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Introduction: Banana plants are prone to various diseases which significantly impact yield and 

agricultural productivity. Leaf diseases of banana such as Cordana and Sigatoka significantly 

affect global banana production, making early and accurate detection essential for crop health 

management. This research proposes an optimized approach based on machine learning for 

automatic detection and classification of banana leaf disease. The methodology includes image 

pre-processing, augmentation, RGB color to L*a*b*color space conversion, K-Means 

segmentation followed by thresholding. This is followed by feature extraction (GLCM, LBP, Hu 

moments, Color features), PCA-based dimensionality reduction, and finally classification using 

SVM, KNN, Random Forest, and Gradient Boosted Stacking Ensemble models. The results 

obtained demonstrate the efficacy of the features after Principal Component Analysis (PCA) 

reduction, with the Gradient Boosted Stacking Ensemble model achieving the highest accuracy 

among the different models. The best classification performance was obtained with the Gradient 

Boosted Stacking Ensemble which achieved an accuracy of 95.53%. The proposed model 

outperformed other individual models like Random Forest, KNN and SVM which achieved 

accuracies of 78.45%, 84.71% and 82.22% respectively. Further, performance evaluation using 

precision, recall, F1-score, ROC curves, AUC and confusion matrices validates the robustness of 

the proposed ensemble method in classifying healthy and diseased banana leaves. The 

framework thus developed provides a scalable and reliable solution for automated detection of 

banana leaf disease which will support early disease management strategies in precision 

agriculture. 

Keywords: Segmentation, Local Binary Pattern, Machine Learning, Stacking Ensemble, 

Classification. 

 

1. INTRODUCTION 

The economy of an agricultural country depends mainly on the agricultural production. Agriculture plays a very 

important role in sustaining the economy of numerous developing countries, where a large part of the population 

relies on farming for their livelihood. Among the agricultural products, banana (Musa spp.) is one of the major fruit 

which is widely cultivated and consumed in a large scale all over the world due to its nutritional value and economic 

importance [1]. Bananas are cultivated worldwide in the tropical and subtropical regions in more than 130 countries 

[2]. It significantly contributes to rural development and income generation for farmers. However, banana 

productivity is frequently threatened by various biotic stresses, particularly fungal foliar diseases such as Cordana 

leaf spot and Sigatoka [3]. The leaf spot disease Cordana [4] caused by the fungus Cordana musae, manifests as 

brown elliptical lesions that lead to premature leaf necrosis, ultimately reducing photosynthesis and fruit yield. On 

the other hand, Sigatoka (caused by Pseudocercospora musae or Pseudocercospora fijiensis) progresses more 

aggressively, with yellow to dark necrotic streaks that severely damage foliage [5-7]. 

Timely and accurate disease identification is critical for managing these infections and ensuring optimal crop 

productivity. However, in most cases, farmers are not aware about disease infection and the level of severity of crop 

infection. They ultimately rely on advice from experts who are in agricultural research institutes and seek guidance 
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from these advisory experts which are carried out manually. This task consumes a lot of time, requires a huge amount 

of labour, costlier to implement and are prone to faulty diagnosis. Due to advancements in the field of image 
processing and machine learning techniques, automated disease detection in leaves as well as plants have become 

popular in precision agriculture.  

Early detection of diseases in crops and accurate disease classification is a major component of precision agriculture 

[8]. These systems offer scalable, consistent, and real-time monitoring solutions which subsequently helps in early 

diagnosis [9]. Image segmentation is considered as a crucial component in this whole process. The segmentation 

process isolates the diseased regions in the image for detailed analysis and extraction of features [10]. Several studies 

have investigated the use of machine learning techniques to estimate the incidence and severity of diseases in plants. 

The results obtained has demonstrated robust performance in practical scenarios [11]. 

This study introduces a hybrid classification framework which integrates transformation of color space from RGB to 

L*a*b*, K-means segmentation, feature extraction from texture, shape, and color descriptors followed by 

dimensionality reduction using Principal Component Analysis (PCA). The extracted features are then fed to machine 

learning classifiers, including SVM, KNN, Random Forest, and a Gradient Boosted Stacking Ensemble to evaluate 

the classification performance. This integrated methodology ensures that only the most informative and 

discriminative features are retained, improving both classification accuracy and computational efficiency.   

