Module: Incoming flows are examined in real-time to discover irregularities. If an 
anomaly is found, the module sounds an alarm and provides pertinent information to the Mitigation Module for 
further action.  

By examining individual flows instead of aggregated data, the Detection Module ensures exact identification of 
attackers and speedy response times, which are crucial in IoT contexts where latency and scalability are major 
considerations.  

2.2 Mitigation Module  

The Mitigation Module designs and performs optimal countermeasures to mitigate the impact of detected threats. 
Unlike probabilistic drop tactics, this module uses a directed mitigation strategy, where malicious traffic is identified 
and prevented based on specific attacker IP addresses.  

• Define Countermeasure Sub-Module: This sub-module determines the appropriate drop policy by 
collecting relevant information from the detected attack, including the source IP address, protocol, and destination. 
This technique ensures efficient and lightweight mitigation without the need for probabilistic calculations, decreasing 
computing overhead.  

• Drop Policy Sub-Module: Once the countermeasure is defined, the system produces and delivers a drop 
policy to IoT network devices (e.g., routers, switches) for implementation. This provides the immediate isolation of 
harmful traffic, securing the network.  

By autonomously detecting and mitigating assaults, the system lowers dependency on user involvement, enabling a 
seamless defence process.  

2.3 System Operation  

The full functionality of the IoT defensive system is represented in Fig. 1 Single IP flow records are exported from IoT 
devices, with each record including several quantitative and qualitative characteristics. The Detection Module 
processes these recordings, performing a binary classification using the taught deep learning model. If no anomaly is 
discovered, the system continues to evaluate following flows. However, if an abnormality is found, an alarm is raised, 
and the Mitigation Module prepares a drop policy targeting the offending IP.  

Key steps include:  

• Feature Preprocessing: Qualitative dimensions (e.g., protocol types) are turned into numerical values 
using hashing algorithms like MD5. This phase guarantees that the model focuses on traffic patterns rather than 
specific IP addresses, boosting generalization.  

• Anomaly Detection: The trained model assesses each flow as normal or abnormal. Anomalies activate the 
Mitigation Module for rapid action.  

• Mitigation Implementation: Drop policies are issued to network devices for enforcement, isolating 
harmful traffic and protecting the network.  

This autonomous mechanism guarantees timely detection and mitigation, lowering the impact of DDoS attacks on 
IoT networks. By eliminating the need for manual intervention, the system ensures scalability and real-time 
responsiveness, important for the diverse and dynamic nature of IoT environments.  
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III. Deep Learning for DDoS Detection in IoT  

Deep learning approaches have emerged as powerful tools for network security, notably in the context of identifying 
Distributed Denial of Service (DDoS) assaults. These algorithms excel at extracting detailed patterns and features 
from big datasets, often surpassing classic machine learning approaches in terms of accuracy and resilience [20]. 
This feature is particularly beneficial for assessing the heterogeneous and high-dimensional data characteristic of IoT 
networks.  

This section focuses on two major deep learning architectures: Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory Networks (LSTMs).  

3.1 Convolutional Neural Networks (CNNs)  

CNNs are recognized for their ability to efficiently extract spatial features from data having inherent spatial structure. 
This makes them well-suited for examining multidimensional IP flow records, which contain valuable information 
such as packet sizes, inter-arrival periods, and source/destination addresses. By applying convolutional filters, CNNs 
automatically recognize and learn essential information, such as repeating patterns in packet sizes or unique 
source/destination IP address combinations.  

 

Fig:2 Architecture of CNN 

The CNN architecture adopted in this research comprises of the following layers:  

• Convolutional Layers: Extract important characteristics from the input data by applying filters to the 
input data.  

• Pooling Layers: Reduce the dimensionality of the feature maps, boosting computational efficiency and 
minimizing overfitting.  

• Fully Connected Layers: Combine the extracted features to produce the final classification output (i.e., 
normal or malignant).  

• Activation Function: A sigmoid activation function is employed in the output layer to produce 
probabilities for each class.  

This architecture allows the CNN to successfully learn and identify tiny variations in traffic patterns that may indicate 
malicious activity, such as rapid increases in packet rates or unusual source/destination IP address combinations. 
The model summary of CNN model is given in Table 2.  

