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ARTICLE INFO ABSTRACT

Received: 26 Dec 2024 Cancer formation and development are mainly attributable to DNA damage. When DNA is

damaged, the rate of genetic mutations increases, hence the need for DNA repair mechanisms.

Another essential element that should be further considered while discussing the base excision

Accepted: 22 Feb 2025 repair and its impact on the maintenance of genome stability is DNA polymerase  (Polf),
encoded by the POLB gene. This enzyme is used in humans to fix damaged DNA strings. The
purpose of this study is to develop an accurate risk predictive model for cancer associated with a
specific mutation. Hybrid Machine Learning (HML) classification algorithm has been applied to
the POLB SNPs dataset. Random Forest combined with Particle Swarm Optimization (PSO)
algorithm's hyperparameters to find and extract the best parameters. Through the models, the
RF-PSO demonstrated superior performance, achieving an accuracy of 84.06%, precision of
84.49 %, sensitivity of 84.06%, specificity of 90.55%, and an F1 score of 83.81%.To verify the
performance of the proposed algorithm, the accuracy of the suggested RF-PSO classifier model
was compared with another state-of-the-art model classifier, Naive Bayes, K Nearest Neighbors,
Stochastic Gradient Descent, Linear Discriminant Analysis, Gradient Boosting Machines,
AdaBoost, Passive Aggressive, Extra Trees, and Hist Gradient Boosting. The results also proved
the superior ability of the implemented RF-PSO model classifier in the classification to
investigate the relationship between POLB gene variations and their potential role in cancer
onset. providing a robust foundation for further clinical applications and which will further help
in better cancer diagnosis and treatment of the disease.
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INTRODUCTION

Cancer is a multifactorial disease driven by genetic mutations and DNA damage, which are well documented to be
instrumental in cancer development [1]. The American Cancer Society estimates the number of new cancer cases and
cancer deaths each year in the United States and offers the most current information about population-based cancer
incidence and mortality by using data from the National Cancer Institute's central cancer registries up to 2020 and
mortality data collected by the National Center for Health Statistics up to 2021. According to the data indicated by
International Agency for Research on Cancer, updated for the year 2024 reveal that 2,001,140 new cases of cancer
and 611,720 cancer related deaths will occur in the United States [2]. Clearly, DNA damage builds over time and can
cause a higher risk of mutations and thus, require operational DNA repair processes to prevent damage build-up [3].
Among these repairs mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB)
and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason
for the biphasic feature of mammalian cell repair curves [4]. A study by Sawyer DL [5] has revealed that the residues
involved in coordination of the? -phosphate group of the ANTP are critical in determining nucleotide selectivity,
polymerase activity and a fidelity. This study also draws attention to future investigation of this novel human POLB
variant in vivo. Since Pol? is responsible for repairing DNA, any genetic variations of POLB may interfere with repair
and enable mutation which can promote cancer development. DNA repair enzyme genes are known to include several

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 43

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(46s)

e-ISSN: 2468-4376

https://www jisem-journal.com/ Research Article

SNPs, some of which have a significant impact on their activity [6,7]. In some cases, SNPs can decrease the efficiency
of DNA repair, accumulate genomic mutations, and increase the vulnerability of an individual to developing cancer

[8].

This paper offers an intelligent hybrid machine learning model to enhance cancer onset by developing a risk
prediction model. Its main aim is to investigate the relationship between POLB gene variations and their role in
cancer onset by developing a risk prediction model. The contributions of the paper are:

Propose a new learning algorithm (labeled RF-PSO) that classifies cancer associated with a specific mutation.
Preprocess, analyze and normalize the POLB gene variations dataset.
To utilize Random Forest for ranking features related to cancer-associated mutations.
Prove experimentally that proposed model outperforms other Intelligent models minimize the negative
weighted F1 score.

5. Examine ten machine learning models on POLB gene variations and then demonstrate the most effective

detector through experiments.

The subsequent sections of the paper are structured as follows: Section 2 review of the literature, review of the
literature, followed by the methodology in Section 3.

Hwpr

In Section 4, the performance values were presented, and the results were compared. The section 5, discussion. And
the final section 6 conclusion.

