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In this paper, our main objective is to apply the following specific form of WKB expansion i.e.  

 𝐹(𝑟) = (𝐹0(𝑟) +
1

𝑛
𝐹1(𝑟) + 

1

𝑛2
𝐹2(𝑟) +

1

𝑛3
𝐹3(𝑟) +⋯ )e𝑥𝑝(𝑛 ∫ 𝑆(𝑟)𝑑𝑟), 

to the solution of the eigenvalue problems of Varga and Neo-Hookean elastic cylinder, everted 

cylinder, sphere, everted sphere and cube. The governing equations first formulated as a fourth 

order eigenvalue problems and then the analytic findings are compared with the counterpart 

numerical solutions. By applying this form of WKB expansion, we are showing that at the leading 

order the roots of 𝑆(𝑟) are repeated for Varga but un-repeated for Neo-Hookean materials. We 

also conclude that the differential equations of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … become second order for 

Varga and first order for Neo-Hookean materials. 

Keywords: WKB method, Eversion, Buckling, Incompressible, Varga and Neo-Hookean 

materials. 

 

INTRODUCTION 

For the first time Wilkes [1], considered the stability of thick-walled solids, who found conditions for the axially 

symmetric buckling of a tube under end thrust. Nowinski and Shahinpoor [2], Wang and Ertepinar [3], Sierakowski, 

Sun and Ebcioglu [4] and Hill [5,6], all have studied circular cylindrical shells under external pressure and also 

Sanjaranipour [7,8] applied WKB method on solving this problem. Patterson [9], Haughton and Ogden [10,11] and 

Zhu, Luo and Ogden [12] examined the circular cylindrical tubes when axial compression is combined with the 

internal or external pressure. The problem of everting incompressible isotropic hyperelastic right circular cylinders 

has been considered both experimentally and theoretically by Rivlin [13], Chadwick and Haddon [14], Chadwick [15], 

Adeleke [16], Truesdell [17]), Chen and Haughton [18]. This eigen-value problem has been solved also by Haughton 

and Orr [19] with the use of the compound matrix method. Fu and Sanjaranipour [20] and Fu and Lin [21] applied 

WKB method on solving this problem for Varga and Neo-Hookean materials, respectively. New and better methods 

introduced for the first time on pure bending by Triantafyllidis [22]. Haughton [23] did a similar analysis for the 

hyperelastic materials in a three-dimensional context and also discussed the vertical compression. Coman and 

Destrade [24] studied the deformation of the pure bending of a rubber block in plane strain and employed WKB 

method on solving the fourth order ODE,s of this problem. Destrade, Annaidh and Coman [25] described the critical 

stretch ratio of a bent block for several models. Recently Sanjaranipour, Hatami and Abdolalian [26] applied WKB 

method with repeated roots to study the bifurcation of the pure bending of a rubber block made of an elastic Varga 

material and described the angle of bending and the azimuthal shear. The buckling analysis of a spherical shell under 

uniform external pressure has been studied by Weslowski [27] and Hill [28] and also Fu [29] applied the standard 

form of WKB expansion (See, Bender and Orszag [30]), for the stability analysis of this problem. Bifurcation of 

spherical elastic shells for a finite radially symmetric inflation are analyzed by Haughton and Ogden [31]. The 

problem of existence and uniqueness of the solutions of an everted spherical shell was investigated by Ericksen [32], 

Antman and Srubshchink [33] and Liu [34]. It should be emphasized that this problem also has been derived and 

solved with the aid of compound matrix and WKB methods by Haughton and Chen [35,36]. 
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Indeed since most of the eigen-value problems of this paper have been studied in different articles and different 

aspects have been analyzed with different views and/or written for special purposes, there is no need of presenting 

such common relations again and we have just urged on such parts of the derivations, which are really needed and 

are not considered on those articles. Our main concern in this research is to find, solve and compare the differential 

equations related to 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … of the WKB expansion. Another concerns is to study the situation of 𝑆(𝑟) 

of this expansion. To demonstrate this matter, the fourth order ODE,s of the eigenvalue problems related to cylinder, 

everted cylinder, cube, sphere and everted sphere for Varga and Neo-Hookean materials is used. To illustrate this 

matter, first we focus our attention to the physical and the geometry of the mentioned problems and later the 

equilibrium and the governing equations will be written down. The WKB solution for each of the cases will be discuss 

and then at the end of each section, the results obtained will be compared with the results of the compound matrix 

method. In order to be able to compare the different scenarios, most of the problems have been resolved once again 

by the use of the compound matrix method. It should be emphasized that for applying the WKB method, the symbolic 

Mathematica software and for numerical compound matrix method, Fortran 90 programming has been employed. 

Cylindrical shell 

In this section, we have given a brief description of the geometric definitions and the derived governing equation of 

the cylinder including everted cylinder by Haughton and Ogden [11] and Haughton and Orr [19].  

The buckling of a cylindrical shell 

An incompressible isotropic homogeneous elastic shell has been considered. The undeformed cylindrical shell is 

defined by 

𝐴 ≤ 𝑅 ≤ 𝐵, 0 ≤ Θ ≤ 2𝜋, 0 ≤ 𝑍 ≤ 𝐿, (1) 

where (𝑅, Θ, 𝑍) are the cylindrical polar coordinates and 𝐿 is the length of the tube. For the problems of this and the 

next sections, we shall assume that all the variables and parameters which have dimension of length have been scaled 

by 𝐵. The cylinder is subjected to an external hydrostatic pressure on its outer surface so that the deformed cylindrical 

shell occupying the region 

𝑎 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑧 ≤ 𝑙, (2) 

where (𝑟, 𝜃, 𝑧) are also the cylindrical polar coordinates in the deformed configuration. The deformation now is 

assumed to be 

𝑟 = 𝑟(𝑅), 𝜃 = Θ,                𝑧 = 𝜆𝑧 𝑍, (3) 

where 𝜆𝑧 is the axial stretch. The principal stretches of the deformation can be written by 

𝜆1 = 𝜆
−1, 𝜆2 =

𝑟

𝑅
= 𝜆, 𝜆3 = 𝜆𝑧 = 1. (4) 

In this article (1,2,3) ≡ (𝑟, 𝜃, 𝑧). In view of (4)2, the deformed inner and outer radii are defined by 𝑎 = 𝜆𝑎 𝐴 and 𝑏 =

𝜆𝑏, where 𝜆𝑎 and 𝜆𝑏 are constants which for the present problem satisfy (0 < 𝜆𝑎 , 𝜆𝑏 < 1). With the use of (4) and the 

incompressible condition det(𝐹) = 𝜆1𝜆2𝜆3 = 1, we have  

𝑟2 = 𝑅2 − 𝐴2 + 𝑎2, 𝜆𝑏
2 = 1 + 𝐴2(𝜆𝑎

2 − 1), (5) 

where 𝐹 is the deformation gradient. For the symmetric configuration considered here, the only equilibrium equation 

not satisfied trivially is 

𝑟 
𝑑𝜎11
𝑑𝑟

+ 𝜎11 − 𝜎22 = 0, (6) 

and the principal Cauchy stresses are given by 

𝜎𝑖𝑖 = 𝜎𝑖 − 𝑝 = 𝜆𝑖
𝜕𝑊

𝜕𝜆𝑖
− 𝑝, (𝑖 = 1,2,3) (7) 
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where 𝑝 is the hydrostatic pressure that arises due to the incompressible condition. The strain-energy function 𝑊 =

𝑊(𝜆1, 𝜆2, 𝜆3) for Neo-Hookean and Varga materials, respectively are defined by Ogden [37] as 

𝑊(𝜆1, 𝜆2, 𝜆3) = 𝜇(𝜆1
2 + 𝜆2

2 + 𝜆3
2 − 3), 

𝑊(𝜆1, 𝜆2, 𝜆3) = 2𝜇(𝜆1 + 𝜆2 + 𝜆3 − 3), 
(8) 

without loss of generality, we assume that 𝜇 is 
1

2
. For the mentioned deformation, the boundary conditions are 

𝜎11(𝑎) = 0, 𝜎11(𝑏) = −𝑃, (9) 

where 𝑃 denotes the external hydrostatic pressure.  

The buckling of an everted cylinder 

The undeformed incompressible isotropic homogeneous elastic cylindrical shell is defined by Eq. (1). The cylinder is 

everted into another right circular cylinder that occupying the region 

𝑎 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝜃 ≤ 2𝜋,                − 𝑙 ≤ 𝑧 ≤ 0, (10) 

where (𝑟, 𝜃, 𝑧) are the cylindrical polar coordinates. We have to note that in particular case the surface 𝑅 = 𝐴 is 

mapped into the surface 𝑟 = 𝑏 and 𝑅 = 𝐵 is mapped to 𝑟 = 𝑎. The deformation now can be described by 

𝑟 = 𝑟(𝑅), 𝜃 = Θ,                𝑧 = −𝜆𝑧 𝑍, (11) 

where 𝑟 = 𝑟(𝑅) is a monotonically increasing function. The principal stretches of the deformation here are 

𝜆1 = −
𝑑𝑟

𝑑𝑅
,  𝜆2 =

𝑟

𝑅
= 𝜆, 𝜆3 = 𝜆𝑧 . (12) 

Thus, with the use of Eq. (12), the deformed inner and outer radii can now be written by 𝑎 = 𝜆𝑎 and 𝑏 = 𝜆𝑏 𝐴, where 

𝜆𝑎 and 𝜆𝑏 are constants which can be taken as the controlling parameter. By using the incompressible condition and 

Eq. (12), we obtain 

 𝑟2 = 𝑎2 +
1−𝑅2

𝜆𝑧
, 𝜆𝑏
2 = (1 − 𝐴2 + 𝜆𝑧𝑎

2)/(𝜆𝑧𝐴
2). (13) 

For the mentioned deformation, the equilibrium equation Eq. (6) is satisfied. The sides of the cylinder are assumed 

to be traction free, so 

𝜎11(𝑎) = 𝜎11(𝑏) = 0. (14) 

We assume that the resultant axial load on any cross-section is zero, then 

∫
𝑏

𝑎

𝑟 𝜎33 𝑑𝑟 = 0. (15) 

The eversion problem now is fully defined i.e. in view of the relations Eq. (6), Eq. (14), Eq. (15) and regarding to the 

explanations given by Fu and Sanjaranipour [20] and Fu and Lin [21], the final eversion conditions for Varga and 

Neo-Hookean materials, respectively are  

2𝜆𝑧
3(𝑏2 − 𝑎2) − (1 + 𝑎2𝜆𝑧)(

1

𝑎
−
𝐴

𝑏
) = 0,     

√𝜆𝑧(𝑎 𝐴 − 𝑏)

1 + 𝑎2𝜆𝑧
− sin(

𝑎 𝐴 − 𝑏

2 𝑎 𝑏 √𝜆𝑧
) = 0, (16) 

(
1 + 𝑎2𝜆𝑧
𝑎2𝜆𝑧

)(
𝑏2 − 𝑎2

𝑏2
) + 2ln

𝑎 𝐴

𝑏
= 0, (𝑏2 − 𝑎2)(𝜆𝑧 + 𝜆𝑧

4) + (1 + 𝜆𝑧𝑎
2)ln

𝑎 𝐴

𝑏
= 0, (17) 

where, 𝐴 = √1 − 𝜆𝑧(𝑏
2 − 𝑎2).  

Bifurcation criterion  
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We write down here a brief description of the equilibrium equations and the boundary conditions by using the 

derivations of Haughton and Ogden [11] and Haughton and Orr [19] and the common derivations in the later sections. 

In the absence of the body forces the incremental equilibrium equations are 

𝑑𝑖𝑣 𝑠̇ = 0, (18) 

where 𝑑𝑖𝑣 is the divergence operator and 𝑠̇ is the increment of the nominal stress both in the current configuration. 

The incremental boundary conditions in respect of a hydrostatic pressure loading are 

𝑠̇𝑇 𝑛 = 𝑃  Γ 𝑛 − 𝑃̇ 𝑛, (19) 

where 𝑛 is the unit outward normal to the surface. We should note that 𝑃 is not equal to zero for the problems with 

the external hydrostatic pressure and is zero for the everted problem. The incremental constitutive law is 

𝑠̇ = 𝐵  Γ + 𝑝  Γ − 𝑝̇ 𝐼, (20) 

where 𝐼 and Γ are respectively the identity tensor and the incremental deformation gradient and 𝐵 is the fourth order 

tensor of instantaneous moduli in the current configuration. The non-zero components of 𝐵 on the principal axes of 

the underlying deformation are given by Haughton and Ogden [31] and therefore are not repeated here. The 

incremental displacement is defined by 𝑥̇ = (𝑢(𝑟, 𝜃, 𝑧), 𝑣(𝑟, 𝜃, 𝑧), 𝑤(𝑟, 𝜃, 𝑧)). Although we shall study the eigen-value 

problem including the fourth order ODE,s, the case where 𝑢, 𝑣 and 𝑤 are independent of 𝑧 also will be considered. 