The manuscript has been organized into the following sections: related works for banana disease detection has been 

summarized in Section 2. A detailed description of the proposed methodology that has been adopted in this study 

has been described in Section 3. Then, Section 4 presents a discussion on the experimental results along with the key 

findings of the results obtained. Lastly, Section 5 draws the conclusion and highlights future work that can be 

enhanced and incorporated with this study.  

2. RELATED WORKS 

Tuazon et al. [12] developed a portable system for the detection of Sigatoka disease on the leaves of banana. Banana 

leaf images captured by camera has been used for the research. Processing of these images were done through 

different methods such as stitching, equalization and then segmentation. This is followed by feature extraction and 

finally classification by SVM. The model thus designed could achieve an accuracy of 90% in classifying banana leaves 

as healthy and Sigatoka-infected. 

Miguel Dita et al. [13] provided a comprehensive overview on the epidemiology of banana disease called Fusarium 

wilt in their study. The study further discussed several factors impacting disease intensity, along with the roles of the 

soil and plant microbiome in the progression of the disease. A review on the influence of biotic and abiotic factors on 

the level of disease intensity has been presented. The study discusses a framework of practices and their effects on 

the intensity of disease. These can eventually be used by researchers, organizations involved in plant protection, plant 

growers and extension workers. 

Akshaya Aruraj et al. [14] employed classifiers such as SVM and KNN to detect banana plant diseases (Cordana leaf 

spot and Black Sigatoka). They utilized Local Binary Patterns (LBP) for texture feature extraction from enhanced 

images. Evaluated on the Plant Village dataset, their proposed methodology achieved classification accuracies of 

89.1% and 90.9% in two different experiments using SVM.  

W. Liao et al. [15] introduced an SVM-based machine learning method for early detection of banana disease using 

hyperspectral remote sensing images acquired from close-range. Using morphological openings and closings, their 

approach extracted spectral and spatial features from disease infected leaves of banana at the early stage and late 

developmental stages. Their approach could achieve an average accuracy of approximately 96% in the early stage, 

90% for mid-stage, and 92% for late-stage detection using both spectral and morphological information. 

Chaudhari & Patil et al. [16] designed an automated approach for identifying banana plant diseases. After resizing 

the images and L*a*b* color space transformation, their method involved using K-Means Clustering for extraction of  

texture features, shape and color features from the input images. This again is followed by classification using Support 

Vector Machine. The proposed work achieved an overall accuracy of 85% in identifying the four diseases: Banana 

Bacterial Wilt (BBW), Panama disease, Sigatoka and Cucumber Mosaic Virus (CMV). 
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Selvaraj et al. [17] employed UAV and multispectral (MS) satellite imagery for pixel-based classification of banana in 

field landscapes. High-resolution images which are UAV-RGB images has been used for object-based banana 

localization and subsequently the detection of banana disease. Following resizing and preprocessing, they utilized 

SVM and RF classification methods, achieving high accuracy with fewer errors in detecting banana plants and the 
major banana diseases. Specifically, their model accurately classified healthy banana and diseased banana plants 

(BBTD, BXW, healthy cluster of banana, and individual banana plants) with 99.4%, 92.8%, 93.3%, and 90.8% 

accuracy, respectively. The inherent resistance of SVM and RF to overfitting makes them suitable for complex 

datasets, although careful parameter tuning is crucial for optimal performance.  

Zhang et al. [18] investigated methods for detecting Banana Fusarium Wilt (BFW) by identifying spectral features of 

infected canopies and developing optimal classification models for different infection stages. They employed 

supervised learning methods (LR, RF, SVM, BPNN) and the unsupervised approach (ISODATA, HA). Among the 

supervised approaches, Random Forest (RF) using five multispectral bands emerged as the model which is the most 

optimal. The model achieved a high overall accuracy of 97.28% with a faster runtime of 22 minutes. Among the 

unsupervised algorithms, Hotspot Analysis (HA) demonstrated consistently high and balanced overall accuracy 

exceeding 95%. The study recommended HA for BFW recognition, particularly in late stages of infection, while RF 

was suggested for early detection to attain slightly higher accuracy. 