LITERATURE REVIEW

Cancer is a multifaceted pathology that relies on inheritable changes in the genetic structure of an organism that led
to disruption of optimal performance of the various units of its cells. In addition, the application of machine learning
(ML) in oncology has a great potential to increase the effectiveness of diagnostics and treatment of complex diseases
including Cancer of Unknown Primary (CUP). The conventional ML algorithms, fine-tuned by large datasets on
molecular analysis, can identify the primary site of metastatic eccrine tumors with significant precision. It has been
reported that genomic profiling driver mutations and CNVs integrated into the diagnostic process of CUP and offer
valuable information about tumor-specific oncogenic changes and Mutational signatures (MS) have also been
described as useful in the diagnosis of CUP, since there are known signature MS associated with certain causes such
as UV light induced DNA damage and tobacco [9].In the case of PC, somatic mutations on POLB gene are considered
to affect the enzyme to its functionality and hinder the biological process of microsatellite; instability, loss of
heterozygosity which result to the advancement of prostate cancer. Similarly, the studies conducted on the POLB
gene concerning the prostate cancer show that they have over (20) mutations most of which are found on more than
(50%) of the tumor chromosomes proving their importance in cancer development [10]. Valencia et. al [11], the
LocalFilterNet (LFNet) is used for localizing protein-coding potential combined with enhanced classification by
learning translational RNA to proteins. KafiKang et. al., [12] in a study to analyze turkey reovirus variants was able
to use clustering methods to distinguish new variant after the other and was therefore able to demonstrate the
usefulness of machine learning in identifying these emerging variants. In Black et. al,[13] the authors discussed the
use of hyperspectral imaging in tumor classification problems and showed that machine learning can be used in
discriminating between different types of tumors. Lorkowski et. al., [14] also highlighted the role of artificial
intelligence and machine learning in diagnosis and management of Cancer of Unknown Primary (CUP); the authors
underlined the changes that these technologies bring to the approach of difficult diagnostics. Tamehisa et. al., [15]
also developed models of subtypes of uterine leiomyoma under the umbrella of machine learning and applied support
vector classification and logistic regression in diagnosis. Zuo et al., [16] stated that the evaluation of the predictive
model's performance should involve cross-center data validation and pointed out that the visualization and
interpretation of these models is imperative to machine learning. In the work of Zhao et. al., [17] a transformer
network for EGFR classification was proposed under the name of GMILT that combines multi-instance learning and
discriminative weakly supervised feature learning for enhanced predictive capability. In a study by Nakagaki et. al.,
[18], a deep learning-based approach was adopted for prediction of IDH1 gene mutation using histopathological
imaging and clinical data and established the possibility of using machine learning in genetic mutation prediction.
Endometrial cancer patients have been identified using stemness-related signatures. Pang et. al, [19] discuss the
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concepts of machine learning algorithm subtype risk modeling for discriminating between the prognosis, immune
response, and somatic mutation. Davies et. al. [20] used molecular dynamics and machine learning for mutational
hotspots classification. The combined strategy of random forest classification and feature selection highlights that
the topological features are useful for the classification of adduct sites. Currently, the literature review indicates that
machine learning and bioinformatics significantly contribute to the analysis of changes in POLB associated with
cancer. These tools offer important information on the cancer and may be helpful for identifying potential targets for
treatment. Marchevsky et al. [22] studied that, with the help of LDA models, 62.5% to 87.5% cases have been
classified perfectly. Cohen's Kappa values for the compared classifications given by all models ranged from 0.25 to
1.0. They opined that by adopting artificial neural network, (ANN) classifications employing DNA methylation
signature of SCLC and NSCLC cell lines possessed substantial to perfect concordance. However, as illustrated in the
last entry of Table 4, LDA models had only poor to substantial agreement. Their work backs the possibility of using
ANN analysis of DNA methylation data in the creation of automated lung cancer classification models.

