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Cancer formation and development are mainly attributable to DNA damage. When DNA is 

damaged, the rate of genetic mutations increases, hence the need for DNA repair mechanisms. 

Another essential element that should be further considered while discussing the base excision 

repair and its impact on the maintenance of genome stability is DNA polymerase β (Polβ), 

encoded by the POLB gene. This enzyme is used in humans to fix damaged DNA strings. The 

purpose of this study is to develop an accurate risk predictive model for cancer associated with a 

specific mutation. Hybrid Machine Learning (HML) classification algorithm has been applied to 

the POLB SNPs dataset. Random Forest combined with Particle Swarm Optimization (PSO) 

algorithm's hyperparameters to find and extract the best parameters. Through the models, the 

RF-PSO demonstrated superior performance, achieving an accuracy of 84.06%, precision of 

84.49 %, sensitivity of 84.06%, specificity of 90.55%, and an F1 score of 83.81%.To verify the 

performance of the proposed algorithm, the accuracy of the suggested RF-PSO classifier model 

was compared with another state-of-the-art model classifier, Naive Bayes, K Nearest Neighbors, 

Stochastic Gradient Descent, Linear Discriminant Analysis, Gradient Boosting Machines, 

AdaBoost, Passive Aggressive, Extra Trees, and Hist Gradient Boosting. The results also proved 

the superior ability of the implemented RF-PSO model classifier in the classification to 

investigate the relationship between POLB gene variations and their potential role in cancer 

onset. providing a robust foundation for further clinical applications and which will further help 

in better cancer diagnosis and treatment of the disease. 

Keywords: Machine Learning; Classification; DNA Damage Repair; POLB Mutation; Random 

Forest; PSO. 

 

INTRODUCTION 

Cancer is a multifactorial disease driven by genetic mutations and DNA damage, which are well documented to be 

instrumental in cancer development [1]. The American Cancer Society estimates the number of new cancer cases and 

cancer deaths each year in the United States and offers the most current information about population-based cancer 

incidence and mortality by using data from the National Cancer Institute's central cancer registries up to 2020 and 

mortality data collected by the National Center for Health Statistics up to 2021. According to the data indicated by 

International Agency for Research on Cancer, updated for the year 2024 reveal that 2,001,140 new cases of cancer 

and 611,720 cancer related deaths will occur in the United States [2]. Clearly, DNA damage builds over time and can 

cause a higher risk of mutations and thus, require operational DNA repair processes to prevent damage build-up [3]. 

Among these repairs mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) 

and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason 

for the biphasic feature of mammalian cell repair curves [4]. A study by Sawyer DL [5] has revealed that the residues 

involved in coordination of the? -phosphate group of the dNTP are critical in determining nucleotide selectivity, 

polymerase activity and a fidelity. This study also draws attention to future investigation of this novel human POLB 

variant in vivo. Since Pol? is responsible for repairing DNA, any genetic variations of POLB may interfere with repair 

and enable mutation which can promote cancer development. DNA repair enzyme genes are known to include several 
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SNPs, some of which have a significant impact on their activity [6,7]. In some cases, SNPs can decrease the efficiency 

of DNA repair, accumulate genomic mutations, and increase the vulnerability of an individual to developing cancer 

[8]. 

This paper offers an intelligent hybrid machine learning model to enhance cancer onset by developing a risk 

prediction model. Its main aim is to investigate the relationship between POLB gene variations and their role in 

cancer onset by developing a risk prediction model. The contributions of the paper are: 

1. Propose a new learning algorithm (labeled RF-PSO) that classifies cancer associated with a specific mutation. 

2. Preprocess, analyze and normalize the POLB gene variations dataset. 

3. To utilize Random Forest for ranking features related to cancer-associated mutations. 

4. Prove experimentally that proposed model outperforms other Intelligent models minimize the negative 

weighted F1 score. 

5. Examine ten machine learning models on POLB gene variations and then demonstrate the most effective 

detector through experiments. 

The subsequent sections of the paper are structured as follows: Section 2 review of the literature, review of the 

literature, followed by the methodology in Section 3. 

In Section 4, the performance values were presented, and the results were compared. The section 5, discussion. And 

the final section 6 conclusion. 