Then 𝑥̇ = (𝑢(𝑟, 𝜃), 𝑣(𝑟, 𝜃),0) and the components of Γ are displayed as 

Γ = [
𝑢𝑟 (𝑢𝜃 − 𝑣)/𝑟 0

𝑣𝑟 (𝑢 + 𝑣𝜃)/𝑟 0
0 0 0

], (21) 

where subscripts here denote the partial derivatives. Since the material is incompressible, we have 

𝑡𝑟  Γ ≡ 𝑢𝑟 + (𝑢 + 𝑣𝜃)/𝑟 = 0. (22) 

With the use of relations Eqs. (18)-(22) and in view of 𝑢, 𝑣 and 𝑤 which are independent of 𝑧 and with some 

manipulation at least we obtained the following simplified fourth order ODE [11] 

𝑟4𝐵1212𝐹
(4)(𝑟) + 2𝑟3(𝑟 𝐵′1212 + 3𝐵1212)𝐹

(3)(𝑟) + 𝑟2(𝑟2𝐵′′1212 + 7 𝑟 𝐵′1212
+5𝐵1212 + 𝑛

2(2𝐵1122 + 2𝐵2112 − 𝐵1111 − 𝐵2222))𝐹′′(𝑟) + 𝑟 (𝑟
2𝐵′′1212

+𝑟 𝐵′1212 − 𝐵1212 + 𝑛
2(2 𝑟 𝐵′2112 + 2 𝑟 𝐵′1122 − 𝑟 𝐵′1111 − 𝑟 𝐵′2222 + 2𝐵1122

+2𝐵2112 − 𝐵1111 − 𝐵2222)) 𝐹′(𝑟) + (𝑛
2 − 1)(𝑟2𝐵′′1212 + 𝑟 𝐵′1212 − 𝐵1212

+𝑛2𝐵2121) 𝐹(𝑟) = 0,

 (23) 

and the relevant boundary conditions at 𝑟 = 𝑎, 𝑏 

𝑟3𝐵1212 𝐹′′′(𝑟) + 𝑟
2(𝑟 𝐵′1212 + 4𝐵1212)𝐹′′(𝑟) + 𝑟(𝑟 𝐵′1212 + (1 − 𝑛

2)𝐵1212
+𝑛2(2𝐵1122 + 2𝐵2112 − 𝐵1111 − 𝐵2222))𝐹′(𝑟)

+(𝑛2 − 1)(𝑟 𝐵′1212 + 𝐵1212)𝐹(𝑟) = 0,

𝑟2 𝐹′′(𝑟) + 𝑟 𝐹′(𝑟) + (𝑛2 − 1)𝐹(𝑟) = 0,

 (24) 

where the prime denotes 𝑑/𝑑𝑟 and 𝑛 is the mode number. The fourth order ODE Eq. (23) and the boundary conditions 

Eq. (24) has been derived also by Haughton and Chen [36]. 

Cube 

In the following section, a brief description of the derivations i.e. physical and the relevant governing equations of a 

cube has been chosen from Haughton [23] and Coman and Destrade [24].  

Pure bending of a cube 

The undeformed hyperelastic right cube occupies the region 

Ω = {(𝑋1, 𝑋2, 𝑋3) ∈ ℛ
3| − 𝐴 ≤ 𝑋1 ≤ 𝐴,−𝐿 ≤ 𝑋2 ≤ 𝐿, 0 ≤ 𝑋3 ≤ 𝐻}, (25) 
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where 𝐴, 𝐿 and 𝐻 are the thickness, length and the height respectively. For this problem, we shall assume that all the 

variable and parameters which have dimension of length have been scaled by 𝐿. The cube is bent into a part of a right 

circular cylinder, such that the bent cube occupying the region  

Ω𝑡 = {(𝑟, 𝜃, 𝑧) ∈ ℛ × (0,2𝜋] × ℛ|𝑎 ≤ 𝑟 ≤ 𝑏,−𝜔0 ≤ 𝜃 ≤ 𝜔0, 0 ≤ 𝑧 ≤ 𝐻 𝜆3}, (26) 

where 𝑎, 𝑏 are the inner and outer radii, 𝜆3 is a prescribed axial stretch and 𝜔0 can serve as a control parameter. The 

deformation can now be described by 

𝑟 = √(√1 + 4𝜔0
2𝐴2 + 2𝑋1𝜔0)/(𝜔0

2𝜆3), 𝜃 = 𝜔0𝑋2,    𝑧 = 𝜆3𝑋3. (27) 

Since the plate cannot be bent into itself, we required that 0 < 𝜔0 ≤ 𝜋. The angle of bending is 𝜑 = 2𝜔0. In view of 

the incompressible condition, the principal stretches are given by 

𝜆1 = 𝜆
−1, 𝜆2 = 𝜆(= 𝜔0 𝑟), 𝜆3 = 1. (28) 

The two curved boundaries of the current configuration are taken to be traction-free. 

Bifurcation analysis 

Since most of the derivations of the cube and the cylinder are the same, we do not consider all such relations here 

and just write down the general fourth order differential equation. In view of relations Eqs. (18)-(22), the governing 

equations of the cube are obtained as follows 

𝑟4𝐵1212𝐹
(4)(𝑟) + 2𝑟3(𝑟 𝐵′1212 + 𝐵1212)𝐹′′′(𝑟) + 𝑟

2(𝑟2𝐵′′1212 + 𝑟 𝐵′1212
−𝐵1212 −𝑚

2(𝐵1111 + 𝐵2222 − 2𝐵1122 − 2𝐵2112))𝐹′′(𝑟) − 𝑟(𝑟
2𝐵′′1212

+𝑟 𝐵′1212 − 𝐵1212 +𝑚
2(𝑟 𝐵′1111 + 𝑟 𝐵′2222 − 2 𝑟 𝐵′1122 − 2 𝑟 𝐵′2112 + 2𝐵1122

+2𝐵2112 − 𝐵1111 − 𝐵2222))𝐹′(𝑟) + 𝑚
2(𝑟2𝐵′′1212 + 𝑟 𝐵′1111 + 𝑟 𝐵′1212

+𝑟 𝐵′2222 − 2 𝑟 𝐵′1122 − 2 𝑟 𝐵′2112 + 2𝐵2112 + 2𝐵1122 − 𝐵1111 − 𝐵2222
−𝐵1212 − 𝐵2121 +𝑚

2𝐵2121)𝐹(𝑟) = 0,

 (29) 

𝑚2(𝐵1111 + 𝐵2222 + 𝐵1212 − 2𝐵2112 − 2𝐵1122)(𝐹(𝑟) − 𝑟 𝐹′(𝑟))

+𝑟3𝐵1212 𝐹′′′(𝑟) = 0,

𝑟2 𝐹′′(𝑟) − 𝑟 𝐹′(𝑟) + 𝑚2 𝐹(𝑟) = 0, (𝑟 = 𝑎, 𝑏)

 (30) 

where 𝑚 =
𝜇

𝜔0
 and 𝜇 = 𝑛 𝜋. The inner and outer radii of the current configuration, respectively become 

𝑎, 𝑏 =
1

𝜔0
√√1 + 4𝐴2𝜔0

2 ± 2 𝐴 𝜔0. (31) 

Spherical shell 

As will become clear later in this section first a brief description of the physical and also the relevant relations of the 

spherical shell subjected to an external hydrostatic pressure appears and later we continue the same procedure as 

used in the previous sections for an everted spherical shell. In the final part again we prefer to show what is necessary 

and omit the relations which are common with the cylinder. The general equilibrium equations and the boundary 

conditions for the mentioned spheres are given in the following section.  

The buckling of a spherical shell 

The undeformed spherical shell occupying the region, 

0 < 𝐴 ≤ 𝑅 ≤ 𝐵, 0 ≤ Θ ≤ 𝜋, 0 ≤ Φ ≤ 2𝜋, (32) 

in spherical polar coordinates (𝑅, Θ,Φ), where 𝐴 and 𝐵 are the inner and outer radii. For the problems of this and the 

next sections, we shall assume that all the variable and parameters which have dimension of length have been scaled 
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by 𝐵. The sphere is subjected to an external hydrostatic pressure so that the deformed spherical shell occupying the 

region 

0 < 𝑎 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜙 ≤ 2𝜋, (33) 

where (𝑟, 𝜃, 𝜙) are spherical polar coordinates and 𝑎 and 𝑏 are the inner and outer radii in the deformed configuration. 

The deformation can now be described by 

𝑟 = 𝑟(𝑅), 𝜃 = Θ,                𝜙 = Φ, (34) 

where 𝑟(𝑅) is a smooth function. The principal stretches of the deformation is written by 

𝜆1 = 𝑟′(𝑅), 𝜆2 = 𝜆3 = 𝜆(=
𝑟

𝑅
). (35) 

With the use of the incompressible condition and by the aid of Eq. (35), we have  

𝑟3 = 𝑅3 − 𝐴3 + 𝑎3, 𝜆𝑏
3 = 1 + 𝐴3(𝜆𝑎

3 − 1), (36) 

where in view of Eq. (35), we get 𝜆𝑎 =
𝑎

𝐴
 and 𝜆𝑏 = 𝑏. Moreover, for the mentioned deformation, the only non-trivial 

equilibrium equation is 

𝑑𝜎11

𝑑𝑟
+

2

𝑟
(𝜎11 − 𝜎22) = 0.   (37) 

The principal Cauchy stresses and the boundary conditions are given respectively by Eq. (7) and Eq. (9).  

The eversion of a spherical shell 

The undeformed incompressible isotropic homogeneous elastic spherical shell is defined by Eq. (32). The 

deformation of this shell is given by 

𝑟 = 𝑟(𝑅), 𝜃 = 𝜋 − Θ,                𝜙 = Φ, (38) 

where (𝑟, 𝜃, 𝜙) are also spherical polar coordinates and 𝑟(𝑅) is a smooth, strictly decreasing function. The everted 

shell occupying the region as Eq. (33) and the principal stretches of the deformation are given by 

𝜆1 = −𝑟′(𝑅), 𝜆2 = 𝜆3 = 𝜆(=
𝑟

𝑅
). (39) 

With the aid of the incompressible condition det(𝐹) = 1 and by using Eq.(39), we obtain 

𝑟3 = 1 + 𝑎3 − 𝑅3, 𝜆𝑏
3 = (1 + 𝜆𝑎

3 − 𝐴3)/𝐴3, (40) 

where 𝜆𝑎 = 𝑎 and 𝜆𝑏 =
𝑏

𝐴
. It is necessary to remind that for the mentioned deformation, the equilibrium equations 

Eq. (37) and the boundary conditions Eq. (14) and Eq. (15) are satisfied. The eversion problem is now fully defined. 

Indeed, with the use of the relations Eq. (37), Eq. (14) and Eq. (15) and in view of the explanations given by Haughton 

and Chen [36], the eversion conditions for Varga and Neo-Hookean materials are respectively 

1

𝜆𝑎
2
−
1

𝜆𝑏
2 +

4

√3
(arctan(

2𝜆𝑎 − 1

√3
) − arctan(

2𝜆𝑏 − 1

√3
)) +

2

3
ln(
(𝜆𝑎 + 1)

2(𝜆𝑏
2 − 𝜆𝑏 + 1)

(𝜆𝑏 + 1)
2(𝜆𝑎

2 − 𝜆𝑎 + 1)
) = 0, (41) 

1

𝜆𝑏
−
1

𝜆𝑎
+
1

4
(
1

𝜆𝑎
4
−
1

𝜆𝑏
4) = 0. (42) 

Bifurcation criterion  

The incremental equations of non-linear elasticity are well documented, see Ogden [37] for example. For 

completeness we give a brief description. The incremental equilibrium equations for the spherical shell are defined 

by Eqs. (18)-(20). We consider the incremental displacement as 𝑥̇ = (𝑢(𝑟, 𝜃, 𝜙), 𝑣(𝑟, 𝜃, 𝜙), 𝑤(𝑟, 𝜃, 𝜙)). Although we 

shall study the eigen-value problem including the fourth order ODE,s, we consider the case where 𝑢, 𝑣 and 𝑤 are 

independent of 𝜙. Then 𝑥̇ = (𝑢(𝑟, 𝜃), 𝑣(𝑟, 𝜃),0) and the displacement gradient is defined by 
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Γ = [

𝑢𝑟 (𝑢𝜃 − 𝑣)/𝑟 0
𝑣𝑟 (𝑢 + 𝑣𝜃)/𝑟 0

0 0 (𝑢 + 𝑣 cot𝜃)/𝑟
], (43) 

where subscripts denote partial derivatives. Since the material is incompressible, we have 

𝑡𝑟  Γ ≡ 𝑢𝑟 +
2 𝑢

𝑟
+
𝑣𝜃 + 𝑣 cot𝜃

𝑟
= 0. (44) 

With the use of relations Eqs. (18)-(20), Eq.(44) and in view of 𝑢, 𝑣 and 𝑤 which are independent of 𝜙, the general 

governing equations are derived as follows 

𝑟4𝐵1212𝐹
(4)(𝑟) + 2𝑟3(𝑟 𝐵′1212 + 4𝐵1212)𝐹′′′(𝑟) + (𝑟

2𝐵′′1212 + 10 𝑟 𝐵′1212
+10𝐵1212 + 𝐵2222 + 𝐵2121 − 𝐵2233 − 𝐵2112 +𝑚 (2𝐵1122 + 2𝐵2112 − 𝐵1111
−𝐵2222))𝑟

2 𝐹′′(𝑟) + (2𝑟2𝐵′′1212 + 4 𝑟 𝐵′1212 + 𝑟 𝐵′2222 + 𝑟 𝐵′2121 − 𝑟 𝐵′2233
−𝑟 𝐵′2112 + 2𝐵2222 + 2𝐵2121 − 2𝐵2233 − 2𝐵2112 − 4𝐵1212 +𝑚 (2 𝑟 𝐵′2112
+2 𝑟 𝐵′1122 − 𝑟 𝐵′1111 − 𝑟 𝐵′2222 + 4𝐵2112 + 4𝐵1122 − 2𝐵1111 − 2𝐵2222))

𝑟 𝐹′(𝑟) + (𝑚 − 2)(𝑟2𝐵′′1212 + 2 𝑟 𝐵′1212 + 𝑟 𝐵′2112 + 𝑟 𝐵′2233 − 𝑟 𝐵′2121
−𝑟 𝐵′2222 + 𝐵2222 − 2𝐵1212 − 𝐵2112 − 𝐵2233 + (𝑚 + 1)𝐵2121)𝐹(𝑟) = 0,

 (45) 

and the relevant boundary conditions at 𝑟 = 𝑎, 𝑏 are 

𝑟3𝐵1212 𝐹′′′(𝑟) + 4𝑟
2𝐵1212 𝐹′′(𝑟) + (𝐵2121 + 𝐵2222 − 𝐵2112 − 𝐵2233

+𝑚 (2𝐵2112 + 2𝐵1122 − 𝐵1111 − 𝐵2222 − 𝐵1212))𝑟 𝐹′(𝑟) + (𝑚 − 2)(𝐵2112
+𝐵2233 − 𝐵2121 − 𝐵2222)𝐹(𝑟) = 0,

𝑟2 𝐹′′(𝑟) + 2 𝑟 𝐹′(𝑟) + (𝑚 − 2)𝐹(𝑟) = 0,

 (46) 

where 𝑚 = 𝑛 (𝑛 + 1) and the prime denotes 𝑑/𝑑𝑟. 