Recently, Alkhanbouli et al. [23] focused on the effect of POLB gene product, DNA polymerase? (Pol?), involved in
DNA repair and cancer. The mutations in POLB may lead to different DNA repair mechanisms, including Single
Nucleotide Polymorphisms (SNPs). SNP sequences were analyzed bioinformatically to obtain extract the features
while eight risk models were built using machine learning algorithms to identify cancer risk due to the mutations.
XGBoost, Random Forest, and Weighted random forest turned out to provide the best ensemble solutions with the
accuracy of 82%. The research highlights the role of POLB gene polymorphisms and reveals the usefulness of machine
learning-based approaches in genomic cancer investigations.

MATERIALS AND METHODS

The three-stage approach suggested for the study of the potential association between genetic polymorphisms in the
POLB gene and cancer development is revealed. The nature and design of this methodology in terms of the flow of
the different steps are shown in the following Figure 1. Below are the details of each stage:

The Three Stage
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Figure 1: Proposed Methodology Model
3.1. The First Stage
3.1.1. Data Acquisition

We used the dataset available in the Mendeley Data repository at [24], including 15 features and 813 samples or
instances. The SNPs and their bioinformatics attributes associated with the POLB gene. These specific SNPs are
associated with gene alterations whose occurrence is related to the development of cancer. Table 1 shown the dataset
description of the POLB gene dataset.
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Table 1: Dataset Description.

Description Count
Number of Features 15
Sample Count 813

Table 2 shows 15 features, consisting of integers, floats, and descriptions.

Table 2: Data sample description types.

No. | Feature Datatype | Description
Name

1# | PP int64 Prediction score for protein impact (possibly from PolyPhen).

2# | SIFTR float64 Score predicting the tolerance or intolerance of a mutation (SIFT).

3# | Polyphen2R float64 PolyPhen-2 score assessing the damaging potential of mutations (Radical
category).

4# | Polyithen2P int64 Likely a variant of PolyPhen-2 scores (Potential category).

5# | PROVEANR float64 PROVEAN score indicating the mutation's deleterious potential (Risk
category).

6# | PROVEANP int64 PROVEAN score indicating the mutation's neutral or positive impact.

7# | CADDS float64 CADD score estimating the deleteriousness of a mutation.

8# | CADDR float64 CADD score with reference data for assessing mutation impact.

9# | CADDP float64 CADD score with population data for predicting mutation effects.

10# | fathmmS float64 FATHMM score predicting the functional impact of a mutation (S category).

11# | fathmmR float64 FATHMM score predicting mutation effects (Risk category).

12# | fathmmP int64 FATHMM score predicting mutation impact (Potential category).

13# | phyloP float64 Phylogenetic conservation score, indicating evolutionary importance.

14# | phyloPR float64 PhyloP score for a specific region (Risk category).

15# | class int64 Target class indicating whether the mutation is deleterious (1) or neutral (0).

3.1.2. Data Analysis

This stage focuses on identifying the SNPs are linked to gene variations associated with cancer onset characteristics
that enable the research's desired expectations. Ensuring representativeness is the main target of this stage. For each
feature, statistical functions have been performed to calculate minimum, maximum, mean, 25%, 50% and 75%, and
standard deviation (as computed in Appendix A). A histogram has been plotted for visualization. Instructions were
used to produce a heatmap of the correlation matrix that was determined. Every cell contains the value of a
correlation coefficient of two characteristics. The coefficient values range from -1 to 1 with -1 basing a perfect negative
association with 1 basing a perfect positive association and 0 basing no association at all.

3.2. The Second Stage
3.2.1. Feature Importance Random Forest

In this stage, the Random Forest algorithm is used for feature importance analysis, In Random Forest, feature
importance is computed based on how much a particular feature contributes to reducing the impurity (Gini impurity
or entropy) across all the trees in the forest. Specifically, feature importance for a feature f is calculated as the sum
of the decrease in node impurity across all trees in the forest, weighted by the number of samples that reach the node
as shown by the following equation:
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3.3. The Three Stage

In this stage, we implemented a variety of machine learning algorithms and divided them into classic machine
learning and hybrid machine learning

3.3.1. Classic machine learning

They are now passed on to the classical machine learning classifiers to train an ML model that could classify cancer
associated with a specific mutation as deleterious or neutral. Briefinformation about the machine learning classifiers
considered for the research is discussed [21].