LITERATURE REVIEW 

Cancer is a multifaceted pathology that relies on inheritable changes in the genetic structure of an organism that led 

to disruption of optimal performance of the various units of its cells. In addition, the application of machine learning 

(ML) in oncology has a great potential to increase the effectiveness of diagnostics and treatment of complex diseases 

including Cancer of Unknown Primary (CUP). The conventional ML algorithms, fine-tuned by large datasets on 

molecular analysis, can identify the primary site of metastatic eccrine tumors with significant precision. It has been 

reported that genomic profiling driver mutations and CNVs integrated into the diagnostic process of CUP and offer 

valuable information about tumor-specific oncogenic changes and Mutational signatures (MS) have also been 

described as useful in the diagnosis of CUP, since there are known signature MS associated with certain causes such 

as UV light induced DNA damage and tobacco [9].In the case of PC, somatic mutations on POLB gene are considered 

to affect the enzyme to its functionality and hinder the biological process of microsatellite; instability, loss of 

heterozygosity which result to the advancement of prostate cancer. Similarly, the studies conducted on the POLB 

gene concerning the prostate cancer show that they have over (20) mutations most of which are found on more than 

(50%) of the tumor chromosomes proving their importance in cancer development [10]. Valencia et. al [11], the 

LocalFilterNet (LFNet) is used for localizing protein-coding potential combined with enhanced classification by 

learning translational RNA to proteins. KafiKang et. al., [12] in a study to analyze turkey reovirus variants was able 

to use clustering methods to distinguish new variant after the other and was therefore able to demonstrate the 

usefulness of machine learning in identifying these emerging variants. In Black et. al,[13] the authors discussed the 

use of hyperspectral imaging in tumor classification problems and showed that machine learning can be used in 

discriminating between different types of tumors. Lorkowski et. al., [14] also highlighted the role of artificial 

intelligence and machine learning in diagnosis and management of Cancer of Unknown Primary (CUP); the authors 

underlined the changes that these technologies bring to the approach of difficult diagnostics. Tamehisa et. al., [15] 

also developed models of subtypes of uterine leiomyoma under the umbrella of machine learning and applied support 

vector classification and logistic regression in diagnosis. Zuo et al., [16] stated that the evaluation of the predictive 

model's performance should involve cross-center data validation and pointed out that the visualization and 

interpretation of these models is imperative to machine learning. In the work of Zhao et. al., [17] a transformer 

network for EGFR classification was proposed under the name of GMILT that combines multi-instance learning and 

discriminative weakly supervised feature learning for enhanced predictive capability. In a study by Nakagaki et. al., 

[18], a deep learning-based approach was adopted for prediction of IDH1 gene mutation using histopathological 

imaging and clinical data and established the possibility of using machine learning in genetic mutation prediction. 

Endometrial cancer patients have been identified using stemness-related signatures. Pang et. al, [19] discuss the 
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concepts of machine learning algorithm subtype risk modeling for discriminating between the prognosis, immune 

response, and somatic mutation. Davies et. al. [20] used molecular dynamics and machine learning for mutational 

hotspots classification. The combined strategy of random forest classification and feature selection highlights that 

the topological features are useful for the classification of adduct sites. Currently, the literature review indicates that 

machine learning and bioinformatics significantly contribute to the analysis of changes in POLB associated with 

cancer. These tools offer important information on the cancer and may be helpful for identifying potential targets for 

treatment. Marchevsky et al. [22] studied that, with the help of LDA models, 62.5% to 87.5% cases have been 

classified perfectly. Cohen's Kappa values for the compared classifications given by all models ranged from 0.25 to 

1.0. They opined that by adopting artificial neural network, (ANN) classifications employing DNA methylation 

signature of SCLC and NSCLC cell lines possessed substantial to perfect concordance. However, as illustrated in the 

last entry of Table 4, LDA models had only poor to substantial agreement. Their work backs the possibility of using 

ANN analysis of DNA methylation data in the creation of automated lung cancer classification models. 