Bhuiyan et al. [19] designed BananaSqueezeNet, a computationally efficient model for detection of leaf diseases of 

banana: Cordana, Sigatoka and Pestalotiopsis. The model demonstrated exceptional performance in diagnosing these 

diseases from the leaf images of banana. The model achieved an accuracy of 96.25%, precision of 96.53%, specificity 

of 98.75%, recall of 96.25%, F1-score value of 96.17%, and MCC value of 95.13%. Beyond leaf diseases, the capability 

of BananaSqueezeNet extends to identifying banana fruit and stem diseases as well. Its compact design makes it 

suitable for resource-constrained devices, although this size reduction inherently leads to a trade-off with 

representational capacity, potentially impacting classification accuracy.  

3.    PROPOSED METHODOLOGY 

Our proposed methodology for detection of banana leaf diseases consists of the following stages: (a) image acquisition 

(b) pre-processing of the image (c) segmentation using k-means (d) feature extraction (e) feature reduction and (f) 

disease classification. Fig. 1 presents the framework of the proposed methodology. 

 

 

Fig.1: Framework of the proposed methodology 

3.1 Dataset and Pre-processing 

The experimental dataset that has been employed in our study has been acquired from the Banana Leaf Spot Diseases 

(BananaLSD) dataset. The dataset consists of labeled images of banana leaves categorized into three classes: Cordana, 
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Healthy, and Sigatoka. For effective learning and to ensure consistency across all stages of the research, each image 

in the dataset has been resized to a standardized resolution of 256 × 256 pixels. The image resizing step is critical as 

it harmonizes the input dimensions across varying original image sizes thus ensuring compatibility with downstream 

processes such as segmentation followed by feature extraction and model training. The image resizing was performed 

using bilinear interpolation, which computes the pixel intensity at each target location (x,y) based on a weighted 

average of its nearest four pixels in the original image. The resized image 𝑰′(𝒙′, 𝒚′) is calculated using equation (1). 

𝐼′(𝑥′, 𝑦′) = ∑ ∑ 𝑤𝑖𝑗

1

𝑗=0

1

𝑖=0

. 𝐼(𝑥𝑖 , 𝑦𝑗)                                                                                                                                                                     (1) 

where 𝐼(𝑥𝑖 , 𝑦𝑗) ∶ original pixel values 

𝑤𝑖𝑗 ∶ interpolation weights based on the distance from the original pixel location 

(𝑥′, 𝑦′) ∶  co-ordinates in the resized image. 

This pre-processing step is critical as it reduces the computational complexity and also ensures that the images 

conform to the input requirements of traditional machine learning models.  

3.2 Data Augmentation 

In machine learning framework, data augmentation serves as an essential step particularly in image-based 

classification tasks. Augmentation artificially increases the diversity and volume of training samples without actually 

collecting new data. This helps prevent overfitting, improves robustness, and enables the model to learn invariant 

features under transformations such as rotation, brightness, scale etc. Our original dataset (BananaLSD) exhibited a 

class imbalance across the three categories: Cordana, Healthy, and Sigatoka which could potentially bias the model 

during training. To mitigate this, a targeted augmentation factor was applied to each class. The final augmented 

dataset comprises 10,067 images, forming a balanced representation suitable for robust model training. Python 

libraries like OpenCV, PIL, or imgaug were used to apply different transformations probabilistically to each image. 

3.3 L*a*b* Color space conversion and segmentation using K-Means Clustering 

The image segmentation step is essential to enhance the isolation of disease-specific region. Each augmented image 

was first converted from RGB color to the L*a*b* color space. Among the three channels, the ‘a’ channel was extracted 

for further analysis, as it effectively highlights color shifts from healthy green areas to diseased red/brown patches. 

Following this, K-Means clustering (K=2) was applied on the extracted ‘a’ channel. The choice of K=2 reflects the 

binary nature of the problem, separating diseased regions from healthy background. To further refine the region of 

interest, Otsu’s thresholding was employed on the K-Means segmented output. This step binarized the clustered 

image, isolating the most relevant regions, typically corresponding to diseased areas. These thresholded binary masks 

were then multiplied with the original augmented RGB images, resulting in segmented images that preserved only 

the infected regions for subsequent feature extraction. 