Naive Bayes (NB):

A model integrating a probabilistic classifier following Bayes’ Theorem and supposing that features are independent.
Indeed, it is easy to implement, fast and efficient particularly for text classification.

K-Nearest Neighbors (KNN):

A global instance-based learning algorithm that forms the basis of many algorithms. It classifies the result from data
points by voting as informed by the k nearest training samples in the feature space. It works well especially in low
dimensions but when dealing with big data or data with many features, it becomes slow and least accurate.

Stochastic Gradient Descent (SGD):

Algorithms utilized to arrive at a minimum of a loss function accomplished by subsequent adjustments of the size of
a weight vector, particularly relevant to massive ML computations. Res ranges from fast and effective to slow and
ineffective depending on hyperparameters such as the learning rate.

Linear Discriminant Analysis (LDA):

A technique that requires that the values of the target variables from each class are normally distributed. It throws
data into lower-dimensional space where the discrimination between classes is at its lowest. It is used frequently in
dimensionality reduction and classification process.

Gradient Boosting Machines (GBM):

A capable means of constructing multiple decision trees one after another in a variety of sequences. One tree adjusts
for mistakes made by the previous tree, and so on, to enhance the accuracy. While GBMs are useful for structured or
tabular data they are not always the fastest to train.

AdaBoost (AdaB):

A boosting algorithm that makes a strong classifier from a few relatively weak classifiers, which are commonly but
not necessarily decision trees. It focuses on training on examples that it got wrong in the past trying to make it learn
better. Suitable for the treatment of datasets with a limited number of observations on the data and a large number
on the classes.

Passive Aggressive (PA):

An evaluation methodology or algorithm for learning in large data using Internet or World Wide Web environment.
It trains it only when it makes wrong prediction or prediction of type aggressive and otherwise leaves the model the
same or makes a prediction of type passive. Fairly often applied to text categorization problems.

Extra Trees (ET):

An instance of the ensemble method, which resembles Random Forests, but which has a different way of selecting
splits in trees. It splits the features randomly which makes the model train faster and more random yet very accurate
for classification and regression.

Hist Gradient Boosting (HGB):
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A type of gradient boosting that starts by finding a correlation between the features and the target value before
extending towards the production of models with higher or lower accuracy needed for big data sets. It employs the
binding of continuous variables in histogram form leading to faster and more efficient memory usage as compared
to the standard gradient boosting algorithms.

Random Forest (RF):

A popular technique that creates different decision trees and integrates the output of each of them (average for
regression analysis and voting system for classification). First, it is built to be strong, it deals with the case when some
values are missing, and finally, it minimizes the problem of overfitting as it gives an average of several trees.

3.3.2. Hybrid machine learning

This paper investigates the application of an innovative classification algorithm, the Random Forest with Particle
Swarm Optimization. The RF technique was used to establish the modeling of the nonlinear mapping function
between the input features and the target output. To enhance the RF’s performance, Particle Swarm Optimization
(PSO) was applied to tune two critical hyperparameters: The two tuning parameters include the number of
estimators; that is the number of trees to be constructed (n_estimators) and the maximum depth of the trees to be
constructed (max_depth). Three hyperparameters are noteworthy as they have major impacts on model accuracy
and generalization capability. Ask those tuning them to make the right adjustments to obtain expert performance.
Consequently, the mechanism of PSO optimization was developed to identify the least achievable value of the negative
weighted F1 score, which represents the objective function. For each set of hyperparameters, an RF model was
generated from a stratified training dataset and further tested on a stratified test dataset. The main goal was to achieve
a high F1 score to balance the value of precision as well as recall in the last model. As a means of minimizing
randomness in the effect of the RF, PSO was done using (100) particles for (50) iterations, while limiting the range
of n_estimators between (10) and (500) and max_depth between (5) and (50). As a result of performing PSO, the
best values attained for these hyperparameters were for n_estimators = X and max_depth = Y (insert actual
numbers). After fine-tuning performances of the Random Forest model, Hyperparameters which gave the best
optimization results were used to retrain the Random Forest model. To ensure robust validation of the model’s
performance, bootstrapping was conducted with (10,000) iterations. In each iteration, a random sample of the
training data (with replacement) was used to retrain the RF model, and classifications were made on the test set. The
average F1 score from each iterations were stored and is presented in the immediate work, then the average F1 score
of each model was used as the final evaluation of the models performance. Analyzing the model this manner gave a
fair assessment of the generalization ability and stability of the model. The PSO- optimized RF model fared well as
against models with hyperparameters set at default thus validating the infallibility of the PSO in circumstances of
hyperparameter vector optimization. Algorithm 1 presents the RF-PSO proposed classifier for mutations in the POLB
gene. The proposed