Asymptotic results 

For all the problems of this article and for large 𝑛 limit, we look for a WKB solution of the following form as described 

in Fu and Sanjaranipour [20] and Sanjaranipour [7] 

 𝐹(𝑟) = (𝐹0(𝑟) +
1

𝑛
𝐹1(𝑟) + 

1

𝑛2
𝐹2(𝑟) +

1

𝑛3
𝐹3(𝑟) + ⋯)e𝑥𝑝(𝑛 ∫ 𝑆(𝑟)𝑑𝑟), (47) 

where 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), …  and 𝑆 are functions of 𝑟 and are to be determined. As we mentioned previously, it seems 

that the roots of 𝑆(𝑟) for Neo-Hookean material are not repeated while for Varga material are repeated and also the 

differential equations of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … of the WKB expansion are first and second order respectively for Neo-

Hookean and Varga materials.  

WKB analysis of the buckling of a Neo-Hookean cylindrical shell 

For the solution of this problem, the following standard form of WKB expansion (see, e.g., Bender and Orszag [30])) 

has been used in Sanjaranipour [8] 

𝐹(𝑟) = e𝑥𝑝 (𝑛∫
𝑟

𝑎

𝑆(𝑟)𝑑𝑟) , 𝑆(𝑟) = 𝑆0(𝑟) +
𝑆1(𝑟)

𝑛
+
𝑆2(𝑟)

𝑛2
+. . . = ∑

∞

𝑚=0

𝑆𝑚(𝑟)

𝑛𝑚
. (48) 

It should be emphasized that for the aims of this article which is comparing the differential equations of 

𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), …  for different scenarios, we use the particular and equivalent form of WKB expansion i.e. Eq. (47) 

instead of Eq. (48). To determine 𝑆(𝑟), we substitute Eq. (47) into Eq. (23) and equate the coefficients of the like 

powers of 𝑛, we obtain an infinite number of differential equations for (𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … . To leading order the 

resulting four un-repeated roots of 𝑆(𝑟) are 

𝑆(1)(𝑟) =
1

𝑟
, 𝑆(2)(𝑟) =

−1

𝑟
, 𝑆(3)(𝑟) =

𝑟

𝑞 + 𝑟2
, 𝑆(4)(𝑟) =

−𝑟

𝑞 + 𝑟2
, (49) 
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where 𝑞 = 𝐴2 − 𝑎2. By equating the coefficients of the next order terms and in view of 𝑆(𝑟) from Eq. (49) and with 

some manipulation at least, we obtain the following two first order differential equations for 𝐹0(𝑟),  

(𝐹0
(𝑖)
)′ −

𝑞2  +  2 𝑞 𝑟2  +  2𝑟4

𝑟(𝑞 + 𝑟2)(𝑞 + 2𝑟2)
𝐹0
(𝑖)
= 0, (𝑖 = 1,2)

(𝐹0
(𝑖)
)′ −

2𝑟3

(𝑞 + 𝑟2)(𝑞 + 2𝑟2)
𝐹0
(𝑖)
= 0, (𝑖 = 3,4)

 (50) 

and the solutions are 

𝐹0
(1)(𝑟) = 𝐹0

(2)(𝑟) =
𝑟 √𝑞 + 𝑟2

√𝑞 +  2𝑟2
, 𝐹0

(3)(𝑟) = 𝐹0
(4)(𝑟) =

𝑞 +  𝑟2

√𝑞 +  2𝑟2
, … (51) 

where superscripts here correspond to those in Eq. (49). To find the differential equations satisfied by 𝐹1(𝑟), we have 

to continue the analysis to the next order. With the use of 𝑆(𝑖)(𝑟) and 𝐹0
(𝑖)
(𝑟) from Eq. (49) and Eq. (51), the four non-

homogeneous first order differential equations of 𝐹1
(𝑖)
(𝑟) are obtained as 

(𝐹1
(𝑖)
)′ −

𝑞2  +  2 𝑞 𝑟2  +  2𝑟4

𝑟 (𝑞 + 𝑟2)(𝑞 + 2𝑟2)
𝐹1
(𝑖)
=
(−1)𝑖+1 𝑞 𝑟2(8𝑞3  + 15𝑞2𝑟2  −  2 𝑞 𝑟4  −  12𝑟6)

2(𝑞 + 𝑟2)3/2(𝑞 +  2𝑟2)7/2
,      (𝑖 = 1,2)

(𝐹1
(𝑖)
)′ −

2𝑟3

(𝑞 + 𝑟2)(𝑞 + 2𝑟2)
𝐹1
(𝑖)
=
(−1)𝑖+1 𝑞 (𝑞 + 𝑟2)(3𝑞3  +  17𝑞2𝑟2  +  34 𝑞 𝑟4  +  12𝑟6)

2𝑟3(𝑞 + 2𝑟2)7/2
, (𝑖 = 3,4)

 

(52) 

and the particular integrals of Eq. (52) are 

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖  𝑟 √𝑞 +  𝑟2

8√𝑞 + 2𝑟2
{
𝑞 (𝑞2  −  9 𝑞 𝑟2  − 16𝑟4)

(𝑞 +  𝑟2)(𝑞 +  2𝑟2)2
+ 2ln(

𝑞 + 𝑟2

𝑞 + 2𝑟2
)}, (𝑖 = 1,2)

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖(𝑞 +  𝑟2)

8√𝑞 + 2𝑟2
{
𝑞 (6𝑞2  +  23 𝑞 𝑟2  + 16𝑟4)

𝑟2(𝑞 +  2𝑟2)2
+ 2ln(

𝑟2

𝑞 + 2𝑟2
)}.  (𝑖 = 3,4)

 (53) 

Now we may write down the general solution as 

𝐹(𝑟) =∑

4

𝑖=1

𝑐𝑖𝐹
(𝑖)(𝑟)𝐸(𝑖)(𝑟), (54) 

where 𝑐𝑖(𝑖 = 1,2,3,4) are disposable constants and we have 

𝐹(𝑖)(𝑟) = 𝐹0
(𝑖)
(𝑟) +

𝐹1
(𝑖)
(𝑟)

𝑛
+
𝐹2
(𝑖)
(𝑟)

𝑛2
+⋯ ,𝐸(𝑖)(𝑟) = exp (𝑛∫

𝑟

𝑎

𝑆(𝑖)(𝑥)𝑑𝑥) . (55) 

On substituting Eq. (54) into the boundary conditions Eq. (24), we obtain 

∑

4

𝑖=1

𝑐𝑖{𝛼
(𝑖)(𝑟), 𝛾(𝑖)(𝑟)}𝑇𝐸(𝑖)(𝑟) = 0, (𝑟 = 𝑎, 𝑏) (56) 

Where 
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𝛼(𝑖)(𝑟) = (1 + 𝑟2(𝑆(𝑖))2)𝐹0
(𝑖)
+
1

𝑛
((1 + 𝑟2(𝑆(𝑖))2)𝐹1

(𝑖)
+ (𝑟 𝑆(𝑖) + 𝑟2(𝑆(𝑖))′)𝐹0

(𝑖)

+2𝑟2𝑆(𝑖)(𝐹0
(𝑖)
)′) +

1

𝑛2
(−𝐹0

(𝑖)
+ (𝑟 𝑆(𝑖) + 𝑟2(𝑆(𝑖))′)𝐹1

(𝑖)
+ (1 + 𝑟2(𝑆(𝑖))2)

𝐹2
(𝑖)
+ 𝑟 (𝐹0

(𝑖)
)′ + 2𝑟2𝑆(𝑖)(𝐹1

(𝑖)
)′ + 𝑟2(𝐹0

(𝑖)
)′′) + 𝑂(

1

𝑛3
),

𝛾(𝑖)(𝑟) =
𝑆(𝑖)

𝑟 (𝑞 + 𝑟2)
(2𝑞2 + 4 𝑞 𝑟2 + 3𝑟4 − 𝑟2(𝑞 + 𝑟2)2(𝑆(𝑖))2)𝐹0

(𝑖)
+

1

𝑛 𝑟2(𝑞 + 𝑟2)

       ((𝑞 + 𝑟2)𝐹0
(𝑖)
(𝑞 − 𝑟2 − 𝑟2𝑆(𝑖)((2 𝑞 + 4𝑟2)𝑆(𝑖) + 3 𝑟 (𝑞 + 𝑟2)(𝑆(𝑖))′))

+𝑟(2𝑞2 + 4 𝑞 𝑟2 + 3𝑟4 − 𝑟2(𝑞 + 𝑟2)2(𝑆(𝑖))2)𝑆(𝑖)𝐹1
(𝑖)
+ 𝑟 (2𝑞2 + 4 𝑞 𝑟2

+3𝑟4 − 3𝑟2(𝑞 + 𝑟2)2(𝑆(𝑖))2)(𝐹0
(𝑖)
)′) + 𝑂(

1

𝑛2
).

 (57) 

We may write the boundary conditions as a matrix equation of the form 𝐶𝑀 = 0, where 𝐶 = [𝑐1, 𝑐2, 𝑐3, 𝑐4] and 

𝑀 = (𝑀𝑖𝑗) =

[
 
 
 
 
𝛼(1)(𝑎) 𝛼(2)(𝑎) 𝛼(3)(𝑎) 𝛼(4)(𝑎)

𝛾(1)(𝑎) 𝛾(2)(𝑎) 𝛾(3)(𝑎) 𝛾(4)(𝑎)

𝐸1𝛼
(1)(𝑏) 𝐸2𝛼

(2)(𝑏) 𝐸3𝛼
(3)(𝑏) 𝐸4𝛼

(4)(𝑏)

𝐸1𝛾
(1)(𝑏) 𝐸2𝛾

(2)(𝑏) 𝐸3𝛾
(3)(𝑏) 𝐸4𝛾

(4)(𝑏)]
 
 
 
 

. (58) 

In order to obtain the non-trivial solution, a certain 4 × 4 determinant has to vanishes i.e. det(𝑀) = 0.  

 

Asymptotic result for 𝑨 − 𝟏 = 𝑶(𝟏) 

In the case of 𝐴 − 1 = 𝑂(1), 𝐸(1)(𝑏) = 𝐸(3)(𝑏) are exponentially large whereas 𝐸(2)(𝑏) = 𝐸(4)(𝑏) are exponentially 

small; we may decouple the equations of det(𝑀) = 0 into two pairs of equations  

[
𝛼(1)(𝑏) 𝛼(3)(𝑏)

𝛾(1)(𝑏) 𝛾(3)(𝑏)
] [
𝑐1
𝑐3
] = 0,    a𝑛𝑑        [

𝛼(2)(𝑎) 𝛼(4)(𝑎)

𝛾(2)(𝑎) 𝛾(4)(𝑎)
] [
𝑐2
𝑐4
] = 0. (59) 

By considering {𝛼̂(𝑖)(𝑟), 𝛾(𝑖)(𝑟)} = {𝛼(𝑖)(𝑟), 𝛾(𝑖)(𝑟)}/𝐹(𝑖)(𝑟) (in order to eliminate 𝐹(2)(𝑟) from our derivations), (59)1,2 

can be replaced respectively by 

[
𝛼̂(1)(𝑏) 𝛼̂(3)(𝑏)

𝛾(1)(𝑏) 𝛾(3)(𝑏)
] [
𝑐1𝐹

(1)(𝑏)

𝑐3𝐹
(3)(𝑏)

] = 0,   or [
𝛼̂(2)(𝑎) 𝛼̂(4)(𝑎)

𝛾(2)(𝑎) 𝛾(4)(𝑎)
] [
𝑐2𝐹

(2)(𝑏)

𝑐4𝐹
(4)(𝑏)

] = 0. (60) 

To obtain a non-trivial solution, we must have 

|
𝛼̂(1)(𝑏) 𝛼̂(3)(𝑏)

𝛾(1)(𝑏) 𝛾(3)(𝑏)
| = 0, or  |

𝛼̂(2)(𝑎) 𝛼̂(4)(𝑎)

𝛾(2)(𝑎) 𝛾(4)(𝑎)
| = 0. (61) 