3.4 Multiplication with Augmented Images 

To preserve structural details and color features present in the original leaf images, the thresholded binary masks 

were element-wise multiplied with the corresponding RGB augmented images. This step: (i) retained disease-

relevant features (ii) masked out irrelevant background noise (iii) ensures that the final image reflected both color 

texture and spatial structure of the infected area. The resulting disease-isolated images served as the input for feature 

extraction, ensuring only the most relevant visual patterns are analyzed. Fig. 2 shows sample images of diseased 

leaves of Cordana and Sigatoka, thresholded image obtained after segmentation and the resulting multiplied images. 

3.5 Feature Extraction 

Following segmentation, discriminative features were extracted from the images obtained by multiplying the 

thresholded images with the augmented images highlighting disease-specific regions. To capture textural 
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morphological, and color characteristics of banana leaf, a hybrid feature set was constructed comprising texture, 

shape and color descriptors. Computation of texture features were performed using: (a) Gray-Level Co-occurrence 

Matrix (GLCM) to measure the spatial relationships that exists between pixels (b) Local Binary Patterns (LBP) with 

parameters for capturing local textures and  (c) Gabor filters for frequency and orientation-based texture analysis. 

Healthy and disease affected leaf areas exhibit variations in textures, and the GLCM enables the differentiation 

between these textures by analyzing the spatial relationships (adjacency) of gray levels. 

 

Fig. 2: Sample of diseased image and resulting multiplied image. 

In our proposed method, for local binary pattern technique, comparison of the centre pixel and the adjacent pixels 

were done using equation (2) having results zero or 1. 

𝐿𝐵𝑃𝑃
𝑅 =  ∑  𝑠(𝑔𝑝

𝑃−1

𝑝=0

− 𝑔𝑐). 2𝑝   ,      𝑆(𝑥) =  {
 1,       𝑥 ≥ 0 
0,       𝑥 <  0 

                                                                                                                      (2) 

where P is the number of sampling points, R is the radius, 𝑔𝑐 is the intensity of center pixel and 𝑔𝑝 is the intensity of 

neighboring pixels, Shape features were derived from: Hu’s Moments, applying logarithmic transformation to 

capture invariant shape properties, and Contour-based analysis, which quantifies the geometry of segmented regions. 

The first Hu moment is given by equation (3).  

𝜙1 =  𝜂20 +  𝜂02                                                                                                                                          (3) 

where 𝜂𝑝𝑞 are normalized central moments of the binary contour image. Additionally, color features were derived by 

computing mean and standard deviation values from each RGB channel. Equation (4) provides the formula for 

calculating the mean, which is the sum of all elements divided by the number of elements. 

Mean, µ =  
1

𝑁
 ∑ 𝑥𝑖

𝑁

𝑖=1

                                                                                                                                                                                        (4) 

where, 𝑥𝑖 is the pixel intensity and N is the total number of pixels in the region.  The square root of the variance called 

standard deviation is calculated using equation below. The standard deviation denoted by σ measures the spread of 

pixel intensities and is defined by equation (5). 

Standard Deviation, 𝜎 = √
1

𝑁
 ∑(𝑥𝑖 − µ)2

𝑁

𝑖=1

                                                                                                                                                (5) 
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3.6 Dimensionality Reduction using PCA 

The high dimensionality of the extracted features posed challenges for computational efficiency and risked over-

fitting. To address this, Principal Component Analysis (PCA) was applied, which resulted in a dimensionality 

reduction of the images to be used for training and testing the different machine learning models. The PCA reduced 

features preserved most of the relevant information while improving training speed and model generalization. 

3.7 Model Training and Evaluation 

The reduced features obtained after employing PCA reduction technique were then used to train and evaluate several 

traditional machine learning classifiers such as Support Vector Machine (SVM), K Nearest Neighbor (KNN), Random 

Forests (RF) and Stacking Ensemble (SVM+KNN+Random Forests). 