Algorithm 1: RF-PSO Classifier for Mutations in the POLB Gene

Input: Dataset (D)
Output: accuracy, precision, sensitivity, specificity, and F1 score

1: Begin

2:  Split (D, X_train, X_test, Y_train, Y_test) using stratified sampling;

3:  Define the objective_function (params);

4: n_estimators, max_ depth « int(params[o]), int(params[1]);

5: if n_estimators < 1 or max_depth < 1 then return float('inf');

6: Initialize RFmodel (rf) « RF(n_estimators=n_ estimators, max_depth=max_ depth);
7: rf.fit(X_train_strat, Y train_strat) ;

8: y_pred <« rf.predict(X_test_strat) ;
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9: Calculate fitness score < -f1_score (Y_test_strat, y_pred, average='weighted");
10: return fitness score;

11: end objective_function ;

12: Define PSO parameter bounds (Ib, ub) ; // 1b = [10, 5], ub = [500, 50]

best_params, best_f1 < pso (objective_function, 1b, ub, swarmsize=15, maxiter=20,
minstep=1e-8, minfunc=1e-8);

14: best_n_estimators « int(best_params[0]), best_max_depth <« int(best_params [1]) ;
rf_optimized <- RandomForestClassifier(n_estimators=best_n_ estimators,
max_depth=best_max_depth, random_ state=42) ;

16: rf_optimized.fit(X_train_strat, Y_train_strat) ;

17:  y_pred_rf « rf_optimized.predict(X_test_strat) ;

18: Initialize n_iterations < 10000;

19: Initialize dictionaries (accuracy, precision, sensitivity, specificity, and F1 score);

13:

15:

20: fori<« 1ton_iterations do

21: Bootstrap sampling on (X_train_strat, Y_train_strat);

22: Train the rf_optimized model on bootstrapped samples;

23: y_pred_bootstrap « rf_optimized. predict(X_test_strat);

24: Update accuracy, precision, recall, fiscore, TNR_dict, TPR_dict for the current iteration;

25: end for i;

Calculate the final Measurement < accuracy, precision, sensitivity, specificity, and F1
score (Y_test_strat, y_pred_rf);

27: Return accuracy, precision, sensitivity, specificity, and F1 score ;

28: End FR-PSO

26:

pseudocode is given in (Table 3).
3.3.3. Performance Evaluation Metrics

The performance of the machine learning models was assessed using several evaluation metrics and these five

prominent class measures are defined (Accuracy, Precision, Recall, Specificity, and F1 Score). These metrics gave

information on the ability of each model to accurately classify the cancer related mutations according to the POLB

SNPs dataset.

1- Accuracy: Determines the completion accuracy of the model and represents the ratio between the numbers of

true results (both in the positive and in the negative classes) and the total number of cases, by the following
equation.

TP+TN
Accuracy = ———— % 100 (2)
TP+FP+TN+FN

2- Precision: Shows the proportion of the correct positive results concerning all the positive results. That is, a high

level of accuracy means that few erroneous readings are detected, by the following equation.

Precision = TP X100 3)
T TP+FP 3

3- Recall: It is also known as sensitivity and indicates the proportion of actual positive cases that have been
recommended by the model, by the following equation.

TP
Recall = TPIEN X100 (4)

4- Specificity: The model must accurately exclude cases that are non-cancerous, this is represented by the true
negative parameter, by the following equation.
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Specificity = Napp X100 (5)

5- F1 Score: The f-measure, considering both precision and recall at the same time and being ideal for use with non
— balanced datasets, by the following equation.