Recently, Alkhanbouli et al. [23] focused on the effect of POLB gene product, DNA polymerase? (Pol?), involved in 

DNA repair and cancer. The mutations in POLB may lead to different DNA repair mechanisms, including Single 

Nucleotide Polymorphisms (SNPs). SNP sequences were analyzed bioinformatically to obtain extract the features 

while eight risk models were built using machine learning algorithms to identify cancer risk due to the mutations. 

XGBoost, Random Forest, and Weighted random forest turned out to provide the best ensemble solutions with the 

accuracy of 82%. The research highlights the role of POLB gene polymorphisms and reveals the usefulness of machine 

learning-based approaches in genomic cancer investigations. 

MATERIALS AND METHODS 

The three-stage approach suggested for the study of the potential association between genetic polymorphisms in the 

POLB gene and cancer development is revealed. The nature and design of this methodology in terms of the flow of 

the different steps are shown in the following Figure 1. Below are the details of each stage: 

 

Figure 1: Proposed Methodology Model 

3.1. The First Stage  

3.1.1.  Data Acquisition   

We used the dataset available in the Mendeley Data repository at [24], including 15 features and 813 samples or 

instances. The SNPs and their bioinformatics attributes associated with the POLB gene. These specific SNPs are 

associated with gene alterations whose occurrence is related to the development of cancer. Table 1 shown the dataset 

description of the POLB gene dataset. 
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Table 1: Dataset Description. 

Description Count 

Number of Features 15 

Sample Count 813 

 

Table 2 shows 15 features, consisting of integers, floats, and descriptions. 

 

Table 2: Data sample description types. 

No. Feature 

Name 

Datatype Description 

1# PP int64 Prediction score for protein impact (possibly from PolyPhen). 

2# SIFTR float64 Score predicting the tolerance or intolerance of a mutation (SIFT). 

3# Polyphen2R float64 PolyPhen-2 score assessing the damaging potential of mutations (Radical 

category). 

4# Poly1hen2P int64 Likely a variant of PolyPhen-2 scores (Potential category). 

5# PROVEANR float64 PROVEAN score indicating the mutation's deleterious potential (Risk 

category). 

6# PROVEANP int64 PROVEAN score indicating the mutation's neutral or positive impact. 

7# CADDS float64 CADD score estimating the deleteriousness of a mutation. 

8# CADDR float64 CADD score with reference data for assessing mutation impact. 

9# CADDP float64 CADD score with population data for predicting mutation effects. 

10# fathmmS float64 FATHMM score predicting the functional impact of a mutation (S category). 

11# fathmmR float64 FATHMM score predicting mutation effects (Risk category). 

12# fathmmP int64 FATHMM score predicting mutation impact (Potential category). 

13# phyloP float64 Phylogenetic conservation score, indicating evolutionary importance. 

14# phyloPR float64 PhyloP score for a specific region (Risk category). 

15# class int64 Target class indicating whether the mutation is deleterious (1) or neutral (0). 

 

3.1.2. Data Analysis  

This stage focuses on identifying the SNPs are linked to gene variations associated with cancer onset characteristics 

that enable the research's desired expectations. Ensuring representativeness is the main target of this stage. For each 

feature, statistical functions have been performed to calculate minimum, maximum, mean, 25%, 50% and 75%, and 

standard deviation (as computed in Appendix A). A histogram has been plotted for visualization. Instructions were 

used to produce a heatmap of the correlation matrix that was determined. Every cell contains the value of a 

correlation coefficient of two characteristics. The coefficient values range from -1 to 1 with -1 basing a perfect negative 

association with 1 basing a perfect positive association and 0 basing no association at all. 

3.2. The Second Stage  

3.2.1. Feature Importance Random Forest 

In this stage, the Random Forest algorithm is used for feature importance analysis, In Random Forest, feature 

importance is computed based on how much a particular feature contributes to reducing the impurity (Gini impurity 

or entropy) across all the trees in the forest. Specifically, feature importance for a feature 𝑓 is calculated as the sum 

of the decrease in node impurity across all trees in the forest, weighted by the number of samples that reach the node 

as shown by the following equation: 
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𝐼(𝑓) = ∑  ∑  1{𝑠𝑝𝑙𝑖𝑡 𝑛𝑜 𝑓} 
𝑁𝑛
𝑁

∆𝑖𝑛𝑛∈𝑛𝑜𝑑𝑒(𝑡)
𝑇
𝑖=1                                                                                         (1) 

3.3. The Three Stage 

In this stage, we implemented a variety of machine learning algorithms and divided them into classic machine 

learning and hybrid machine learning 

3.3.1. Classic machine learning 

They are now passed on to the classical machine learning classifiers to train an ML model that could classify cancer 

associated with a specific mutation as deleterious or neutral.  Brief information about the machine learning classifiers 

considered for the research is discussed [21]. 