By expanding Eq. (61) (the details are given in Sanjaranipour [8]), we obtain 

(1 − 3𝜆𝑎
2 − 𝜆𝑎

4 − 𝜆𝑎
6) + (1 + 2𝜆𝑎

2 − 2𝜆𝑎
4 + 2𝜆𝑎

6 + 𝜆𝑎
8)
1

𝑛
−

1

2𝜆𝑎
2 (1 + 𝜆𝑎

2)2
(12 + 20

𝜆𝑎
2 − 12𝜆𝑎

4 − 43𝜆𝑎
6 − 65𝜆𝑎

8 − 10𝜆𝑎
10 + 6𝜆𝑎

12 + 9𝜆𝑎
14 + 3𝜆𝑎

16)
1

𝑛2
+ 𝑂(

1

𝑛3
) = 0,

 (62) 

where 𝜆𝑎 =
𝑎

𝐴
. By expanding 𝜆𝑎 in term of 

1

𝑛
, we obtain from E. (62), 

𝜆𝑎 = 0.543689 + 0.352202/𝑛 − 3.713199/𝑛
2 +⋯. (63) 

This expression is independent of 𝐴 and as expected is exactly similar to the obtained expansion in Sanjaranipour 

[8].  
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Asymptotic results for 𝑨 − 𝟏 = 𝑶(
𝟏

𝒏
) 

Since for small 𝐴 − 1, 𝑏 − 𝑎 is small, the exponentials 𝐸1 and 𝐸3 are no longer exponentially large and  Eq.(59) fails 

to approximate det(𝑀) = 0. In the boundary layer we expand 𝐴 as 

𝐴 = 1 +
1

𝑛
𝜉, (64) 

where 𝜉 is an 𝑂(1) constant, and we look for an asymptotic solution for 𝜆𝑎 of the form 

𝜆𝑎 = 𝜂1  +  
1

𝑛
𝜂2 + ⋯ , (65) 

where 𝜂1 and 𝜂2 are to be determined. On substituting Eq. (64) and Eq. (65) into relations 𝑎 = 𝜆𝑎 𝐴, 𝑏 = 𝜆𝑏 and by 

using Eq. (5), we obtain 

𝑎 = 𝜂1  +  (𝜉𝜂1 + 𝜂2)
1

𝑛
+ ⋯ ,          𝑏 = 𝜂1 +

−𝜉 + 𝜉𝜂1
2 + 𝜂1𝜂2
𝜂1

1

𝑛
+ ⋯ . (66) 

By substituting 𝑎 and 𝑏 from Eq. (66) into 𝑀 = (𝑀𝑖𝑗) and by expanding det(𝑀), with the aid of Mathematica, to the 

leading order det(𝑀) = 0 gives 

16 𝑧 (𝑧2 + 1)2 − (1 + 4 𝑧 + 2𝑧2 + 𝑧4)2cosh (𝜉 −
𝜉

𝑧
) + (1 − 4 𝑧 + 2𝑧2 + 𝑧4)2cosh(𝜉 +

𝜉

𝑧
) = 0, (67) 

where 𝑧 = 𝜂1
2. The equation satisfied by 𝜂2 is obtained by collecting the coefficients of the next order term and is given 

by 

 

(2𝜉2cosh(
𝜉

𝜂1
2)sinh(𝜉) + 𝜂1(8𝜂1

5(8𝜉(1 + 𝜂1
4)(1 − 𝜂1

2 + 𝜂1
4 + 𝜂1

6) − 𝜂1(8

+cosh(𝜉 −
𝜉

𝜂1
2) − 9𝜉sinh(𝜉 −

𝜉

𝜂1
2) + 8𝜂1

2(2 + 2𝜂1
4 + 𝜂1

6)𝜂2) + cosh(
𝜉

𝜂1
2)(8

cosh(𝜉)𝜂1
5(−8𝜉(1 + 𝜂1

4)(1 − 𝜂1
2 + 𝜂1

4 + 𝜂1
6) − 𝜂1(−9 + 8𝜂1

2(2 + 2𝜂1
4 + 𝜂1

6))

𝜂2) + 𝜉sinh(𝜉)(−𝜉(𝜂1 − 37𝜂1
3 + 12𝜂1

5 + 40𝜂1
7 − 10𝜂1

9 − 6𝜂1
11 − 4𝜂1

13 + 2𝜂1
15

+𝜂1
17 + 3𝜂1

19) − 4𝜂2 − 4𝜂1
2(1 + 𝜂1

2(20 + 𝜂1
2(2 + 𝜂1

2(1 + 𝜂1
2)(6 + 4𝜂1

4 + 𝜂1
8))))

𝜂2)) + sinh(
𝜉

𝜂1
2)𝜂1(𝜉cosh(𝜉)(−𝜉(16 − 7𝜂1

2 + 9𝜂1
4 + 4𝜂1

6 − 12𝜂1
8 − 2𝜂1

10 − 18

𝜂1
12 + 4𝜂1

14 + 4𝜂1
16 + 𝜂1

18 + 𝜂1
20) + 8𝜂1(4 + 4𝜂1

2 − 𝜂1
4 + 8𝜂1

6 + 4𝜂1
8 + 4𝜂1

10)𝜂2)

+2sinh(𝜉)(𝜉 + 𝜂1(𝜉𝜂1(4 − 21𝜂1
2 + 80𝜂1

4 + 2𝜂1
6 + 24𝜂1

8 − 2𝜂1
10 + 16𝜂1

12

+13𝜂1
14 + 4𝜂1

16 + 7𝜂1
18) − 2(1 + 3𝜂1

2 − 18𝜂1
4 + 20𝜂1

6 − 18𝜂1
8 − 6𝜂1

10

−20𝜂1
12 − 12𝜂1

14 − 7𝜂1
16 − 5𝜂1

18)𝜂2)))))/(𝜂1
4 + 𝜂1

6) = 0.

 (68) 

For any given mode number 𝑛 and any value of 𝐴 close to unity, the corresponding value of 𝜉 is determined by Eq. 

(64) and solving Eq. (67) and Eq. (68) gives the corresponding values of 𝜂1 and 𝜂2. The value of 𝜆𝑎 is then calculated 

according to Eq. (65). In Fig. 1, we have shown the comparison between the numerical and asymptotic results of the 

outer and inner layers for n=8, 10, 15, 20. 
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Fig. 1. Bifurcation curves of Neo-Hookean cylindrical shell subjected to an external hydrostatic pressure, for n=8, 

10, 15, 20. Solid lines: numerical results; dotted lines: outer layer results of WKB; dashed dotted lines represent 

results of inner layer of WKB. 

Indeed the asymptotic results approximate the numerical results extremely well over the region of their validity and 

this is true since WKB approximation give us better and precise results for high mode numbers. In view of the 

explanations given in this section and as we expected, Fig. 1 is similar to Fig. 4 in Sanjaranipour [8]. It should be 

remind that the same expansion i.e. Eq. (47) was used by Sanjaranipour [7] for the problem of circular cylindrical 

tube made of Varga material and the obtained expressions for 𝑆(𝑟), 𝐹0(𝑟) and 𝐹1(𝑟) are 

𝑆(1)(𝑟) = 𝑆(3)(𝑟) =
1

√𝑘 + 𝑟2
, 𝑆(2)(𝑟) = 𝑆(4)(𝑟) =

−1

√𝑘 + 𝑟2
, (69) 

(𝐹0
(𝑖)
)′′ + (

2

𝑟
+

𝑟

𝑘 + 𝑟2
−

4 𝑟

𝑘 + 2𝑟2
)(𝐹0

(𝑖)
)′ + (

1

𝑘 + 𝑟2
−

4

𝑘 + 2𝑟2
)𝐹0

(𝑖)
= 0, (𝑖 = 1,2,3,4) (70) 

where 𝑘 = 𝐴2(1 − 𝜆𝑎
2) and the solutions of Eq. (70) are 

𝐹0
(1)
(𝑟) = 𝐹0

(2)
(𝑟) =

1

𝑟
,             𝐹0

(3)
(𝑟) = 𝐹0

(4)
(𝑟) = √𝑘 + 𝑟2. (71) 

In view of Eq. (69) and by considering Eq. (71) the differential equations of 𝐹1(𝑟) are respectively  

(𝐹1
(𝑖))

′′
+ (

2

𝑟
+

𝑟

𝑘 + 𝑟2
−

4 𝑟

𝑘 + 2𝑟2
) (𝐹1

(𝑖))
′
+ (

1

𝑘 + 𝑟2
−

4

𝑘 + 2𝑟2
) 𝐹1

(𝑖) = {

0 𝑖 = 1,2

(−1)𝑖2𝑘2

𝑟 (𝑘 + 𝑟2)(𝑘 + 2𝑟2)
𝑖 = 3,4

 (72) 

and the relevant solutions are 

𝐹1
(1)
(𝑟) = 𝐹1

(2)
(𝑟) = 0,      𝐹1

(3)
(𝑟) = −

𝑘 + 2𝑟2

2𝑟
,      𝐹1

(4)
(𝑟) =

𝑘 + 2𝑟2

2𝑟
. (73) 

As we suggested, it is now confirmed that for the two mentioned problems the roots of 𝑆(𝑟) are u-repeated for Neo-

Hookean, while are repeated for Varga materials and also the differential equations of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … are first 

and second order respectively for the mentioned materials.  

WKB analysis of the buckling of a Neo-Hookean everted cylinder 

It is necessary to note that this problem has been solved by Fu and Lin [21]. They used the same expansion as we 

used in this article but since the differential equations of 𝐹0(𝑟) and 𝐹1(𝑟) are not appeared on their paper, we have 

done the analysis once again and a brief description of the obtained results are given here. To the leading order four 

un-repeated roots of 𝑆(𝑟) are 
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𝑆(1)(𝑟) =
1

𝑟
, 𝑆(2)(𝑟) =

−1

𝑟
, 𝑆(3)(𝑟) =

𝑟 𝜆𝑧
𝑞 − 𝑟2𝜆𝑧

, 𝑆(4)(𝑟) =
−𝑟 𝜆𝑧
𝑞 − 𝑟2𝜆𝑧

, (74) 

where 𝑞 = 1 + 𝜆𝑧𝑎
2 and the first order differential equations of 𝐹0(𝑟) are obtained as  

(𝐹0
(𝑖)
)′ −

𝑞2  −  2 𝑞 𝑟2𝜆𝑧 +  2𝑟
4𝜆𝑧
2

𝑟(𝑞 − 2𝑟2𝜆𝑧)(𝑞 − 𝑟
2𝜆𝑧)

𝐹0
(𝑖)
= 0, (𝑖 = 1,2)

(𝐹0
(𝑖)
)′ −

2𝑟3𝜆𝑧
2

(𝑞 − 2𝑟2𝜆𝑧)(𝑞 − 𝑟
2𝜆𝑧)

𝐹0
(𝑖)
= 0, (𝑖 = 3,4)

 (75) 

where superscripts here correspond to those in Eq. (74). The solutions of 𝐹0(𝑟) are 

𝐹0
(1)
(𝑟) = 𝐹0

(2)
(𝑟) =

𝑟 √𝑞 − 𝑟2𝜆𝑧

√𝑞 −  2𝑟2𝜆𝑧
, 𝐹0

(3)
(𝑟) = 𝐹0

(4)
(𝑟) =

𝑞 − 𝑟2𝜆𝑧

√𝑞 −  2𝑟2𝜆𝑧
. (76) 

The differential equations satisfied by 𝐹1(𝑟), are the following four first order inhomogeneous differential equations 

(𝐹1
(𝑖))

′
−

𝑞2 − 2 𝑞 𝑟2𝜆𝑧 + 2𝑟
4𝜆𝑧
2

𝑟(𝑞 − 2𝑟2𝜆𝑧)(𝑞 − 𝑟
2𝜆𝑧)

𝐹1
(𝑖) =

(−1)𝑖  𝑞 𝑟2𝜆𝑧(8𝑞
3 − 15𝑞2𝑟2𝜆𝑧 − 2 𝑞 𝑟

4𝜆𝑧
2 + 12𝑟6𝜆𝑧

3)

2(𝑞 − 2𝑟2𝜆𝑧)
7
2(𝑞 − 𝑟2𝜆𝑧)

3
2

,

          (𝑖 = 1,2)

(𝐹1
(𝑖))

′
−

2𝑟3𝜆𝑧
2

(𝑞 − 2𝑟2𝜆𝑧)(𝑞 − 𝑟
2𝜆𝑧)

𝐹1
(𝑖) =

(−1)𝑖+1 𝑞(𝑞 − 𝑟2𝜆𝑧)(3𝑞
3 − 17𝑞2𝑟2𝜆𝑧 + 34 𝑞 𝑟

4𝜆𝑧
2 − 12𝑟6𝜆𝑧

3)

2𝑟3𝜆𝑧(𝑞 − 2𝑟
2𝜆𝑧)

7
2

.