PrecisionxRecall
F1 Score = 2 x= —SCSlOMXREAT 100 (6)

Precision+Recall

RESULTS

Precisely, we evaluated the performance of the proposed model on the cancer associated with a specific mutation
testing dataset. Thereafter, we tested four fundamental classic machine learning algorithms (NB, KNN, SGD, LDA,
GBM, AdaBoost, PA, HGB and RF) on the same dataset and compared results. Furthermore, we examined our model
against hybrid machine learning models (RRFPSO). To attach theoretical proposals into concrete outcomes and code
patterns, we use the Python machine learning libraries: sklearn, pandas, matplotlib, and seaborn. All algorithms were
implemented in Python with Pandas 2.1.4, Scikit-learn 1.5.2, Matplotlib 3.7.1, and Seaborn 0.13.1 frameworks. Codes
were executed on Google Colab with the support of the CPU Tesla T4 2000.148 MHz and 15GB RAM. The dataset's
analysis and visualization findings are first shown. The outcomes of the proposal's execution and associated models
are then provided. All the pretrained models are accessible on GitHub:

https://github.com/yasserhessein/Cancer-associated-mutations-of-POLB.

4.1. Data Analysis Outcome

The dataset, which contains 813 samples, and 15 characteristics linked with POLB gene SNPs, was preprocessed to
assure quality and representativeness. The statistical analysis of each characteristic, as shown in Appendix A, gave
important insights, and histograms were utilized to display the distribution of the features. The figure 3 displays the
class Distribution in the POLB Gene Variations Dataset, the number of neutral (class 0) 577 instance and deleterious
(class 1) gene variations 236 instances. Another fact is that the distribution of the dataset is highly skewed with most
of the data samples labelled as (class 0) neutral variations.

Class Distribution in POLB Gene Variations Dataset
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500 4

400
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Figure 4: Class Distribution in the POLB Gene.
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Figure 5: A histogram of POLB Gene Features.

The histograms provide an overview of the distribution of each scaled feature. Most features have relatively normal

distributions, though a few exhibits skewness as shown in figure 4. Most of these features
value ranges (SIFTR, Polyphen2R, and PROVEANP show a clustering of values around

are skewed towards specific
0.5 to 1.0). PP shows a long

tail, with values spread across a wide range, indicating potential outliers or a non-uniform distribution. CADDS
appears to be more normally distributed, whereas CADDR is highly skewed with many instances clustered at specific
values (around o, 1, and 2). CADDP shows some spread, but with a peak towards certain values, suggesting less
variation and fathmmsS and fathmmR have a skewed distribution with more values concentrated at the higher end of
the scale. fathmmP shows a significant skew, with many instances around o and a few outliers at higher values.
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Figure 6: Features Heatmap of POLB Gene
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The heatmap you shared presents Feature Correlation Matrix various features show figure 5 and Correlations
between features range from -1 to 1 and where values closer to 1 indicate a strong positive correlation and values
closer to -1 indicate the strong negative correlation. CADDS and CADDP are highly positively correlated with the
coefficient of 0.95 indicating redundancy between these features. These two seem to be very closely related and could
therefore be dropped or combined if one wants to minimize multicollinearity in the model. Furthermore, there is
increased correlation (0.86) between CADDS and fathmmsS which also analyze similar patterns from the data set.
CADDS and CADDR are also negatively related with coefficient of (-0.47) implying that they have an opposite
direction. These opposing tendencies may signify different patterns in the dataset PhyloP and phyloPR correlate
almost perfectly positively (0.99) which means that PhyloP and phyloPR are almost identical. To make one of these
features a constant one - which frequently might be helpful to enhance the variance of additional machine learning
features by excluding features that are highly correlated with each other - we found that the features fathmmsS and
fathmmP are considerably correlated with a correlation coefficient of 0.86, thus it might imply that they measure
similar aspects of variation in the dataset. The problem of multicollinearity could occur if both are retained in the
model. There is a moderate positive correlation between PROVEAN and Polyphen2 (0.83), which indicates they may
do similar things: provide similar data. CADDP bears a moderate negative relationship with CADDR (-0.66),
indicating that these two metrics have some inverse movement.