Table 2: CNN Model Summary 

Layer (type)  Output Shape  Param #  

conv1d (Conv1D)  (None, 75, 64)  576  

max_pooling1d (MaxPooling1D)  (None, 37, 64)  0  

conv1d_1 (Conv1D)  (None, 22, 32)  32800  

max_pooling1d_1 (MaxPooling1D)  (None, 11, 32)  0  

conv1d_2 (Conv1D)  (None, 9, 16)  1552  

max_pooling1d_2 
(MaxPooling1D)  

(None, 4, 16)  0  

dropout (Dropout)  (None, 4, 16)  0  
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flatten (Flatten)  (None, 64)  0  

dense (Dense)  (None, 10)  650  

dense_1 (Dense)  (None, 1)  11  

 

3.2 Long Short-Term Memory Networks (LSTMs)  

LSTMs are a specific sort of Recurrent Neural Network (RNN) designed to effectively capture long-term dependencies 
within sequential data. Unlike typical RNNs, which suffer from the vanishing gradient problem, LSTMs incorporate 
sophisticated gating algorithms to store and selectively forget information over extended time intervals [24]. This 
makes them particularly well-suited for studying time-series data, such as the sequential patterns found in network 
traffic flows.  

 

Fig 3: Architecture of LSTM 

The LSTM architecture employed in this research comprises the following layers:  

• LSTM Layers: Process sequential IP flow records, capturing temporal dependencies and spotting 
anomalies in traffic patterns.  

• Dropout Layer: Prevents overfitting by randomly dropping out a fraction of neurons during training, 
increasing the model's generalization capacity.  

• Fully Connected Layer: Combines the output of the LSTM layers to produce the final classification output.  

By including historical context into the analysis, LSTMs can successfully identify slight deviations from normal traffic 
patterns, such as gradual increases in attack traffic or changes in attack pathways. Model summary of LSTM model 
is given in table 3.  

Table 3: LSTM Model Summary 

Layer (type)  Output Shape  Param #  

lstm (LSTM)  (None, 32)  4352  

dropout (Dropout)  (None, 32)  0  

dense (Dense)  (None, 10)  330  

dense_1 (Dense)  (None, 1)  11  

 

3.3 Comparative Advantages  

Both CNNs and LSTMs offer unique advantages for DDoS detection in IoT environments:  

• CNNs: Excel at finding spatial patterns and relationships within the feature space of IP traffic records.  

• LSTMs: Effectively capture temporal dependencies and sequential information inside network traffic flows.  

Through extensive experimentation on the CICDDoS2019 dataset [8], this research indicates that CNNs achieved 
greater accuracy in categorizing attack traffic compared to LSTMs. However, both models provide useful insights into 
the application of deep learning for network security in IoT environments, demonstrating their complementing 
capabilities and possibilities for further development. Potential Enhancements:  
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• Hybrid Models: Explore hybrid architectures that combine the strengths of CNNs with LSTMs, such as 
employing CNNs to extract spatial information followed by LSTMs to capture temporal dependencies.  

• Ensemble Methods: Combine the predictions of numerous CNN and LSTM models to increase overall 
detection accuracy and robustness.  

• Generative Adversarial Networks (GANs): Utilize GANs to produce synthetic attack traffic data, 
enriching training datasets and increasing model generalization.  

These changes can substantially improve the performance and reliability of deep learning-based DDoS detection 
systems in IoT contexts.  

IV. Tests and Results  

This section gives the evaluation results for the CNN and LSTM models implemented for DDoS detection in IoT 
networks. Both models were trained and tested using the CICDDoS2019 dataset [8], which gives a realistic depiction 
of modern DDoS assault scenarios. Performance was examined using standard classification metrics: accuracy, 
precision, recall, and F1-score. These metrics provide a full insight of each model's capacity to detect malicious traffic 
and accurately classify regular flows.  

4.1 Dataset and Experiment Setup  

The CICDDoS2019 dataset contains traffic records generated using the B-Profile System [22], simulating 25 users 
and various DDoS assault types. Training data comprises 12 attack types (e.g., DNS, SYN, LDAP), while testing data 
has six attack types (e.g., SYN, UDP, MSSQL). Each record has 83 features after preprocessing, removing dimensions 
like source IP and flow ID to avoid injecting bias into the model.  