          (𝑖 = 3,4)

 (77) 

The particular integrals of Eq. (77), which can be found easily, are 

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖  𝑟 √𝑞 − 𝑟2𝜆𝑧)

4√𝑞 − 2𝑟2𝜆𝑧
{
𝑞(𝑞2 + 9 𝑞 𝑟2𝜆𝑧 − 16𝑟

4𝜆𝑧
2)

2(𝑞 − 2𝑟2𝜆𝑧)
2(𝑞 − 𝑟2𝜆𝑧)

+ ln(
𝑞 − 𝑟2𝜆𝑧
𝑞 − 2𝑟2𝜆𝑧

)}, (𝑖 = 1,2)

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖(𝑞 − 𝑟2𝜆𝑧)

4√𝑞 − 2𝑟2𝜆𝑧
{
𝑞(6𝑞2 − 23 𝑞 𝑟2𝜆𝑧 + 16𝑟

4𝜆𝑧
2)

2𝑟2𝜆𝑧(𝑞 − 2𝑟
2𝜆𝑧)

2
+ ln(

𝑞 − 2𝑟2𝜆𝑧
𝑟2

)}. (𝑖 = 3,4)

 (78) 

By expanding Eq. (61) with the use of Eq. (74), Eq. (76) and Eq. (78), yields 

(1 − 4𝑎2𝜆𝑧 + 2𝑎
4𝜆𝑧
2 + 𝑎8𝜆𝑧

4) +
1

𝑛
(1 + 3𝑎2𝜆𝑧 + 3𝑎

8𝜆𝑧
4 + 𝑎10𝜆𝑧

5 + 𝑎8𝜆𝑧
4)

−
1

2𝑎2𝜆𝑧𝑛
2(1 − 𝑎2𝜆𝑧)

3
(12 − 20𝑎2𝜆𝑧 − 8𝑎

4𝜆𝑧
2 + 49𝑎6𝜆𝑧

3 − 131𝑎8𝜆𝑧
4 − 39𝑎10𝜆𝑧

5

−31𝑎12𝜆𝑧
6 − 21𝑎14𝜆𝑧

7 − 5𝑎16𝜆𝑧
8 − 𝑎18𝜆𝑧

9 + 3𝑎20𝜆𝑧
10) + 𝑂(

1

𝑛3
) = 0.

 (79) 

𝐴 = 0.387252 + 1.223959/𝑛 − 16.048113/𝑛2 +⋯, 

𝜆𝑧 = 1.139181 − 0.689422/𝑛 + 10.277128/𝑛
2 +⋯, 

𝑎 = 0.509394 + 0.761078/𝑛 − 9.772518/𝑛2 +⋯, 

𝑏 = 1.002828 + 0.196853/𝑛 − 3.381406/𝑛2 +⋯. 

(80) 

Table1. The critical values of 
𝐴

𝐵
 and the corresponding values of 𝜆𝑧(=

l

𝐿
) and 

𝑏

𝐵
 for various mode numbers and related 

to Neo-Hookean everted cylinder. 

  CMM       WKB     

𝑛  𝐴

𝐵
 

 𝜆𝑧   𝑏

𝐵
 

 𝐴

𝐵
 

 𝜆𝑧  𝑏

𝐵
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7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

30 

40 

50 

60 

70 

80 

 0.406912 

0.412655   

0.416873 

0.419736 

0.421546 

0.422585 

0.423075 

0.423184 

0.423028 

0.422692 

0.422234 

0.421694 

0.421102 

0.420479 

0.414360 

0.409712 

0.406331 

0.403805 

0.401857 

0.400314 

 1.128420 

1.125392 

1.123200 

1.121727 

1.120802 

1.120274 

1.120025 

1.119970 

1.120049 

1.120219 

1.120452 

1.120727 

1.121029 

1.121347 

1.124502 

1.126937 

1.128729 

1.13008 

1.131128 

1.131963 

  1.005787 

1.006575 

1.007134 

1.007502 

1.007731 

1.007861 

1.007922 

1.007936 

1.007916 

1.007874 

1.007817 

1.007750 

1.007675 

1.007597 

1.006803 

1.006175 

1.005705 

1.005346 

1.005064 

1.004839 

 0.234590 

0.289495 

0.325122 

0.349166 

0.365892 

0.377803 

0.386443 

0.392799 

0.397524 

0.401061 

0.403719 

0.405718 

0.407216 

0.408329 

0.410219 

0.407820 

0.405311 

0.403193 

0.401462 

0.400044 

 1.250430 

1.213580 

1.189460 

1.173010 

1.161440 

1.153100 

1.146960 

1.142370 

1.138900 

1.136240 

1.134190 

1.132600 

1.131360 

1.130400 

1.127620 

1.128370 

1.129500 

1.13055 

1.13143 

1.13217 

 0.961942 

0.974600 

0.982955 

0.988699 

0.992778 

0.995751 

0.997962 

0.999637 

1.000920 

1.001920 

1.002710 

1.003330 

1.003820 

1.004220 

1.005630 

1.005640 

1.005410 

1.00517 

1.00495 

1.00476 

 

As we expected these expansions are exactly the same as those of Fu and Lin [21]. For the special case 𝑛 = 20, we 

obtained 𝑎 = 0.523017 and 𝑏 = 1.00422 and since the roots of (1 + 𝜆𝑧𝑎
2 − 𝜆𝑧𝑟

2), (1 + 𝜆𝑧𝑎
2 − 2𝜆𝑧𝑟

2) are 𝑟 = 1.076191 

and 𝑟 = 0.760982, respectively, hence 𝑟 = 0.760982 is the turning point. According to what Fu and Lin [21] suggested, 

and due to our results in Table 1, the difference between the results of compound matrix and WKB methods is the 

existence of the turning point. The obtained numerical results in Table 1 are similar to that of Haughton and Orr [19]. 

(Note: CMM in Table 1 is used for compound matrix method.) 

WKB analysis of the buckling of a Varga everted cylinder 

This eigen-value problem previously has been solved by Fu and Sanjaranipour [20] but as a system of equations. 

Since our goal in this article is to analysis and compare the differential equations of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), …, we are 

solving here the fourth order differential equation instead of a system of equations. We use the same procedure as we 

have done in the previous section and just write down what is necessary. To the leading order two repeated roots of 

𝑆(𝑟) are 

𝑆(1)(𝑟) = 𝑆(3)(𝑟) =
√𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
, 𝑆(2)(𝑟) = 𝑆(4)(𝑟) =

−√𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
, (81) 

where 𝑞 = 1 + 𝜆𝑧𝑎
2. In view of 𝑆(𝑟) from Eq. (81), the next order term is automatically satisfied (which happens when 

the roots of 𝑆(𝑟) are repeated (see, e.g., Fu and Sanjaranipour [20]). In order to obtain the differential equation of 

𝐹0(𝑟), we have to continue our analysis to the next order. In view of Eq. (81), the second order differential equation 

of 𝐹0(𝑟) will be 

(𝐹0
(𝑖)
)′′ +

2 𝑞 − 3𝑟2𝜆𝑧
𝑟(𝑞 − 𝑟2𝜆𝑧)

(𝐹0
(𝑖)
)′ = 0, (𝑖 = 1,2,3,4) (82) 

and two independent solutions are 

𝐹0
(1)
(𝑟) = 𝐹0

(2)
(𝑟) = 1, 𝐹0

(3)
(𝑟) = 𝐹0

(4)
(𝑟) =

√𝑞 −  𝑟2𝜆𝑧
𝑞 𝑟

, (83) 

where superscripts here correspond to those in Eq. (81). In a similar way, we obtain a second order non-homogenous 

ODE for 𝐹1(𝑟) as follows 
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(𝐹1
(𝑖)
)′′ +

2 𝑞 − 3𝑟2𝜆𝑧
𝑟(𝑞 − 𝑟2𝜆𝑧)

(𝐹1
(𝑖)
)′ = {

(−1)𝑖√𝜆𝑧/(𝑟 √𝑞 − 𝑟
2𝜆𝑧), 𝑖 = 1,2

(−1)𝑖+1𝜆𝑧
3/2
/(𝑞2 − 𝑞 𝑟2𝜆𝑧). 𝑖 = 3,4

 (84) 

The particular integrals of Eq. (84) are 

𝐹1
(𝑖)
(𝑟) =

{
 
 

 
 (−1)

𝑖

2
arctan(

𝑟 √𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
), 𝑖 = 1,2

(−1)𝑖+1

2 𝑞 𝑟
(𝑟 √𝜆𝑧 − √𝑞 − 𝑟

2𝜆𝑧arctan(
𝑟 √𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
)).        𝑖 = 3,4

 (85) 

In a similar way and after lengthy calculations, we obtain 

𝐹2
(𝑖)
(𝑟) =

1

8
arctan2(

𝑟 √𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
),                                            (𝑖 = 1, 2)

𝐹2
(𝑖)
(𝑟) =

−1

8 𝑞 𝑟
arctan(

𝑟√𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
)(2 𝑟 √𝜆𝑧 − √𝑞 − 𝑟

2𝜆𝑧arctan(
𝑟√𝜆𝑧

√𝑞 − 𝑟2𝜆𝑧
)).

                                                                                    (𝑖 = 3, 4)

 (86) 

Expanding Eq. (61) with the use of Eq. (81), Eq. (83), Eq. (85) and Eq. (86), yields  

(1 − 3𝑎2𝜆𝑧) −
1

2
 𝑎 √𝜆𝑧(3 − 𝑎

2𝜆𝑧)
1

𝑛
−
1

4
(4 − 9𝑎2𝜆𝑧 − 𝑎

4𝜆𝑧
2)
1

𝑛2
+ 𝑂(

1

𝑛3
) = 0. (87) 

𝐴   = 0.430545 − 0.467349/𝑛 − 0.269644/𝑛2 +⋯ ,

𝜆𝑧 = 1.058227 + 0.114162/𝑛 + 0.136329/𝑛
2 +⋯ ,

𝑎   = 0.561242 − 0.246296/𝑛 − 0.063623/𝑛2 +⋯ ,

𝑏   = 1.041537 + 0.009974/𝑛 − 0.061965/𝑛2 +⋯ .

 (88) 

These expansions are exactly similar to (but one term more than) those obtained by Fu and Sanjaranipour [20]. The 

numerical results we offered on Table 2 are the same as those of Haughton and Orr [19]. It is seen from this table 

that, there is a good agreement between the WKB and the corresponding numerical results over almost the whole 

mode number regime.  

Table 2. The critical values of 
𝐴

𝐵
 and the corresponding values of 𝜆𝑧(=

l

𝐿
) and 

𝑏

𝐵
 for various mode numbers and 

related to Varga everted cylinder. 

  CMM       WKB     

𝑛  𝐴

𝐵
 

 𝜆𝑧   𝑏

𝐵
 

 𝐴

𝐵
 

 𝜆𝑧  𝑏

𝐵
 

5 

10 

15 

20 

30 

40 

50 

60 

70 

 0.335991 

0.380802 

0.398089 

0.406462 

0.414655 

0.418688 

0.421088 

0.422680 

0.423813 

 1.084341 

1.071195 

1.066500 

1.064299 

1.062190 

1.061169 

1.060566 

1.060168 

1.059886 

1.059675 

  1.040559 

1.041798 

1.041894 

1.041867 

1.041797 

1.041746 

1.041711 

1.041686 

1.041667 

1.041652 

 0.326290 

0.381114 

0.398190 

0.406504 

0.414668 

0.418693 

0.421091 

0.422681 

0.423814 

0.424661 

 1.086510 

1.071010 

1.066440 

1.064280 

1.062180 

1.061170 

1.060560 

1.060170 

1.059890 

1.059670 

 1.041050 

1.041920 

1.041930 

1.041880 

1.041800 

1.041750 

1.041710 

1.041690 

1.041670 
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80 

90 

100 

150 

200 

250 

300 

350 

400 

0.424661 

0.425319 

0.425845 

0.427418 

0.428202 

0.428672 

0.428985 

0.429208 

0.429375 

1.059512 

1.059382 

1.058994 

1.058801 

1.058685 

1.058609 

1.058554 

1.058513 

1.041640 

1.041631 

1.041601 

1.041586 

1.041576 

1.041570 

1.041565 

1.041562 

0.425319 

0.425845 

0.427418 

0.428202 

0.428672 

0.428985 

0.429208 

0.429375 

1.059510 

1.059380 

1.058990 

1.058800 

1.058690 

1.058610 

1.058550 

1.058510 

1.041650 

1.041640 

1.041630 

1.041600 

1.041590 

1.041580 

1.041570 

1.041570 

1.041560 

 

WKB analysis of pure bending of a Neo-Hookean cube 

It should be emphasized that this problem has been analyzed by Coman and Destrade [24]. The same WKB expansion 

was used in their article as we applied here but since the differential equations of 𝐹0(𝑟) and 𝐹1(𝑟) are not expressed, 

we not only re-derived the relevant equations of 𝐹0(𝑟) and 𝐹1(𝑟) but also extended our analysis for different 
𝐴

𝐿
’s instead 

of 
𝐴

𝐿
= 1. It is also worthwhile noting that from now on and up to the end of the next section 𝑛 will be replaced by 𝜇. 