The Support Vector Machine algorithm operates by finding a hyperplane that effectively categorizes data points 

within an N-dimensional space [20]. This objective makes SVM one of the most powerful methods available for 

handling both linear and nonlinear classification problems. For a linear SVM, the decision boundary is defined by 

equation (6). 

𝑓(𝑥) =  𝑢𝑇𝑥 + 𝑏                                                                                                                                        (6) 

where u is the input feature vector, and parameter b is the bias term. The predicted class is determined by the sign of 

f(x). Here, x is classified as positive class if 𝑓(𝑥) > 0 and a negative class if 𝑓(𝑥) < 0. 

K-Nearest Neighbors (KNN) classifies a new data point by identifying its K nearest neighbors in the dataset and 

assigning it to the class that is most prevalent among those K data points. KNN can also use metrics other than 

Euclidean distance, such as Manhattan distance or Mahalanobis distance [21]. Random Forest (RF) operates by 

integrating multiple decision trees through ensemble learning. Conceptually, each decision tree within the forest 

serves as an independent classifier, and consequently, an input sample passed through N trees will yield N individual 

classification predictions [22]. 

A stacking ensemble was constructed by combining the predictions of SVM, KNN, and Random Forest as base 

learners. A Gradient Boosting Classifier was used as the meta-learner to combine the base model predictions and 

make final predictions. The meta-learner in the stacking architecture aggregates their predictions to produce a more 

balanced, accurate output. This hybrid ensemble leverages: (a) the diversity of base models for capturing varied data 

aspects and (b) the boosting strategy in the final estimator to minimize prediction error iteratively. Stacking helps 

improve performance by combining strengths of different models. This approach reduces overfitting of individual 

models and improves generalization ultimately leading to more robust classification performance. The final ensemble 

prediction is defined by equation (7). 

𝑦 ̂ =  ∑ 𝛼𝑚

𝑀

𝑚=1

. ℎ𝑚(𝑥)                                                                                                                                                                                         (7) 

where  ℎ𝑚(𝑥)  : prediction from the m-th base model 

𝛼𝑚: weight assigned to that model 

𝑦̂ : final ensemble prediction. 

The different steps for the algorithm of the gradient boosted stacking ensemble approach is as given below. 

Algorithm: Gradient Boosted Stacking Ensemble 

Input: Training dataset TDS = {( 𝑥1, 𝑦1),( 𝑥2, 𝑦2),.....,( 𝑥𝑛, 𝑦𝑛)} 

Output: Trained ensemble classifier E 

Step 1: Train base-level classifiers 

    for c=1 to number of base classifiers CL do 
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        Train base classifier 𝐵𝑐 on TDS 

    end for 

Step 2: Generate meta-level training data 

    for i=1 to n do 

        Use each 𝐵𝑐to predict 𝑥𝑖: , 𝑝𝑖
1, 𝑝𝑖

2 ….., 𝑝𝑖
𝐶𝐿        

Form meta-instance 𝑧𝑖 = (𝑝𝑖
1, 𝑝𝑖

2 ….., 𝑝𝑖
𝐶𝐿, 𝑦𝑖)  

    end for 

Construct meta-dataset  𝑇𝐷𝑆𝑚𝑒𝑡𝑎= { 𝑧1, 𝑧2,....., 𝑧𝑛} 

Step 3: Train meta-classifier 

    Train Gradient Boosted classifier E on 𝑇𝐷𝑆𝑚𝑒𝑡𝑎 

Return: Final ensemble classifier E 

4.  RESULTS AND DISCUSSION 

The calculation of the true positive (TP) value, true negative (TN) value, false positive (FP) and false negative (FN) 

values were done for each model. Here, the evaluation metrics has been calculated on the 80% training and 20% 

testing dataset since it represents a balanced trade-off between learning and testing.  Each model was evaluated using: 

Recall, Precision, F1-Score, Accuracy, AUC (Area Under the Curve), ROC(Receiver Operating Characteristics) Curve 

Analysis and Confusion Matrix. Table I. presents the classification metrics such as precision, recall and F1-score of 

the different models SVM, KNN, Random Forests and Stacking Ensemble model in the three categories of banana 

leaf: Cordana, Healthy and Sigatoka. 