Naive Bayes (NB): 

A model integrating a probabilistic classifier following Bayes’ Theorem and supposing that features are independent. 

Indeed, it is easy to implement, fast and efficient particularly for text classification. 

 K-Nearest Neighbors (KNN): 

A global instance-based learning algorithm that forms the basis of many algorithms. It classifies the result from data 

points by voting as informed by the k nearest training samples in the feature space. It works well especially in low 

dimensions but when dealing with big data or data with many features, it becomes slow and least accurate. 

Stochastic Gradient Descent (SGD): 

Algorithms utilized to arrive at a minimum of a loss function accomplished by subsequent adjustments of the size of 

a weight vector, particularly relevant to massive ML computations. Res ranges from fast and effective to slow and 

ineffective depending on hyperparameters such as the learning rate. 

 Linear Discriminant Analysis (LDA): 

A technique that requires that the values of the target variables from each class are normally distributed. It throws 

data into lower-dimensional space where the discrimination between classes is at its lowest. It is used frequently in 

dimensionality reduction and classification process. 

Gradient Boosting Machines (GBM): 

A capable means of constructing multiple decision trees one after another in a variety of sequences. One tree adjusts 

for mistakes made by the previous tree, and so on, to enhance the accuracy. While GBMs are useful for structured or 

tabular data they are not always the fastest to train. 

 AdaBoost (AdaB): 

A boosting algorithm that makes a strong classifier from a few relatively weak classifiers, which are commonly but 

not necessarily decision trees. It focuses on training on examples that it got wrong in the past trying to make it learn 

better. Suitable for the treatment of datasets with a limited number of observations on the data and a large number 

on the classes. 

Passive Aggressive (PA): 

An evaluation methodology or algorithm for learning in large data using Internet or World Wide Web environment. 

It trains it only when it makes wrong prediction or prediction of type aggressive and otherwise leaves the model the 

same or makes a prediction of type passive. Fairly often applied to text categorization problems. 

 Extra Trees (ET): 

An instance of the ensemble method, which resembles Random Forests, but which has a different way of selecting 

splits in trees. It splits the features randomly which makes the model train faster and more random yet very accurate 

for classification and regression. 

 Hist Gradient Boosting (HGB): 
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A type of gradient boosting that starts by finding a correlation between the features and the target value before 

extending towards the production of models with higher or lower accuracy needed for big data sets. It employs the 

binding of continuous variables in histogram form leading to faster and more efficient memory usage as compared 

to the standard gradient boosting algorithms. 

Random Forest (RF): 

A popular technique that creates different decision trees and integrates the output of each of them (average for 

regression analysis and voting system for classification). First, it is built to be strong, it deals with the case when some 

values are missing, and finally, it minimizes the problem of overfitting as it gives an average of several trees. 

3.3.2. Hybrid machine learning 

This paper investigates the application of an innovative classification algorithm, the Random Forest with Particle 

Swarm Optimization. The RF technique was used to establish the modeling of the nonlinear mapping function 

between the input features and the target output. To enhance the RF’s performance, Particle Swarm Optimization 

(PSO) was applied to tune two critical hyperparameters: The two tuning parameters include the number of 

estimators; that is the number of trees to be constructed (n_estimators) and the maximum depth of the trees to be 

constructed (max_depth). Three hyperparameters are noteworthy as they have major impacts on model accuracy 

and generalization capability. Ask those tuning them to make the right adjustments to obtain expert performance. 