By continuing the same procedure as the previous sections, we obtain four un-repeated roots of 𝑆(𝑟) as 

𝑆(1)(𝑟) =
1

𝑟 𝜔0
, 𝑆(2)(𝑟) =

−1

𝑟 𝜔0
, 𝑆(3)(𝑟) = 𝑟 𝜔0, 𝑆

(4)(𝑟) = −𝑟 𝜔0, (89) 

and we have the following two first order differential equations of 𝐹0(𝑟) 

(𝐹0
(𝑖)
)′ −

2

𝑟 − 𝑟5𝜔0
4 𝐹0

(𝑖)
= 0, (𝑖 = 1,2)

(𝐹0
(𝑖)
)′ −

1 +  𝑟4𝜔0
4

𝑟 −  𝑟5𝜔0
4 𝐹0

(𝑖)
= 0, (𝑖 = 3,4)

 (90) 

where the relevant solutions are 

𝐹0
(1)
(𝑟) = 𝐹0

(2)
(𝑟) =

𝑟2

√1 − 𝑟4𝜔0
4
, 𝐹0

(3)
(𝑟) = 𝐹0

(4)
(𝑟) =

𝑟

√1 −  𝑟4𝜔0
4
. (91) 

Continuing in this manner, we obtain the followings differential equations satisfied by 𝐹1(𝑟) 

(𝐹1
(𝑖)
)′ −

2

𝑟 − 𝑟5𝜔0
4 𝐹1

(𝑖)
=
(−1)𝑖6𝑟5𝜔0

5(3 + 𝑟4𝜔0
4)

(1 −  𝑟4𝜔0
4)7/2

,               (𝑖 = 1,2)

(𝐹1
(𝑖)
)′ −

1 +  𝑟4𝜔0
4

𝑟 −  𝑟5𝜔0
4 𝐹1

(𝑖)
=
(−1)𝑖+1(3 −  5𝑟4𝜔0

4 + 45𝑟8𝜔0
8  +  5𝑟12𝜔0

12)

2𝑟2𝜔0(1 −  𝑟
4𝜔0

4)7/2
.     (𝑖 = 3,4)

 (92) 

The particular integrals of Eq. (92) are  

𝐹1
(𝑖)
(𝑟) = {

(−1)𝑖3𝑟2𝜔0(1 + 𝑟
4𝜔0

4)/(2(1 − 𝑟4𝜔0
4)5/2), 𝑖 = 1,2

(−1)𝑖(3 − 10𝑟4𝜔0
4 − 5𝑟8𝜔0

8)/(4 𝑟 𝜔0(1 − 𝑟
4𝜔0

4)5/2).   𝑖 = 3,4
 (93) 

By expanding Eq. (61) and in view of relations Eq. (89), Eq. (91) and Eq. (93), we obtain 
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𝜆𝑎 = 0.543689 +
0.385922

𝐴

1

𝜇
−
4.184334

𝐴2
1

𝜇2
+⋯ ,

𝜔0 =
0.771845

𝐴
−
1.305566

𝐴2
1

𝜇
+
15.396644

𝐴3
1

𝜇2
+⋯ .

 (94) 

For the special case 
𝐴

𝐿
= 1, the above results are the same as what Coman and Destrade [24] obtained. Our WKB 

curves plotted in Fig. 2 are exactly similar to the curves of Fig. 5 (of the later article) which are obtained with the help 

of compound matrix method. 

 
Fig. 2.  A WKB plot of the critical values of 𝜆𝑎 against L/A for a Neo-Hookean cube and for mode numbers n = 1, 2, 

..., 10, 15, 20. 

The comparisons between the compound matrix and WKB results for 𝜆𝑎 and 𝜑 (where 
𝐴

𝐿
=

1

2
,
1

3
) are given in Table 3. 

It is worth noting that, the existence of the turning point is the main reason of the tiny difference between the results 

of the two methods. For example we checked an special case i.e. 𝑛 = 20 and 
𝐴

𝐿
= 1, which yield the turning point 𝑟 =

1.32456.  

 

Table 3. Comparisons between numerical and asymptotic results of the azimuthal stretch and bending angle related 

to Neo-Hookean cube, for 
𝐴

𝐿
=

1

2
,
1

3
 and different mode numbers. 

𝐴

𝐿
=
1

2
 

 𝐴

𝐿
=
1

3
 

CM

M 

   WKB     CMM   WKB   

𝑛  𝜆𝑎  𝜑0 𝜆𝑎  𝜑0  𝜆𝑎 𝜑0  𝜆𝑎  𝜑0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

 0.557579 

0.560907 

0.56135 

0.560907 

0.560174 

0.559367 

 166.48 

164.087 

163.771 

164.087 

164.611 

165.19 

0.437157 

0.49912 

0.524992 

0.53753 

0.544178 

0.547902 

 0.437157 

0.49912 

0.524992 

0.53753 

0.544178 

0.547902 

 0.542259 

0.554789 

0.559279 

0.560907 

0.561353 

0.561258 

267.009 

252.775 

247.879 

246.13 

245.654 

245.754 

 0.24257 

0.397343 

0.464769 

0.49912 

0.518465 

0.530135 

 0.24257 

0.397343 

0.464769 

0.49912 

0.518465 

0.530135 
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9.0 

10.0 

12.0 

14.0 

16.0 

18.0 

20.0 

0.558568 

0.557809 

0.556452 

0.555301 

0.554326 

0.553495 

0.55278 

165.765 

166.313 

167.299 

168.141 

168.857 

169.47 

170.0 

0.550051 

0.551299 

0.552386 

0.552586 

0.55242 

0.552104 

0.551734 

0.550051 

0.551299 

0.552386 

0.552586 

0.55242 

0.552104 

0.551734 

0.560907 

0.560433 

0.559367 

0.55831 

0.557333 

0.556452 

0.555664 

246.131 

246.638 

247.785 

248.927 

249.988 

250.949 

251.813 

0.53753 

0.542385 

0.547902 

0.550545 

0.551817 

0.552386 

0.552576 

0.53753 

0.542385 

0.547902 

0.550545 

0.551817 

0.552386 

0.552576 

  

WKB analysis of pure bending of a Varga cube 

This problem recently has been solved as a system of equations by Sanjaranipour, Hatami and Abdolalian [26]. As 

we mentioned in the previous sections and regarding to our goal, i.e. analyzing and comparing the differential 

equations of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), …, we are solving here the fourth order differential equation instead of a system of 

equations. In light of the procedure of the previous section we write dwon here a brief description. To the leading 

order two repeated roots of 𝑆(𝑟) are 

𝑆(1)(𝑟) = 𝑆(3)(𝑟) = 1, 𝑆(2)(𝑟) = 𝑆(4)(𝑟) = −1. (95) 

By using Eq. (95), the next order term (i.e. 𝑂(𝜇3)) is automatically satisfied. By continuing the analysis to the next 

order (i.e. 𝑂(𝜇2)), we obtain the following second order differential equation of 𝐹0(𝑟) 

(𝐹0
(𝑖)
)′′ −

2 𝑟 𝜔0
2

1 + 𝑟2𝜔0
2 (𝐹0

(𝑖)
)′ +

3𝜔0
2 − 𝑟2𝜔0

4

4(1 + 𝑟2𝜔0
2)
𝐹0
(𝑖)
= 0. (𝑖 = 1,2,3,4) (96) 

Two independent solutions of Eq. (96) are 

𝐹0
(𝑖)
(𝑟) = {

2(1 +  𝑟 𝜔0)exp{−(1 +  𝑟 𝜔0)/2},     𝑖 = 1,2

2(−1 + 𝑟 𝜔0)exp{−(1 −  𝑟 𝜔0)/2},    𝑖 = 3,4
 (97) 

where superscripts here correspond to Eq. (95). By equating the coefficient of 𝜇 and with the use of Eq. (95) and Eq. 

(97), four second order inhomogeneous differential equations for 𝐹1(𝑟), yield 

(𝐹1
(𝑖)
)′′ −

2 𝑟 𝜔0
2

1 + 𝑟2𝜔0
2 (𝐹1

(𝑖)
)′ +

3𝜔0
2 − 𝑟2𝜔0

4

4(1 + 𝑟2𝜔0
2)
𝐹1
(𝑖)

=

{
 
 

 
 (−1)

𝑖𝜔0
3(5 + 𝑟 𝜔0 − 𝑟

2𝜔0
2 − 𝑟3𝜔0

3)

4(1 + 𝑟2𝜔0
2)

exp{
−(1 + 𝑟 𝜔0)

2
},        𝑖 = 1,2

(−1)𝑖𝜔0
3(5 − 𝑟 𝜔0 − 𝑟

2𝜔0
2 + 𝑟3𝜔0

3)

4(1 + 𝑟2𝜔0
2)

exp{
−(1 − 𝑟 𝜔0)

2
}.        𝑖 = 3,4

 

(98) 

The particular integrals of the differential equation of Eq. (98), which can be find easily by using the so-called 

reduction of order method, are 

𝐹1
(𝑖)
(𝑟) =

{
 

 
(−1)𝑖𝜔0

4
(5 + 2 𝑟 𝜔0 + 𝑟

2𝜔0
2)exp{−(1 + 𝑟 𝜔0)/2},        𝑖 = 1,2

(−1)𝑖𝜔0
4

(5 − 2 𝑟 𝜔0 + 𝑟
2𝜔0

2)exp{−(1 − 𝑟 𝜔0)/2},        𝑖 = 3,4

 (99) 

and by continuing the same process as before, we obtain 

𝐹2
(𝑖)
(𝑟) =

{
 

 
−𝜔0

2(22 + 12 𝑟 𝜔0 + 5𝑟
2𝜔0

2 − 𝑟3𝜔0
3)

64
exp{−(1 + 𝑟 𝜔0)/2},     𝑖 = 1,2

𝜔0
2(22 − 12 𝑟 𝜔0 + 5𝑟

2𝜔0
2 + 𝑟3𝜔0

3)

64
exp{−(1 − 𝑟 𝜔0)/2}.       𝑖 = 3,4

 (100) 
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For the special case 
𝐴

𝐿
=

1

3
, the above results are the same as what Sanjaranipour, Hatami and Abdolalian [26] 

obtained. In Fig. 3, we have shown the comparison between the numerical and asymptotic results for n = 2, 3, ..., 10, 

15, 20. 

 
Fig. 3. Comparisons between the curves of the numerical and asymptotic results for the critical values of 𝜆𝑎 against 

L/A related to Varga cube for n = 2, 3, ..., 10, 15, 20. Solid lines: numerical results; dashed dotted lines represent 

the asymptotic results. 

Comparing between the compound matrix and WKB results for 𝜆𝑎 and 𝜑 (where 
𝐴

𝐿
= 1,

1

2
,
1

3
) are given in Table 4 and 

Table 5. Also the results of Table 5 are similar to the results of Table 1 and Table 2 (for 
𝐴

𝐿
=

1

2
,
1

3
) in the article of 

Sanjaranipour, Hatami and Abdolalian [26]. Indeed the asymptotic results approximate the numerical results 

extremely well over the region of their validity and this is true since WKB approximation give better and precise 

results for high mode numbers. 

Table 4. The comparisons between the numerical and asymptotic results of the azimuthal stretch 𝜆𝑎 and the 

bending angle 𝜑 related to Varga cube, for 
𝐴

𝐿
= 1 and different mode numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 CMM  WKB   CMM  WKB  

𝑛 𝜆𝑎 𝜑0 𝜆𝑎 𝜑0 𝑛 𝜆𝑎 𝜑0 𝜆𝑎 𝜑0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

0.5282 

0.55698 

0.564458 

0.56791 

0.569902 

0.571199 

0.572111 

0.572787 

0.573309 

0.573723 

94.69 

83.458 

80.787 

79.585 

78.9 

78.458 

78.148 

77.92 

77.744 

77.604 

0.533316 

0.5575 

0.564598 

0.567967 

0.56993 

0.571215 

0.572121 

0.572794 

0.573314 

0.573727 

91.893 

83.194 

80.716 

79.557 

78.886 

78.45 

78.143 

77.916 

77.741 

77.602 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

17.0 

18.0 

19.0 

20.0 

0.574061 

0.574341 

0.574577 

0.574779 

0.574953 

0.575105 

0.575239 

0.575358 

0.575464 

0.57556 

77.491 

77.397 

77.318 

77.25 

77.192 

77.141 

77.096 

77.056 

77.021 

76.989 

0.574063 

0.574343 

0.574578 

0.57478 

0.574954 

0.575106 

0.57524 

0.575359 

0.575465 

0.57556 

77.489 

77.396 

77.317 

77.25 

77.191 

77.141 

77.096 

77.056 

77.021 

76.989 
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Table 5. The comparisons between the numerical and asymptotic results of the azimuthal stretch 𝜆𝑎 and the 

bending angle 𝜑 related to Varga cube, for 
𝐴

𝐿
=

1

2
,
1

3
 and for different mode numbers. 

  𝐴

𝐿
=
1

2
 

   𝐴

𝐿
=
1

3
 

  

 CMM  WKB  CMM  WKB  

𝑛 𝜆𝑎 𝜑0 𝜆𝑎 𝜑0 𝜆𝑎 𝜑0 𝜆𝑎 𝜑0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

16.0 

18.0 

20.0 

0.5282 

0.55698 

0.564458 

0.56791 

0.569902 

0.571199 

0.572111 

0.572787 

0.573309 

0.573723 

189.38 

166.915 

161.574 

159.17 

157.801 

156.916 

156.297 

155.839 

155.487 

155.208 

0.533316 

0.5575 

0.564598 

0.567967 

0.56993 

0.571215 

0.572121 

0.572794 

0.573314 

0.573727 

183.785 

166.388 

161.433 

159.113 

157.773 

156.9 

156.287 

155.832 

155.482 

155.205 

0.494045 

0.543913 

0.55698 

0.562665 

0.56586 

0.56791 

0.569339 

0.570391 

0.571199 

0.571838 

331.134 

265.081 

250.373 

244.257 

240.89 

238.755 

237.28 

236.2 

235.374 

234.722 

0.504799 

0.54595 

0.5575 

0.562869 

0.56596 

0.567967 

0.569374 

0.570414 

0.571215 

0.57185 

307.471 

261.917 

249.581 

243.948 

240.738 

238.67 

237.228 

236.165 

235.35 

234.704 

 

Expanding Eq. (61) with the help of relations Eq. (95), Eq. (97), Eq. (99) and Eq. (100), yield 

(1 − 3𝜆𝑎
2 ) −

𝜆𝑎(1 + 𝜆𝑎
2)

2 𝐴

1

𝜇
−
(1 + 𝜆𝑎

2 )2

128𝐴2𝜆𝑎
4
(3 − 11𝜆𝑎

2 + 37𝜆𝑎
4 − 13𝜆𝑎

6)
1

𝜇2
+ 𝑂(

1

𝜇3
) = 0, (101) 

where 𝜆𝑎 = 𝑟 𝜔0. By expanding 𝜆𝑎 and 𝜔0 in term of 
1

𝜇
, we ge 

𝜆𝑎 = 0.57735 −
0.11111

𝐴

1

𝜇
−
0.085533

𝐴2
1

𝜇2
+⋯ ,

𝜔0 =
0.666667

𝐴
+
0.32075

𝐴2
1

𝜇
+
0.327161

𝐴3
1

𝜇2
+⋯ .