Table I. EVALUATION REPORT 

Model Class Precision Recall F1-Score 

 

SVM 

 

      Cordana 0.76 0.87 0.81 

Healthy 0.92 0.90 0.91 

Sigatoka 0.80 0.70 0.74 

 

KNN 

Cordana 0.78 0.90 0.84 

Healthy 0.92 0.93 0.93 

Sigatoka 0.85 0.71 0.77 

 Random 

      Forests 

Cordana 0.74 0.85 0.79 

Healthy 0.86 0.91 0.88 

Sigatoka 0.75 0.59 0.66 

      Stacked      

      Ensemble 

Cordana 0.95 0.95 0.95 

Healthy 0.98 0.97 0.97 

Sigatoka 0.93 0.94 0.94 

 

 

Precision was calculated as the ratio of number of true positives to the sum of true positives and false positives and 

is given by equation (8).   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
                                                                                                                     (8) 

Recall, as defined by Equation (9), is the ratio of true positives to the sum of true positives and false negatives 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
                                                                                                                         (9) 
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F1-score was computed using equation (10). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                                                    (10) 

Overall accuracy represents the general classification performance of each model category and is calculated using 

Equation (11). The overall accuracy of SVM, KNN, Random Forests and Stacking Ensemble was 82.22%, 84.71%, 

78.45% and 95.53% respectively.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                                                                                            (11) 

The accuracy results for the different models SVM, KNN, Random Forests and Stacking Ensemble has been presented 

in the table shown below in Table II.  

Table II. Accuracy results 

Model Accuracy (%) 

SVM 82.22 

KNN 84.71 

Random Forests 78.45 

Stacking Ensemble 95.53 

 

To better understand the per-class performance of the classification models, bar charts were plotted showing 

Accuracy, Precision, Recall, and F1-score for each class, Cordana, Healthy, and Sigatoka across four models: SVM, 

KNN, Random Forest, and Stacking Ensemble in Fig. 3. These visualizations helped assess how well each model 

distinguishes between the three classes. Notably, the Stacking Ensemble consistently outperformed the individual 

models, showing higher and more balanced scores across all metrics and classes. 

 

 

Fig.3: Graphical representation of evaluation metrics for the models. 
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Fig. 4 represents the Confusion Matrix and ROC Curve of SVM, KNN, Random Forests and Stacking Ensemble 

Classifiers. For evaluating the classification performance of the proposed models, Confusion matrices and Receiver 

Operating Characteristic (ROC) curves were analyzed. The confusion matrices reveal class-wise performance by 

showcasing true positive and misclassified samples for Cordana, Sigatoka, and Healthy leaf classes. Notably, the 

Stacking Ensemble model demonstrated the highest classification accuracy with minimal misclassification across all 

classes, especially for Healthy. The ROC curves further reinforced these findings, with Stacking Ensemble achieving 

near-perfect AUC scores (0.99 for Cordana and Sigatoka, 1.00 for Healthy), indicating excellent model discrimination 

capability. Comparatively, Random Forest and SVM also showed strong performance with AUC values ranging from 

0.90–0.98, while KNN performed competitively with an overall average AUC around 0.96. The results obtained 

clearly indicates the efficacy of the proposed ensemble model in enhancing the classification among the different 

classes and accuracy in disease detection in banana leaves. 
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Fig. 4: Confusion Matrix and ROC Curve of SVM, KNN, Random Forests and Stacking Ensemble. 

Author 
Diseases 
Detected 

Algorithm used Dataset Performance 

Aruraj et al. 
[14] 

Black 
Sigatoka, 
Cordana 

Texture features 
(LBP) + SVM/KNN 

Plant Village 
dataset 

89.1% and 
90.9% 
accuracy. 

Helmawati, 
N., & Utami, 
E. [23] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

CNN 
BananaLSD 

dataset 
92.85% 
accuracy. 

Vidhya, N. 
P., and R. 
Priya  [24] 

Leafspot, 
Sigatoka 

KNN,SVM,Alexnet 
Real-time 

dataset 

Accuracy of 
76.49% for 
KNN,  84.86% 
for  SVM and 
96.73% for 
Alexnet. 