Consequently, the mechanism of PSO optimization was developed to identify the least achievable value of the negative 

weighted F1 score, which represents the objective function. For each set of hyperparameters, an RF model was 

generated from a stratified training dataset and further tested on a stratified test dataset. The main goal was to achieve 

a high F1 score to balance the value of precision as well as recall in the last model. As a means of minimizing 

randomness in the effect of the RF, PSO was done using (100) particles for (50) iterations, while limiting the range 

of n_estimators between (10) and (500) and max_depth between (5) and (50). As a result of performing PSO, the 

best values attained for these hyperparameters were for n_estimators = X and max_depth = Y (insert actual 

numbers). After fine-tuning performances of the Random Forest model, Hyperparameters which gave the best 

optimization results were used to retrain the Random Forest model. To ensure robust validation of the model’s 

performance, bootstrapping was conducted with (10,000) iterations. In each iteration, a random sample of the 

training data (with replacement) was used to retrain the RF model, and classifications were made on the test set. The 

average F1 score from each iterations were stored and is presented in the immediate work, then the average F1 score 

of each model was used as the final evaluation of the models performance. Analyzing the model this manner gave a 

fair assessment of the generalization ability and stability of the model. The PSO- optimized RF model fared well as 

against models with hyperparameters set at default thus validating the infallibility of the PSO in circumstances of 

hyperparameter vector optimization. Algorithm 1 presents the RF-PSO proposed classifier for mutations in the POLB 

gene. The proposed  

Algorithm 1: RF-PSO Classifier for Mutations in the POLB Gene 

 
Input:  Dataset (D)  

Output: accuracy, precision, sensitivity, specificity, and F1 score 

1: Begin 

2: Split (D, X_train, X_test, Y_train, Y_test) using stratified sampling; 

3: Define the objective_function (params); 

4:       n_estimators, max_depth  int(params[0]), int(params[1]); 

5:       if n_estimators < 1 or max_depth < 1 then return float('inf'); 

6:       Initialize RFmodel (rf)  RF(n_estimators=n_estimators, max_depth=max_depth); 

7:        rf.fit(X_train_strat, Y_train_strat) ; 

8:        y_pred  rf.predict(X_test_strat) ; 
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pseudocode is given in (Table 3). 

3.3.3. Performance Evaluation Metrics 

The performance of the machine learning models was assessed using several evaluation metrics and these five 

prominent class measures are defined (Accuracy, Precision, Recall, Specificity, and F1 Score). These metrics gave 

information on the ability of each model to accurately classify the cancer related mutations according to the POLB 

SNPs dataset. 

1- Accuracy: Determines the completion accuracy of the model and represents the ratio between the numbers of 

true results (both in the positive and in the negative classes) and the total number of cases, by the following 

equation. 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100                                                            (2) 

2- Precision: Shows the proportion of the correct positive results concerning all the positive results. That is, a high 

level of accuracy means that few erroneous readings are detected, by the following equation. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ×100                                       (3) 

3- Recall: It is also known as sensitivity and indicates the proportion of actual positive cases that have been 

recommended by the model, by the following equation. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ×100                          (4) 

4- Specificity: The model must accurately exclude cases that are non-cancerous, this is represented by the true 

negative parameter, by the following equation. 

 

9:        Calculate fitness score  -f1_score (Y_test_strat, y_pred, average='weighted'); 

10: return fitness score; 

11: end objective_function ; 

12: Define PSO parameter bounds (lb, ub) ; // lb = [10, 5], ub = [500, 50] 

13: 
best_params, best_f1  pso (objective_function, lb, ub, swarmsize=15, maxiter=20, 

minstep=1e-8, minfunc=1e-8); 

14: best_n_estimators  int(best_params[0]), best_max_depth  int(best_params [1]) ; 

15: 
rf_optimized  RandomForestClassifier(n_estimators=best_n_estimators, 

max_depth=best_max_depth, random_state=42) ; 

16: rf_optimized.fit(X_train_strat, Y_train_strat) ; 

17: y_pred_rf  rf_optimized.predict(X_test_strat) ; 

18: Initialize n_iterations  10000; 

19: Initialize dictionaries (accuracy, precision, sensitivity, specificity, and F1 score); 

20: for i  1 to n_iterations do 

21:          Bootstrap sampling on (X_train_strat, Y_train_strat); 

22:         Train the rf_optimized model on bootstrapped samples; 

23:         y_pred_bootstrap  rf_optimized. predict(X_test_strat); 

24:         Update accuracy, precision, recall, f1score, TNR_dict, TPR_dict for the current iteration; 

25: end for i; 

26: 
Calculate the final Measurement  accuracy, precision, sensitivity, specificity, and F1 

score (Y_test_strat, y_pred_rf); 

27: Return accuracy, precision, sensitivity, specificity, and F1 score ; 

28: End FR-PSO 
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Specificity =
𝑇𝑁

𝑇N+𝐹P
 ×100                                                                                                                          (5) 

5- F1 Score: The f-measure, considering both precision and recall at the same time and being ideal for use with non 

– balanced datasets, by the following equation. 