 (102) 

WKB analysis of the buckling of a Neo-Hookean spherical shell 

This problem has been solved previously with the help of the standard WKB expansion by Fu [29]. Again regarding 

to our goal in this article, we continue the same analysis as before (i.e. applying the specific form of WKB expansion 

Eq. (47)) and obtain the following four un-repeated roots for 𝑆(𝑟) 

𝑆(1)(𝑟) =
1

𝑟
, 𝑆(2)(𝑟) =

−1

𝑟
, 𝑆(3)(𝑟) =

𝜆3

𝑟
, 𝑆(4)(𝑟) =

−𝜆3

𝑟
. (103) 

By substituting 𝑆(𝑟) and 𝜆 =
𝑟

(𝑞+𝑟3)1/3
 in the next order terms (where 𝜆 is obtained with the use of Eq. (35) and Eq. 

(36) and also 𝑞 = 𝐴3 − 𝑎3), we obtain the following first order differential equations of 𝐹0(𝑟) 

(𝐹0
(1)
)′ −

2𝑞2  +  4 𝑞 𝑟3  +  3𝑟6

𝑟 (𝑞 +  𝑟3)(𝑞 +  2𝑟3)
𝐹0
(1)
= 0,     (𝐹0

(2)
)′ −

𝑞2  +  𝑞 𝑟3  +  𝑟6

𝑟 (𝑞 +  𝑟3)(𝑞 +  2𝑟3)
𝐹0
(2)
= 0,

(𝐹0
(3)
)′ −

3𝑟5

(𝑞 + 𝑟3)(𝑞 +  2𝑟3)
𝐹0
(3)
= 0,        (𝐹0

(4)
)′ +

𝑟2(𝑞 −  𝑟3)

(𝑞 + 𝑟3)(𝑞 +  2𝑟3)
𝐹0
(4)
= 0,

 (104) 

where superscripts correspond to Eq. (103). Then four solutions of 𝐹0(𝑟) are 
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𝐹0
(1)
(𝑟) =

𝑟2(𝑞 + 𝑟3)1/3

√𝑞 + 2𝑟3
, 𝐹0

(2)
(𝑟) =

𝑟(𝑞 + 𝑟3)1/3

√𝑞 + 2𝑟3
,

𝐹0
(3)
(𝑟) =

𝑞 + 𝑟3

√𝑞 + 2𝑟3
, 𝐹0

(4)
(𝑟) =

(𝑞 + 𝑟3)2/3

√𝑞 + 2𝑟3
.

 (105) 

Accordingly, four inhomogeneous differential equations of 𝐹1(𝑟) are given by 

(𝐹1
(1)
)′ −

2𝑞2 + 4 𝑞 𝑟3 + 3𝑟6

𝑟(𝑞 + 𝑟3)(𝑞 + 2𝑟3)
𝐹1
(1)
=
𝑟4(24𝑞5 + 69𝑞4𝑟3 + 62𝑞3𝑟6 + 3𝑞2𝑟9 − 30 𝑞 𝑟12 − 20𝑟15)

2 𝑞(𝑞 + 2𝑟3)7/2(𝑞 + 𝑟3)5/3
,

(𝐹1
(2)
)′ −

𝑞2 + 𝑞 𝑟3 + 𝑟6

𝑟(𝑞 + 𝑟3)(𝑞 + 2𝑟3)
𝐹1
(2)
=
−𝑟3(24𝑞5 + 69𝑞4𝑟3 + 62𝑞3𝑟6 + 3𝑞2𝑟9 − 30 𝑞 𝑟12 − 20𝑟15)

2 𝑞(𝑞 + 2𝑟3)7/2(𝑞 + 𝑟3)5/3
,

(𝐹1
(3)
)′ −

3𝑟5

(𝑞 + 𝑟3)(𝑞 + 2𝑟3)
𝐹1
(3)
=
10𝑞6 + 64𝑞5𝑟3 + 149𝑞4𝑟6 + 114𝑞3𝑟9 + 11𝑞2𝑟12 + 10 𝑞 𝑟15 + 20𝑟18

2 𝑞 𝑟4(𝑞 + 2𝑟3)7/2
,

(𝐹1
(4)
)′ +

𝑟2(𝑞 − 𝑟3)

𝑞2 + 3 𝑞 𝑟3 + 2𝑟6
𝐹1
(4)
= −

10𝑞6 + 64𝑞5𝑟3 + 149𝑞4𝑟6 + 114𝑞3𝑟9 + 11𝑞2𝑟12 + 10 𝑞 𝑟15 + 20𝑟18

2 𝑞 𝑟4(𝑞 + 2𝑟3)7/2(𝑞 + 𝑟3)1/3
,

 (106) 

and the particular integrals are, respectively 

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖𝑟3−𝑖(𝑞 + 𝑟3)1/3{
31𝑞4 + 27𝑞3𝑟3 + 44𝑞2𝑟6 + 160 𝑞 𝑟9 + 80𝑟12

8 𝑞(𝑞 + 𝑟3)(𝑞 + 2𝑟3)2
− ln[(𝑞 + 𝑟3)2(𝑞 + 2𝑟3)3]}

6√𝑞 + 2𝑟3
,

                                                                                     (𝑖 = 1,2)

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖(𝑞 + 𝑟3)
6−𝑖
3 {
80𝑞4 + 311𝑞3𝑟3 + 228𝑞2𝑟6 − 80 𝑞 𝑟9 − 80𝑟12

8 𝑞 𝑟3(𝑞 + 2𝑟3)2
+ ln[

𝑟18(𝑞 + 𝑟3)2

(𝑞 + 2𝑟3)3
]}

6√𝑞 + 2𝑟3
. (𝑖 = 3,4)

 (107) 

Now, by expanding Eq. (61) with the use of Eq. (103), Eq. (105) and Eq. (107), yields 

𝜆𝑎 =
𝑎

𝐴
= 0.666142 + 0.590915/𝑛 − 10.267945/𝑛2 +⋯. (108) 

This expansion is exactly the same as what obtained by Fu [30].  

 

Asymptotic results for 𝑨 − 𝟏 = 𝑶(
𝟏

𝒏
) 

Similar to previous section we consider expansions Eq. (64) and Eq. (65) for 𝐴 and 𝜆𝑎 and substitute into relations 

𝑎 = 𝜆𝑎 𝐴 and 𝑏 = 𝜆𝑏 and obtain 

𝑎 = 𝜂1 + (𝜉𝜂1 + 𝜂2)
1

𝑛
+ ⋯ ,     𝑏 = 𝜂1 +

−𝜉 + 𝜉𝜂1
2 + 𝜂1𝜂2

𝜂1
2

1

𝑛
+ ⋯ . (109) 

By substituting 𝑎 and 𝑏 from Eq. (109) into 𝑀 = (𝑀𝑖𝑗) and then by expanding det(𝑀𝑖𝑗), with the aid of Mathematica, 

we find that, to the leading order, det(𝑀𝑖𝑗) = 0, gives 

4(1 + 20𝑧2 + 6𝑧4 + 4𝑧6 + 𝑧8)sinh(𝜉)sinh(
𝜉

𝑧
)

−32𝑧(𝑧2 + 1)2(−1 + cosh(𝜉)cosh(
𝜉

𝑧
)) = 0,

 (110) 

where 𝑧 = 𝜂1
3. The procedure of obtaining 𝜂2 and 𝜆𝑎 is the same as what has been done in previous section. In Fig. 4, 

𝜆𝑎 of the previous and this section (𝜆𝑎 of the outer and inner layer, respectively) are plotted together, which are 

compared with the results of the compound matrix method and are exactly the same as the results obtained by Fu 

[29] in Fig. 2 and Fig. 3.  



Journal of Information Systems Engineering and Management 

2025, 10(47s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 952 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Fig. 4.  Bifurcation curves of Neo-Hookean spherical shell subjected to an external hydrostatic pressure for n =8, 

10, 15, 20. Solid lines: numerical results; dotted lines: WKB outer layer results; dashed dotted lines represent the 

WKB inner layer results. 

WKB analysis of the eversion of a Neo-Hookean spherical shell 

In this section again we apply the previous WKB expansion i.e. Eq. (47) and continue the same analysis as before. 

Hence, by doing so, four un-repeated roots of 𝑆(𝑟), yields 

𝑆(1)(𝑟) =
1

𝑟
, 𝑆(2)(𝑟) =

−1

𝑟
, 𝑆(3)(𝑟) =

𝜆3

𝑟
, 𝑆(4)(𝑟) =

−𝜆3

𝑟
. (111) 

In view of 𝑆(𝑟) and 𝜆 =
𝑟

(𝑞 − 𝑟3)1/3
, we obtain the following four first order ordinary differential equations of 𝐹0(𝑟) 

(𝐹0
(1)
)′ −

2𝑞2 − 4 𝑞 𝑟3 + 3𝑟6

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹0
(1)
= 0, (𝐹0

(2)
)′ −

𝑞2 − 𝑞 𝑟3 + 𝑟6

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹0
(2)
= 0,

(𝐹0
(3)
)′ −

𝑟2(𝑞 +  𝑟3)

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹0
(3)
= 0, (𝐹0

(4)
)′ −

3𝑟5

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹0
(4)
= 0,

 (112) 

where 𝑞 = 1 + 𝑎3. The relevant solutions of Eq. (112), are respectively 

𝐹0
(1)
(𝑟) =

𝑟2(𝑞 − 𝑟3)1/3

√𝑞 −  2𝑟3
, 𝐹0

(2)
(𝑟) =

𝑟 (𝑞 − 𝑟3)1/3

√𝑞 −  2𝑟3
,

𝐹0
(3)
(𝑟) =

(𝑞 − 𝑟3)2/3

√𝑞 −  2𝑟3
, 𝐹0

(4)
(𝑟) =

𝑞 −  𝑟3

√𝑞 −  2𝑟3
,

 (113) 

where superscripts here correspond to those in Eq. (111). The same procedure as before has been employed and we 

obtained the following four first order inhomogeneous differential equations of 𝐹1(𝑟), 

(𝐹1
(1)
)′ −

2𝑞2 − 4 𝑞 𝑟3 + 3𝑟6

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹1
(1)
=
−𝑟4(24𝑞5 − 69𝑞4𝑟3 + 62𝑞3𝑟6 − 3𝑞2𝑟9 − 30 𝑞 𝑟12 + 20𝑟15)

2 𝑞 (𝑞 − 2𝑟3)7/2(𝑞 − 𝑟3)5/3
,

(𝐹1
(2)
)′ −

𝑞2 − 𝑞 𝑟3 + 𝑟6

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹1
(2)
=
𝑟3(24𝑞5 − 96𝑞4𝑟3 + 62𝑞3𝑟6 − 3𝑞2𝑟9 − 30 𝑞 𝑟12 + 20𝑟15)

2 𝑞 (𝑞 − 2𝑟3)7/2(𝑞 − 𝑟3)5/3
,

(𝐹1
(3)
)′ −

𝑟2(𝑞 + 𝑟3)

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹1
(3)
=
10𝑞6 − 64𝑞5𝑟3 + 149𝑞4𝑟6 − 114𝑞3𝑟9 + 11𝑞2𝑟12 − 10 𝑞 𝑟15 + 20𝑟18

2 𝑞 𝑟4(𝑞 − 2𝑟3)7/2(𝑞 − 𝑟3)1/3
,

(𝐹1
(4)
)′ −

3𝑟5

𝑟 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)
𝐹1
(4)
=
−10𝑞6 + 64𝑞5𝑟3 − 149𝑞4𝑟6 + 114𝑞3𝑟9 − 11𝑞2𝑟12 + 10 𝑞 𝑟15 − 20𝑟18

2 𝑞 𝑟4(𝑞 − 2𝑟3)7/2
,

 (114) 

and the particular integrals of Eq. (114) are respectively 
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𝐹1
(𝑖)(𝑟) =

(−𝑟)3−𝑖(𝑞 − 𝑟3)
1
3{
−31𝑞4 + 27𝑞3𝑟3 − 44𝑞2𝑟6 + 160 𝑞 𝑟9 − 80𝑟12

8 𝑞 (𝑞 − 𝑟3)(𝑞 − 2𝑟3)2
+  ln ((𝑞 − 𝑟3)2(𝑞 − 2𝑟3)3)}

6√𝑞 − 2𝑟3
,

(𝑖 = 1,2)

 

(115) 

𝐹1
(𝑖)
(𝑟) =

(−1)𝑖+1(𝑞 − 𝑟3)(5−𝑖)/3{
−80𝑞4 + 311𝑞3𝑟3 − 228𝑞2𝑟6 − 80 𝑞 𝑟9 + 80𝑟12

8 𝑞 𝑟3(𝑞 − 2𝑟3)2
+ ln(

𝑟18(𝑞 − 𝑟3)2

(𝑞 − 2𝑟3)3
)}

6√𝑞 − 2𝑟3
.