4.2. Feature Importance Random Forest Outcome

In this outcome stage, Gini impurity was utilized in the Random Forest (RF) to rank the feature importance. As show
in figure 6, the top three features contributing to cancer-related mutations in the POLB gene were CADDS importance
of 0.122, CADDP importance of 0.102, and fathmmR importance of 0.095. These features produced the best
performers that also showed a high degree of purity implying their importance in this classification of deleterious
mutations. Other notable features include fathmmsS importance of 0.095, CADDR importance of 0.092, and phyloPR
importance of 0.086, all contributing meaningfully to the model's performance.

CADDS
CADDP
fathmmR
fathmms
CADDR
phyloPR
phyloP
PROVEANR
PP

SIFTR
Polyphen2R
Polylhen2p
PROVEANP

fathmmp

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Importance

Figure 7: Feature Importance Outcome
4.3. Machine Learning Outcome

The machine learning models used for classification of POLB SNPs dataset were expected outcome of cancer risk
attached with mutation in POLB gene as presented in the Table 3. In this paper, we have implemented several
classical and hybrid machine learning algorithms, and their performance were compared since factors like accuracy,
precision, recall, specificity and F1 score. The Random Forest with Particle Swarm Optimization RF-PSO hybrid
model proved to be best among the classifiers having accuracy of 84.06%, precision of 84.49%, recall of 84.06%,
specificity of 90.55% and Fi-score of 83.81%. The outcompeting with the RF model has again demonstrated the
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optimal performance of the RF-PSO model for feature selection and minimizing false negatives on which the cancer
risk prediction is based. Similarly, Naive Bayes Classifier, K Nearest Neighbors, Gradient Boosting Machines, Ada
Boost Machine, and few others performed different levels of wellness. Although, both GBM and Hist Gradient
Boosting exhibited good accuracy percentages of 80.05% and 80.13%, respectively they lacked in the precision and
recall of RF-PSO. This is because, according to the research carried out herein, the application of the PSO algorithm
to the fine-tuning of the RF model yields a higher level of predictive accuracy in the identification of cancer related
mutations. These improvements in performance demonstrate the effectiveness of the hybrid machine learning
methods in more complicated genetic databases.

Table 3: Performance of Machine Learning Models

Classifier Accuracy Precision Recall Specificity F1
(%) (%0) (%) (%) Score

Naive Bayes 47.03 81.82 47.03 25.42 43.90
K Nearest Neighbors 70.28 68.11 70.28 87.32 67.56
Stochastic Gradient 42.65 81.17 42.65 19.26 37.50
Descent
Linear Discriminant 72.26 69.61 72.26 93.91 66.92
Analysis
Gradient Boosting 80.05 80.41 80.05 94.80 77.91
Machines
AdaBoost 70.72 70.13 70.72 83.41 69.63
Passive Aggressive 71.04 50.96 71.04 100.00 59.21
Extra Trees 80.80 81.09 80.80 88.66 80.42
Hist Gradient Boosting 80.13 80.19 80.13 89.56 79.46
Random Forest 81.42 81.63 81.42 89.59 80.95
Random Forest PSO 84.06 84.49 84.06 90.55 83.81

The confusion matrices shown in the figures 5 reveal the performance of different machine learning models for
classifying risk for cancer from POLB SNPs dataset. The best model is the RF-PSO providing an equal proportion of
misclassified instances in terms of false negative and false positive, crucial for cancer risk prediction. Random Forest
and Gradient Boosting Machines give relatively good accuracy but have higher false negative values. Hence, only
three of the models committee all the positive instances but have several false positives; Passive Aggressive and Linear
Discriminant Analysis fail to classify most positive instances and are therefore less preferable.