F1 Score = 2 ×=
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ×100                                                                                                     (6) 

RESULTS 

Precisely, we evaluated the performance of the proposed model on the cancer associated with a specific mutation 

testing dataset. Thereafter, we tested four fundamental classic machine learning algorithms (NB, KNN, SGD, LDA, 

GBM, AdaBoost, PA, HGB and RF) on the same dataset and compared results. Furthermore, we examined our model 

against hybrid machine learning models (RRFPSO). To attach theoretical proposals into concrete outcomes and code 

patterns, we use the Python machine learning libraries: sklearn, pandas, matplotlib, and seaborn. All algorithms were 

implemented in Python with Pandas 2.1.4, Scikit-learn 1.5.2, Matplotlib 3.7.1, and Seaborn 0.13.1 frameworks. Codes 

were executed on Google Colab with the support of the CPU Tesla T4 2000.148 MHz and 15GB RAM. The dataset's 

analysis and visualization findings are first shown. The outcomes of the proposal's execution and associated models 

are then provided. All the pretrained models are accessible on GitHub: 

https://github.com/yasserhessein/Cancer-associated-mutations-of-POLB. 

4.1. Data Analysis Outcome  

The dataset, which contains 813 samples, and 15 characteristics linked with POLB gene SNPs, was preprocessed to 

assure quality and representativeness. The statistical analysis of each characteristic, as shown in Appendix A, gave 

important insights, and histograms were utilized to display the distribution of the features. The figure 3 displays the 

class Distribution in the POLB Gene Variations Dataset, the number of neutral (class 0) 577 instance and deleterious 

(class 1) gene variations 236 instances. Another fact is that the distribution of the dataset is highly skewed with most 

of the data samples labelled as (class 0) neutral variations. 

 

Figure 4: Class Distribution in the POLB Gene. 

https://github.com/yasserhessein/Cancer-associated-mutations-of-POLB
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Figure 5: A histogram of POLB Gene Features. 

The histograms provide an overview of the distribution of each scaled feature. Most features have relatively normal 

distributions, though a few exhibits skewness as shown in figure 4. Most of these features are skewed towards specific 

value ranges (SIFTR, Polyphen2R, and PROVEANP show a clustering of values around 0.5 to 1.0). PP shows a long 

tail, with values spread across a wide range, indicating potential outliers or a non-uniform distribution. CADDS 

appears to be more normally distributed, whereas CADDR is highly skewed with many instances clustered at specific 

values (around 0, 1, and 2). CADDP shows some spread, but with a peak towards certain values, suggesting less 

variation and fathmmS and fathmmR have a skewed distribution with more values concentrated at the higher end of 

the scale. fathmmP shows a significant skew, with many instances around 0 and a few outliers at higher values. 

 

Figure 6: Features Heatmap of POLB Gene 
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The heatmap you shared presents Feature Correlation Matrix various features show figure 5 and Correlations 

between features range from -1 to 1 and where values closer to 1 indicate a strong positive correlation and values 

closer to -1 indicate the strong negative correlation. CADDS and CADDP are highly positively correlated with the 

coefficient of 0.95 indicating redundancy between these features. These two seem to be very closely related and could 

therefore be dropped or combined if one wants to minimize multicollinearity in the model. Furthermore, there is 

increased correlation (0.86) between CADDS and fathmmS which also analyze similar patterns from the data set. 