(𝑖 = 3,4)

 

By expanding Eq. (61) of course with the use of Eq. (111), Eq. (113) and Eq. (115), the final result of 𝜆𝑎 can be written 

as 

𝜆𝑎 = 𝑎 = 0.666142 + 1.377044/𝑛 − 23.289856/𝑛
2 +⋯. (116) 

In view of the relations Eq. (40) and Eq. (42), we have 

𝐴 = 0.252188 + 8.148439/𝑛 − 187.262476/𝑛2 +⋯. (117) 

Table 6 shows the comparisons between the compound matrix and WKB results for critical values of 
𝐴

𝐵
 and the 

corresponding values of 
𝑎

𝐵
, 
𝑏

𝐵
 for various mode numbers. It seems that the tiny difference between the results of the 

two mentioned methods is the existence of the turning point. For example, we checked a special case i.e. 𝑛 = 20, 

which yields the turning point at 𝑟 = 0.868449.   

Table 6. The critical values of 
𝐴

𝐵
 and the corresponding values of 

𝑎

𝐵
 and 

𝑏

𝐵
 for various mode numbers related to Neo-

Hookean everted sphere. 

 CMM   WKB   

𝑛 𝐴

𝐵
 

𝑎

𝐵
 

𝑏

𝐵
 

𝐴

𝐵
 

𝑎

𝐵
 

𝑏

𝐵
 

16.0 

17.0 

18.0 

19.0 

20.0 

25.0 

50.0 

100.0 

150.0 

200.0 

250.0 

300.0 

350.0 

400.0 

450.0 

0.449435 

0.445607 

0.441909 

0.438305 

0.43478 

0.418292 

0.363472 

0.318432 

0.299296 

0.288734 

0.28204 

0.277419 

0.274036 

0.271453 

0.269417 

0.705574 

0.704665 

0.703793 

0.70295 

0.702131 

0.698375 

0.686702 

0.677928 

0.674396 

0.672493 

0.671303 

0.670488 

0.669896 

0.669446 

0.669092 

1.080219 

1.080488 

1.080742 

1.080982 

1.081211 

1.082201 

1.084579 

1.085563 

1.085742 

1.085784 

1.085791 

1.085787 

1.085779 

1.085771 

1.085763 

0.029972 

0.083541 

0.126909 

0.162321 

0.191454 

0.278506 

0.340252 

0.314947 

0.298189 

0.288249 

0.281786 

0.277269 

0.273941 

0.271389 

0.269371 

0.661232 

0.666557 

0.670763 

0.674104 

0.67677 

0.68396 

0.684367 

0.677584 

0.674288 

0.672445 

0.671278 

0.670474 

0.669887 

0.669439 

0.669087 

1.08833 

1.09015 

1.09132 

1.09197 

1.09222 

1.09093 

1.08609 

1.08573 

1.08578 

1.0858 

1.0858 

1.08579 

1.08578 

1.08577 

1.08576 
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500.0 

550.0 

600.0 

650.0 

700.0 

0.267769 

0.26641 

0.265268 

0.264297 

0.263459 

0.668807 

0.668572 

0.668375 

0.668207 

0.668063 

1.085756 

1.085749 

1.085742 

1.085737 

1.085732 

0.267736 

0.266385 

0.265249 

0.264281 

0.263447 

0.668803 

0.668569 

0.668373 

0.668206 

0.668062 

1.08576 

1.08575 

1.08574 

1.08574 

1.08573 

 

WKB analysis for the eversion of a Varga spherical shell 

This problem has been solved previously by Haughton and Chen [36]. They applied the special form of WKB 

expansion i.e. Eq. (47) and obtained just leading order terms. Here, we continue the analysis to the higher orders. 

The same procedure as before has been employed and the following four repeated roots of 𝑆(𝑟) are obtained 

𝑆(1)(𝑟) = 𝑆(3)(𝑟) =
𝜆3/2

𝑟
, 𝑆(2)(𝑟) = 𝑆(4)(𝑟) =

−𝜆3/2

𝑟
. (118) 

By applying 𝑆(𝑟) from Eq. (118), the next order terms are automatically satisfied. Upon using Eq. (118) in the new 

order, we obtain the following two second order differential equations of 𝐹0(𝑟) 

(𝐹0
(𝑖)
)′′ +

(3 − 𝜆3/2 − 2𝜆3)

𝑟
(𝐹0

(𝑖)
)′ +

(7 − 28𝜆3/2 − 22𝜆3 + 4𝜆9/2 − 5𝜆6)

16𝑟2
𝐹0
(𝑖)
= 0, (𝑖 = 1,3)

(𝐹0
(𝑖)
)′′ +

(3 + 𝜆3/2 − 2𝜆3)

𝑟
(𝐹0

(𝑖)
)′ +

(7 + 28𝜆3/2 − 22𝜆3 − 4𝜆9/2 − 5𝜆6)

16𝑟2
𝐹0
(𝑖)
= 0.   (𝑖 = 2,4)

 (119) 

In order to be able to solve the equations Eq. (119), we use 
𝑑𝜆

𝑑𝑟
=

𝜆(1+𝜆3)

𝑟
 (given by Haughton and chen [36]) and obtain 

the following simplified differential equations of 𝐹0(𝜆) 

(𝐹0
(𝑖)
)′′ +

3 − 𝜆3/2 + 2𝜆3

𝜆(1 + 𝜆3)
(𝐹0

(𝑖)
)′ +

7 − 28𝜆3/2 − 22𝜆3 + 4𝜆9/2 − 5𝜆6

16𝜆2(1 + 𝜆3)2
𝐹0
(𝑖)
= 0,     (𝑖 = 1,3)

(𝐹0
(𝑖)
)′′ +

3 + 𝜆3/2 + 2𝜆3

𝜆(1 + 𝜆3)
(𝐹0

(𝑖)
)′ +

7 + 28𝜆3/2 − 22𝜆3 − 4𝜆9/2 − 5𝜆6

16𝜆2(1 + 𝜆3)2
𝐹0
(𝑖)
= 0,     (𝑖 = 2,4)

 (120) 

and the solutions are, 

𝐹0
(𝑖)
(𝜆) = {

𝜆−7/4(1 + 𝜆3)1/6exp((−1)𝑖  𝑑/3),             𝑖 = 1,2
2

3
𝜆−1/4(1 + 𝜆3)1/6exp((−1)𝑖  𝑑/3),          𝑖 = 3,4

 (121) 

where 𝑑 = arctan(√3 − 2√𝜆) − arctan(√3 + 2√𝜆) + arctan(√𝜆). By continuing the process of the previous sections 

and in view of Eq. (118) and Eq. (121) four second order inhomogeneous differential equations of 𝐹1(𝜆) are obtained 

(𝐹1
(𝑖)
)′′ +

3 + (−1)𝑖𝜆3/2 + 2𝜆3

𝜆(1 + 𝜆3)
(𝐹1

(𝑖)
)′ +

7 + (−1)𝑖28𝜆3/2 − 22𝜆3 + (−1)𝑖+14𝜆9/2 − 5𝜆6

16𝜆2(1 + 𝜆3)2
𝐹1
(𝑖)

 =

{
 

 
(−1)𝑖

32
𝜆−21/4(1 + 𝜆3)−11/6(21 + 42𝜆3 − 99𝜆6)exp(

(−1)𝑖  𝑑

3
), 𝑖 = 1,2

(−1)𝑖

16
𝜆−3/4(1 + 𝜆3)−11/6(53 + 26𝜆3 + 13𝜆6)exp(

(−1)𝑖  𝑑

3
),   𝑖 = 3,4

 (122) 

and the particular integrals which can be found easily by using the reduction of order method, are 
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𝐹1
(𝑖)
(𝜆) =

{
 
 

 
 (−1)

𝑖(1 + 𝜆3)
1
6exp((−1)𝑖  𝑑/3)

48𝜆
13
4

(7 − 40𝜆
3
2 𝑎𝑟𝑐𝑐𝑜𝑡(𝜆

3
2)),                  𝑖 = 1,2

(−1)𝑖(1 + 𝜆3)
1
6exp((−1)𝑖  𝑑/3)

72𝜆7/4
(27 + 13𝜆3 − 40𝜆

3
2 𝑎𝑟𝑐𝑐𝑜𝑡(𝜆

3
2)). 𝑖 = 3,4

 (123) 

Now we expand Eq. (61) with the use of Eq. (118), Eq. (121) and Eq. (123), and get 

𝜆𝑎 = 0.693361 − 0.088958/𝑛 − 0.198055/𝑛
2 +⋯. (124) 

In view of relation Eq. (41), we have 

𝐴 = 0.46792 −  0.372274/𝑛 − 1.055095/𝑛2 +⋯. (125) 

The following numerical results which obtained with the aid of compound matrix method are also similar to those of 

Haughton and Chen [35]. The comparison between the critical values of 
𝐴

𝐵
 and the corresponding values of 

𝑎

𝐵
 and 

𝑏

𝐵
 

for various mode numbers are given in Table 7. It is obvious from the table that the results of the two methods are 

almost coincident and also as the mode number increases the results getting closer and closer. 

Table 7. The critical values of 
𝐴

𝐵
 and the corresponding values of 

𝑎

𝐵
 and 

𝑏

𝐵
 for various mode numbers related to Varga 

everted sphere. 

 CMM    WKB  

𝑛 𝐴

𝐵
 

𝑎

𝐵
 

𝑏

𝐵
 

𝐴

𝐵
 

𝑎

𝐵
 

𝑏

𝐵
 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

16.0 

18.0 

20.0 

25.0 

100.0 

150.0 

200.0 

300.0 

400.0 

500.0 

600.0 

700.0 

0.308908 

0.376566 

0.4049 

0.420142 

0.42957 

0.435946 

0.440532 

0.443982 

0.446669 

0.451341 

0.464092 

0.465392 

0.466033 

0.466668 

0.466983 

0.467172 

0.467297 

0.467386 

0.658743 

0.673033 

0.679147 

0.682485 

0.684573 

0.685997 

0.687028 

0.687808 

0.688418 

0.689486 

0.692452 

0.692759 

0.692912 

0.693063 

0.693138 

0.693183 

0.693212 

0.693234 

1.07905 

1.07764 

1.07632 

1.07541 

1.07478 

1.07433 

1.07399 

1.07372 

1.07351 

1.07313 

1.07204 

1.07193 

1.07187 

1.07181 

1.07178 

1.07177 

1.07175 

1.07175 

0.420449 

0.416114 

0.420209 

0.427076 

0.433339 

0.438266 

0.442079 

0.44507 

0.447465 

0.451754 

0.464099 

0.465394 

0.466034 

0.466668 

0.466983 

0.467172 

0.467297 

0.467386 

0.682861 

0.681983 

0.682813 

0.684229 

0.68555 

0.686609 

0.687441 

0.688101 

0.688634 

0.689599 

0.692454 

0.69276 

0.692912 

0.693063 

0.693138 

0.693183 

0.693212 

0.693234 

1.075518 

1.07582 

1.075535 

1.075041 

1.074574 

1.074195 

1.073895 

1.073655 

1.073461 

1.073106 

1.072041 

1.071925 

1.071868 

1.071811 

1.071782 

1.071765 

1.071754 

1.07175 
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CONCLUSION 

Apart from solving the eigenvalue problems (fourth order simplified ODE,s) of the cylinder, everted cylinder, sphere, 

everted sphere and cube, by using the specific form of 𝑊𝐾𝐵 expansion i.e. 𝐹(𝑟) = (𝐹0(𝑟)  + 
1

𝑛
𝐹1(𝑟)  +  

1

𝑛2
𝐹2(𝑟)  +

 
1

𝑛3
𝐹3(𝑟)  + ⋯ )e𝑥𝑝(𝑛 ∫

𝑟

𝑎
𝑆(𝑟)𝑑𝑟), our aim is to find, solve and compare the differential equations obtained for 𝐹0(𝑟), 

𝐹1(𝑟), 𝐹2(𝑟), … and also the roots of 𝑆(𝑟). In order to do so, we extended our analysis to one order higher than what 

has been previously done (the leading or/and first order). We noticed that, the differential equations obtained for 

𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), …, (i.e. Eq. (70), Eq. (72), …, Eq. (120), Eq. (122)) are second order for Varga, while are first order 

(i.e. Eq. (50), Eq. (52), …, Eq. (112), Eq. (114)) for Neo-Hookean materials. By applying this specific form of 𝑊𝐾𝐵 

expansion to the relevant eigenvalue problems and by collecting the leading order terms, it is confirmed that the roots 

of 𝑆(𝑟) are repeated for Varga (see Eq. (69), Eq. (81), Eq. (95), Eq. (118)) and un-repeated for Neo-Hookean materials 

(e.g. Eq. (49), Eq. (74), Eq. (89), Eq. (103), Eq. (111)). Moreover, based on the analysis and due to the results obtained, 

we found that 𝑆(𝑟) and the ODE,s of 𝐹0(𝑟), 𝐹1(𝑟), 𝐹2(𝑟), … depends on the elastic material but not to the relevant 

geometry. 
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