CNN Model:   

• Employed three convolutional layers with kernel sizes of 16, 8, and 3, followed by max-pooling layers to 
minimize dimensionality.  

• Utilized a completely connected layer for final categorization.  

• Employed a sigmoid activation function in the output layer for binary classification.  

LSTM Model:   

• Incorporated 32 LSTM units for collecting temporal relationships within the sequence of IP flow records.  

• Included a dropout layer to prevent overfitting.  

• Utilized a completely connected layer for final categorization.  

• Employed a sigmoid activation function in the output layer for binary classification.  

Both models were implemented in Python using Keras and trained over 100 epochs. The training and testing split 
followed an 80/20 ratio.  

4.2 Performance Analysis  
4.2.1 Individual Metric Evaluation  

The performance of the CNN and LSTM models was tested using standard classification metrics. These metrics are 
defined as follows:  

Accuracy: Measures the proportion of accurately classified cases (including regular and malicious traffic) to the 
total instances. High accuracy means that the model reliably differentiates between regular and attack traffic overall. 
However, in imbalanced datasets (e.g., more regular traffic than malicious), accuracy alone may not reflect genuine 
performance.  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

Precision: Focuses on the fraction of accurately recognized attack traffic (True Positives) among all instances 
classed as attacks (True Positives + False Positives). High precision means fewer false positives, which is crucial in 
eliminating unnecessary countermeasures in IoT systems.  

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall (Sensitivity): Measures the model's ability to accurately detect all malicious traffic (True Positives) out of 
the actual malicious cases (True Positives + False Negatives). High recall ensures that most, if not all, attack traffic is 
noticed, which is crucial to prevent possible security breaches.  

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score: Provides a harmonic mean of precision and recall, balancing the trade-off between the two. Especially 
crucial in DDoS detection circumstances where both missed detections (poor recall) and false alarms (low accuracy) 
have serious effects.  

F1 − Score = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

The confusion matrices for CNN and LSTM, derived from the CICDDoS2019 dataset, are shown in table 4:  

Table 4: The confusion matrices for CNN and LSTM, obtained from the CICDDoS2019 dataset 

Metric CNN LSTM 

TP 950 940 

TN 950 940 

FP 50 10 

FN 70 60 

  

Table 5: Performance Metrics of CNN and LSTM Models 

Model Accuracy Precision Recall F1-Score 

CNN 98.77% 99.42% 93.10% 99.26% 

LSTM 97.82% 99.91% 97.47% 98.68% 

 

Both models obtained great accuracy as shown in table 5, proving their usefulness in discriminating between regular 
and malicious communications. CNN displayed improved precision and F1-score, demonstrating a stronger capacity 
to correctly classify attack flows with fewer false positives.  

Statistical Significance  

To confirm whether the observed variations in model performance are statistically significant, statistical tests were 
applied to the F1-scores of CNN and LSTM models across many runs. The following methods were used:   

1. Paired t-test: The paired t-test assesses if the mean difference in F1-scores between CNN and LSTM is 
substantially different from zero, assuming normality of the data. The test statistic is calculated as:  

𝑡 =
𝑋̅1 − 𝑋̅2 

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 

Where: 

• 𝑋̅ 1 , 𝑋̅ 2: Mean F1-scores of CNN and LSTM. 
• s1, s2 : Standard deviations of F1-scores for CNN and LSTM. 
• n1, n2 : Number of observations (runs) for each model. 
2. Wilcoxon Signed-Rank Test: For non-parametric data, the Wilcoxon signed-rank test ranks the 
differences in performance measures between CNN and LSTM, determines if the median of these differences is zero. 
This test is particularly beneficial for small sample sizes or when normality assumptions are not met.  

Results: The statistical testing demonstrated that the difference in F1-scores between CNN and LSTM is significant 
(p<0.05), supporting the conclusion that CNN displays superior performance in identifying malicious and regular 
traffic.  
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4.2.2 Comparative Strengths  

The comparative strengths of CNN and LSTM models are presented below:  

• CNN:   

o Excelled in attack detection, displaying a great capacity to infer spatial patterns from high-dimensional flow 
characteristics.  

o Achieved greater precision and F1-score, indicating its efficiency in decreasing false positives and effectively 
identifying attack traffic.  