CADDS and CADDR are also negatively related with coefficient of (-0.47) implying that they have an opposite 

direction. These opposing tendencies may signify different patterns in the dataset PhyloP and phyloPR correlate 

almost perfectly positively (0.99) which means that PhyloP and phyloPR are almost identical. To make one of these 

features a constant one - which frequently might be helpful to enhance the variance of additional machine learning 

features by excluding features that are highly correlated with each other - we found that the features fathmmS and 

fathmmP are considerably correlated with a correlation coefficient of 0.86, thus it might imply that they measure 

similar aspects of variation in the dataset. The problem of multicollinearity could occur if both are retained in the 

model. There is a moderate positive correlation between PROVEAN and Polyphen2 (0.83), which indicates they may 

do similar things: provide similar data. CADDP bears a moderate negative relationship with CADDR (-0.66), 

indicating that these two metrics have some inverse movement. 

4.2. Feature Importance Random Forest Outcome 

In this outcome stage, Gini impurity was utilized in the Random Forest (RF) to rank the feature importance. As show 

in figure 6, the top three features contributing to cancer-related mutations in the POLB gene were CADDS importance 

of 0.122, CADDP importance of 0.102, and fathmmR importance of 0.095. These features produced the best 

performers that also showed a high degree of purity implying their importance in this classification of deleterious 

mutations. Other notable features include fathmmS importance of 0.095, CADDR importance of 0.092, and phyloPR 

importance of 0.086, all contributing meaningfully to the model's performance. 

 

Figure 7: Feature Importance Outcome 

4.3. Machine Learning Outcome 

The machine learning models used for classification of POLB SNPs dataset were expected outcome of cancer risk 

attached with mutation in POLB gene as presented in the Table 3. In this paper, we have implemented several 

classical and hybrid machine learning algorithms, and their performance were compared since factors like accuracy, 

precision, recall, specificity and F1 score. The Random Forest with Particle Swarm Optimization RF-PSO hybrid 

model proved to be best among the classifiers having accuracy of 84.06%, precision of 84.49%, recall of 84.06%, 

specificity of 90.55% and F1-score of 83.81%. The outcompeting with the RF model has again demonstrated the 
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optimal performance of the RF-PSO model for feature selection and minimizing false negatives on which the cancer 

risk prediction is based. Similarly, Naive Bayes Classifier, K Nearest Neighbors, Gradient Boosting Machines, Ada 

Boost Machine, and few others performed different levels of wellness. Although, both GBM and Hist Gradient 

Boosting exhibited good accuracy percentages of 80.05% and 80.13%, respectively they lacked in the precision and 

recall of RF-PSO. This is because, according to the research carried out herein, the application of the PSO algorithm 

to the fine-tuning of the RF model yields a higher level of predictive accuracy in the identification of cancer related 

mutations. These improvements in performance demonstrate the effectiveness of the hybrid machine learning 

methods in more complicated genetic databases. 

Table 3: Performance of Machine Learning Models 

 

The confusion matrices shown in the figures 5 reveal the performance of different machine learning models for 

classifying risk for cancer from POLB SNPs dataset. The best model is the RF-PSO providing an equal proportion of 

misclassified instances in terms of false negative and false positive, crucial for cancer risk prediction. Random Forest 

and Gradient Boosting Machines give relatively good accuracy but have higher false negative values. Hence, only 

three of the models committee all the positive instances but have several false positives; Passive Aggressive and Linear 

Discriminant Analysis fail to classify most positive instances and are therefore less preferable. 

 

Figure 8: Confusion Matrices Performance all the Models 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1 

Score 

Naive Bayes 47.03 81.82 47.03 25.42 43.90 

K Nearest Neighbors 70.28 68.11 70.28 87.32 67.56 

Stochastic Gradient 

Descent 

42.65 81.17 42.65 19.26 37.50 

Linear Discriminant 

Analysis 

72.26 69.61 72.26 93.91 66.92 

Gradient Boosting 

Machines 

80.05 80.41 80.05 94.80 77.91 

AdaBoost 70.72 70.13 70.72 83.41 69.63 

Passive Aggressive 71.04 50.96 71.04 100.00 59.21 

Extra Trees 80.80 81.09 80.80 88.66 80.42 

Hist Gradient Boosting 80.13 80.19 80.13 89.56 79.46 

Random Forest 81.42 81.63 81.42 89.59 80.95 

Random Forest PSO 84.06 84.49 84.06 90.55 83.81 

 



Journal of Information Systems Engineering and Management 
2025, 10(46s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 54 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

DISCUSSION 

The results in this study highlight the impact of model selection and feature importance for identifying the risk of 

cancer for POLB gene mutations. Among the classical and hybrid machine learning models tried herein, the proposed 

(RF-PSO) hybrid model provides the overall highest accuracy, precision, specificity, recall and F1 score all at once. 