Rajalakshmi 
et al. [25] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

Custom 8-layer 
CNN (8C-DCNN) 

768 leaf 
images  

98.92% 
average 
accuracy 

Jiménez et 
al. [26] 

Black 
Sigatoka, 
Cordana 

ResNet-50, 
EfficientNet-B0, 
and VGG-19 

900 leaf 
images (field, 
Ecuador) 

88.90%, 
88.33%, and 
87.22% 
accuracy for 
ResNet50, 
EfficientNetB0, 
and VGG19 
respectively. 

Bhuiyan et 
al. [19] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

BananaSqueezeNet  
937 leaf 
images 
(BananaLSD) 

96.25% 
accuracy  
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Cihan Unal 
[27] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

DenseNet-201, 
EfficientNet-b0, 
and VGG16 

BananaLSD 
Dataset 

98.12%, 
87.81%,  
97.81%, 
accuracy for 
DenseNet-201, 
EfficientNet-
b0, and VGG16 
respectively 

Ravi Kumar 
Tirandasu 
and 
Prasanth 
Yalla [28] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

hybrid BAT + KNN 
937 leaf 
images 

95% accuracy 

Rehman et 
al.[29] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

VGG19 + Passive 
Aggressive  
Classifier   

1600 images  

Accuracy of 
99.16% for 
RGB vision, 
98.02%  for 
night vision, 
96.05% for 
infrared vision, 
and 96.10%  for 
thermal vision 

Thomas, D. 
and David, 
J.M. [30] 

Sigatoka, 
Cordana, 
Pestalotiopsis 

ACO + CNN 2825 images 
98.64 % 
accuracy 

Proposed 
Methodology 

Sigatoka, 
Cordana 

SVM, KNN, 
Random Forest, 
Stacking 
Ensemble 

BananaLSD  
Dataset 

95.53% for 
Stacking 
Ensemble 

Table  III: Comparison for studies of Sigatoka and Cordana banana leaf diseases. 
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Table III. presents a relative comparison of a selection of recent leaf-level studies on detection of Sigatoka and 

Cordana banana leaf diseases. The table highlights the methods adopted by different researchers, dataset used in 

their research, and the performances achieved. The comparative analysis in the table shows that deep learning 

models, especially custom CNNs and pre-trained architectures, have achieved higher accuracies in classifying banana 

leaf diseases like Sigatoka and Cordana. However, these models often suffer from certain limitations such as 

requirement of large datasets, high computational resources etc. In contrast, this study utilizes traditional machine 

learning classifiers such as SVM, KNN, Random Forest, and a Gradient Boosted Stacking Ensemble. These classifiers 

were trained on carefully extracted texture, shape, and color features from segmented banana leaf images. Our 

proposed approach, the stacking ensemble, achieved an accuracy of 95.53%, which is comparable to several deep 

learning approaches, while maintaining computational efficiency and model transparency. 

5. CONCLUSION AND FUTURE WORK 

This research presents a comprehensive traditional machine learning approach for the detection and classification of 

banana leaf diseases, specifically Sigatoka and Cordana. The methodology employed image segmentation techniques, 

texture, shape, and color features extraction, followed by feature reduction using Principal Component Analysis 

(PCA). The PCA reduced features are finally used for training and testing the machine learning models such as SVM, 

KNN, Random Forests and Gradient Boosted Stacking Ensemble. The Gradient Boosted Stacking Ensemble achieved 

an accuracy of 95.53% indicating a highly competitive performance compared to several deep learning models. 

Additionally, the model offers advantages such as interpretability, lower computational cost and ease of deployment. 

However, the performance of the model may be influenced by several factors such as variation in the image quality, 

lighting conditions and the generalization of features under diverse environments. To address these challenges, our 

future work will emphasize and focus on upgrading and expanding the dataset size with samples from real-world 

environments. With enhanced segmentation techniques and hybrid models integrating traditional and lightweight 

deep learning models, the performance can be further enhanced. . Furthermore, the development of a mobile or edge-

based model will enable the farmers to detect the banana diseases in real time or on- field. This will help in timely 

intervention in banana farming which eventually will lead to an increase in agricultural productivity.    
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