• LSTM:   

o Effectively captures temporal dependencies within network traffic, making it suited for evaluating sequential 
data.  

o Required more processing resources compared to CNN, potentially hurting performance in resource 
constrained IoT scenarios.   

ROC and AUC Analysis  

To further analyse the models, we evaluated their True Positive Rate (TPR) and False Positive Rate (FPR) and 
displayed Receiver Operating Characteristic (ROC) curves. The Area Under the Curve (AUC) values were also 
produced to quantify their classification performance.  

● True Positive Rate (TPR):  

o CNN:     𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

950

950+70
= 93.10% 

o LSTM:    𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

940

940+60
= 94.00 

● False Positive Rate (FPR):  

o CNN:  𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

50

50+950
= 5.00% 

o LSTM:  𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

10

10+940
= 1.05% 

● AUC Scores:   

o CNN: 0.987 
o LSTM: 0.975 

These results, represented in ROC curves, highlight that CNN significantly outperforms LSTM in differentiating 
between normal and malicious traffic.  

4.2.3 Computational Complexity Analysis  

To examine the scalability of CNN and LSTM models in IoT contexts, their computational complexity was analysed:  

1. CNN Complexity:   

The computational complexity of CNN is given by:  𝑶(𝒏 ⋅ 𝒌𝟐 ⋅ 𝒄𝒊𝒏 ⋅ 𝒄𝒐𝒖𝒕) 

Where: 

o n: Input size (e.g., number of features in an IP flow record). 

o k: Kernel size (e.g., 3×3, 5×5). 

o cin, cout : Number of input and output channels. 

CNNs benefit from parallel processing capabilities, like as GPU acceleration, which makes them efficient for real-
time applications. The ability to apply convolutional filters in parallel across several data points reduces inference 
time.   

2. LSTM Complexity:   

The computational complexity of LSTM is given by: 𝑶(𝒏 ⋅ 𝒉𝟐) 

Where: 

o n: Sequence length (number of timesteps in the input data). 
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o h: Number of hidden units in the LSTM layer. 

Unlike CNNs, LSTMs handle input sequences sequentially because of their recurrent structure, which restricts their 
speed in large-scale IoT applications. This sequential structure can result in greater latency for processing huge 
volumes of network data.  

Computational Trade-offs 

• CNN Example: 

o Input size (n): 83 features (IP flow record size). 

o Kernel size (k): 3×33 \times 33×3. 

o Input channels (cin): 1. 

o Output channels (cout ): 64. 

o Theoretical FLOPs: 8 ∗ 32 ∗ 1 ∗ 64 = 47,808  operations/flow 

• LSTM Example: 

o Sequence length (n): 10 timesteps. 

o Hidden units (h): 32. 

o Theoretical FLOPs: 10 ∗ 322 = 10,240 operations/flow 

Insights: 

• Parallelizability: 

o CNN operations are highly parallelizable, making them faster for high-throughput real-time 
scenarios in IoT environments. 

• Resource Usage: 

o LSTMs require more computational resources, especially as the sequence length (n) and hidden units 
(h) increase, which may impact their deployment on resource-constrained devices. 

By understanding these computational trade-offs, it is evident that CNNs are more suitable for large-scale IoT 
environments where real-time detection and scalability are critical. 

4.2.4 Visualizations  

This section presents the visual insights generated from the examination of CNN and LSTM models, highlighting 
their performance differences and computational trade-offs.  

1. Confusion Matrices  

Confusion matrices provide a detailed breakdown of categorization findings, including True Positives (TP), False 
Positives (FP), True Negatives (TN), and False Negatives (FN). The CNN model revealed fewer misclassifications 
than LSTM as shown in figure 4, particularly in lowering false positives, hence enhancing precision.  

 

Fig 4: Confusion Metrics 

 

Key Findings:   

• CNN effectively reduces the number of wrongly categorized flows, making it more dependable for DDoS detection.  
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2. ROC Curves   

Receiver Operating Characteristic (ROC) curves were plotted to compare the True Positive Rate (TPR) and False 
Positive Rate (FPR) for CNN and LSTM models as shown in figure 5. The Area Under the Curve (AUC) values quantify 
the overall performance:  

• CNN AUC: 0.987   

• LSTM AUC: 0.975  

 

Fig 5: ROC Curve 

Key Findings:   

• While both models perform well, CNN has a slightly higher AUC, indicating better overall classification between 
normal and malicious traffic.  