This result demonstrates the importance of combining biomarkers in improving the accuracy of sophisticated 

genomics data. RF with PSO fine-tuning was more helpful in reducing false negatives, which is crucial for 

performance of cancer risk prediction, because omission of deleterious variants is a detrimental activity. Surprisingly, 

the original model of RF was slightly less accurate than the RF-PSO hybrid that demonstrates that optimization 

approaches such as PSO can fine-tune the model. This optimization probably assisted in the feature selection process 

and in general led to better classification on the deleterious or neutral mutations. Other models include GBM and 

Hist GB that also did a reasonable job of classification but poor in precision and recall. They are therefore prone to 

misclassifying the instances. The dataset was skewed towards the first class, class 0 corresponded to the neutral 

instances which undermined the performance of NBs, and SGD generally had a low accuracy and F1 scores. This 

means that for simple models or models that have not incorporated an optimization method, the negative impact of 

imbalanced data will be felt and the confusion matrices showed that models like PA and LDA though capable of 

classifying many negative instances, completely missed the positive or deleterious mutations making such models 

unfit for this purpose. The RF Gini importance feature showed that important features in predicting cancerous 

mutations included CADDS, CADDP and fathmmR. These features exhibited high levels of purity and significantly 

contributed to model performance. However, high correlations among some features suggested redundancy, which 

could be addressed in future models to reduce multicollinearity and improve efficiency. 

CONCLUSION 

In conclusion, this study demonstrates the importance of both classical and hybrid machine learning approaches in 

the domain of cancer risk classification. The RF-PSO hybrid model stood out as the most reliable and accurate method 

for classifying mutations in the POLB gene. The findings emphasize that optimizing models through algorithms like 

PSO can enhance the accuracy and robustness of predictions, particularly when dealing with complex and imbalanced 

genetic datasets. Additionally, feature importance analysis revealed that specific features played a pivotal role in 

model performance, which offers valuable insights for future research on genetic mutation analysis. While the RF-

PSO model delivered the best results, the performance of Gradient Boosting Machines and Random Forest was also 

noteworthy. Future work should focus on addressing class imbalance and exploring other optimization techniques to 

further refine predictive models. Moreover, reducing feature redundancy and leveraging more advanced feature 

selection methods may improve model performance. Overall, the application of hybrid machine learning models, 

particularly those fine-tuned with optimization techniques, offers a promising path forward in the field of cancer 

genetics, providing more accurate and reliable tools for risk classification. 

Appendix  

Table 4: POLB Gene Mutation Features Statistics 

Measure #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 

Minimum 1.00 -

1.00 

-

1.00 

-

1.00 

-

1.00 

-

1.00 

-

0.43 

0.02 0.17 0.00 0.00 0.00 -

1.13 

0.03 0.00 

25% 36.00 0.23 0.10 -

1.00 

0.25 0.00 2.18 0.44 20.70 0.84 0.44 1.00 3.26 0.51 0.00 

50%  117.00 0.53 0.34 -

1.00 

0.57 0.00 3.09 0.62 23.60 0.94 0.59 1.00 5.84 0.69 0.00 

75% 206.00 0.72 0.67 0.00 0.77 1.00 3.98 0.90 26.80 0.98 0.82 1.00 7.85 0.85 1.00 

Maximum 335.00 0.91 0.91 2.00 0.98 1.00 10.01 33.00 53.00 0.99 0.96 1.00 9.93 0.99 1.00 

Mean 127.36 0.45 0.32 -

0.18 

0.47 0.44 3.05 3.17 21.98 0.86 0.60 0.94 5.43 0.65 0.29 
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Standard 

Deviation 

97.87 0.44 0.50 1.12 0.44 0.59 1.74 7.37 9.91 0.22 0.23 0.24 2.96 0.24 0.45 
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