Figure 8: Confusion Matrices Performance all the Models
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DISCUSSION

The results in this study highlight the impact of model selection and feature importance for identifying the risk of
cancer for POLB gene mutations. Among the classical and hybrid machine learning models tried herein, the proposed
(RF-PSO) hybrid model provides the overall highest accuracy, precision, specificity, recall and F1 score all at once.
This result demonstrates the importance of combining biomarkers in improving the accuracy of sophisticated
genomics data. RF with PSO fine-tuning was more helpful in reducing false negatives, which is crucial for
performance of cancer risk prediction, because omission of deleterious variants is a detrimental activity. Surprisingly,
the original model of RF was slightly less accurate than the RF-PSO hybrid that demonstrates that optimization
approaches such as PSO can fine-tune the model. This optimization probably assisted in the feature selection process
and in general led to better classification on the deleterious or neutral mutations. Other models include GBM and
Hist GB that also did a reasonable job of classification but poor in precision and recall. They are therefore prone to
misclassifying the instances. The dataset was skewed towards the first class, class 0 corresponded to the neutral
instances which undermined the performance of NBs, and SGD generally had a low accuracy and F1 scores. This
means that for simple models or models that have not incorporated an optimization method, the negative impact of
imbalanced data will be felt and the confusion matrices showed that models like PA and LDA though capable of
classifying many negative instances, completely missed the positive or deleterious mutations making such models
unfit for this purpose. The RF Gini importance feature showed that important features in predicting cancerous
mutations included CADDS, CADDP and fathmmR. These features exhibited high levels of purity and significantly
contributed to model performance. However, high correlations among some features suggested redundancy, which
could be addressed in future models to reduce multicollinearity and improve efficiency.

CONCLUSION

In conclusion, this study demonstrates the importance of both classical and hybrid machine learning approaches in
the domain of cancer risk classification. The RF-PSO hybrid model stood out as the most reliable and accurate method
for classifying mutations in the POLB gene. The findings emphasize that optimizing models through algorithms like
PSO can enhance the accuracy and robustness of predictions, particularly when dealing with complex and imbalanced
genetic datasets. Additionally, feature importance analysis revealed that specific features played a pivotal role in
model performance, which offers valuable insights for future research on genetic mutation analysis. While the RF-
PSO model delivered the best results, the performance of Gradient Boosting Machines and Random Forest was also
noteworthy. Future work should focus on addressing class imbalance and exploring other optimization techniques to
further refine predictive models. Moreover, reducing feature redundancy and leveraging more advanced feature
selection methods may improve model performance. Overall, the application of hybrid machine learning models,
particularly those fine-tuned with optimization techniques, offers a promising path forward in the field of cancer
genetics, providing more accurate and reliable tools for risk classification.

Appendix
Table 4: POLB Gene Mutation Features Statistics

Measure #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 | #11 | #12 | #13 | #14 | #15
Minimum | 1.00 - - - - - - 0.02 0.17 0.00 | 0.00 | 0.00 | - 0.03 | 0.00
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.43 1.13

25% 36.00 0.23 | 0.10 | - 0.25 | 0.00 @ 2.18 0.44 20.70 | 0.84 | 0.44 | 1.00 | 3.26 | 0.51 | 0.00
1.00

50% 117.00 | 0.53 | 0.34 | - 0.57 | 0.00 | 3.09 | 0.62 23.60 | 0.94 | 0.59 | 1.00 | 5.84 | 0.69 | 0.00
1.00

75% 206.00 | 0.72 | 0.67 | 0.00 | 0.77 | 1.00 | 3.98 | 0.90 26.80 | 0.98 | 0.82 | 1.00 | 7.85 | 0.85 | 1.00

Maximum | 335.00 | 0.91 | 0.91 | 2.00 | 0.98 | 1.00 | 10.01 | 33.00 | 53.00 | 0.99 | 0.96 | 1.00 | 9.93 | 0.99 | 1.00

Mean 127.36 | 0.45 | 0.32 | - 0.47 | 0.44 @ 3.05 | 3.17 21.98 | 0.86 | 0.60 | 0.94 | 5.43 | 0.65 | 0.29
0.18
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Standard | 97.87 0.44 | 0.50 | 1.12 | 0.44 | 0.59 | 1.74 7.37 9.91 0.22 | 0.23 | 0.24 | 2.96 | 0.24 | 0.45
Deviation
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