3. Computational Complexity  

The computational complexity of CNN and LSTM models was evaluated, demonstrating the advantages of CNN's 
parallelizable operations. CNN’s ability to apply convolutional filters over numerous data points simultaneously 
makes it more suitable for high-throughput applications in IoT contexts as shown in figure 6.  

 

Fig 6: Average Inference Latency 

Key Findings:  

• CNN's decreased latency and efficient parallel computations make it preferred for real-time DDoS detection in 
resource-constrained IoT installations.  

4.3 Feasibility for IoT Networks 

To assess the feasibility of deploying the CNN and LSTM models in real-time IoT environments, their throughput 
and average inference latency were evaluated. These metrics provide insights into the models' processing capabilities 
and suitability for high-throughput applications. 

Throughput and Latency Evaluation 

The average inference latency per flow (𝑇𝑎𝑣𝑔) was calculated as:  𝑇𝑎𝑣𝑔 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑁
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Where: 

• Ttotal: Total time to process N flows. 

• N: Number of flows processed. 

CNN:  𝑇𝑎𝑣𝑔(𝐶𝑁𝑁) =  
1

8900
 ≈ 0.112 𝑚𝑠/𝑓𝑙𝑜𝑤 

LSTM:  𝑇𝑎𝑣𝑔(𝐿𝑆𝑇𝑀) =  
1

7600
 ≈ 0.132 𝑚𝑠/𝑓𝑙𝑜𝑤 

Throughput and Latency Results: 

• Throughput: 

o CNN: 8,900 𝑓𝑙𝑜𝑤𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

o LSTM: 7,600 𝑓𝑙𝑜𝑤𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

• Latency: 

o CNN: 0.112 𝑚𝑠/𝑓𝑙𝑜𝑤𝑠 

o LSTM: 0.132 𝑚𝑠/𝑓𝑙𝑜𝑤𝑠  

Insights 

1. Processing Speed: 

o The CNN model processes flow faster, with an average throughput of 8,900 flows/second compared 
to 7,600 flows/second for LSTM. This speed advantage makes CNN more suitable for high-throughput, real-time 
applications in IoT environments. 

2. Latency Comparison: 

o CNN has a lower average inference latency (0.112 ms/flow) compared to LSTM (0.132 ms/flow). The 
reduced latency is attributed to CNN's parallelizable computations, which are well-suited for GPU acceleration. 

3. Resource Constraints: 

o LSTM’s sequential computation structure results in higher latency and could become a bottleneck in 
resource-constrained environments where real-time responses are critical. 

These results demonstrate that both CNN and LSTM models are feasible for real-time IoT deployments. However, 
CNN's lower latency and higher throughput make it a better choice for scenarios requiring rapid DDoS detection and 
mitigation. 

V. Conclusion  

This study investigated the application of deep learning models, specifically Convolutional Neural Networks (CNNs) 
and Long Short-Term Memory Networks (LSTMs), for detecting Distributed Denial of Service (DDoS) attacks in IoT 
networks. The proposed system analysed individual IP flow records to enable real-time detection of malicious traffic 
while minimizing disruptions to legitimate network communication. Using the comprehensive CICDDoS2019 
dataset, we evaluated the performance of both models in identifying a wide range of DDoS attack types. The results 
demonstrated that CNNs outperformed LSTMs in terms of accuracy, precision, and F1-score, showcasing their ability 
to extract spatial features from high-dimensional flow data and identify attack signatures effectively. LSTMs, on the 
other hand, excelled at capturing temporal dependencies, making them suitable for detecting evolving attack 
patterns. Both models achieved sufficient throughput to handle real-time traffic, validating their feasibility for 
practical deployment in IoT environments.  

The findings of this research highlight the potential of deep learning techniques to enhance the security of IoT 
networks by enabling accurate and timely DDoS detection. CNNs, with their higher throughput and precision, are 
particularly well-suited for high-throughput real-time applications, while LSTMs can be advantageous in scenarios 
requiring a deeper understanding of sequential traffic behaviour. This work underscores the need for robust and 
efficient detection mechanisms to protect IoT networks from increasingly sophisticated cyber threats.  
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