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1 Introduction 

Cryptography plays a crucial role in ensuring secure communication in today’s interconnected world. 

Traditional symmetric key encryption methods rely heavily on shared secret keys established through 

secure channels or sophisticated key exchange protocols. The complexity and computational 

overhead of existing cryptographic methods have led researchers to explore lightweight, efficient 

alternatives, especially those inspired by mathematical structures such as graphs and modular 

arithmetic [1, 2, 3]. 

In this work, we propose a novel symmetric key encryption scheme based on the modular 

traversal of Ananta-Graphs [4, 5]. Ananta-Graphs are specially constructed dynamic graphs 

influenced by iterative function application, resembling trajectories found in number theory 

problems [5, 6]. Specifically, our traversal mechanism draws inspiration from the famous Collatz 

conjecture, which revolves around sequences generated by the function 3n+1. Although we do not 
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use the full structure of Ananta-Graphs in this paper, the modular variant of the Collatz-like 

traversal forms the core of our key generation strategy[6, 7]. 

Our scheme consists of two main components: (1) a lightweight key exchange protocol based on 

modular graph traversal, and (2) symmetric key encryption and decryption processes that utilize the 

generated shared secret. We implement the proposed method in Python using a user-friendly 

Tkinter interface, allowing users to specify parameters such as the base node, modulus (a prime 

number), and private keys [8, 9]. 

The security of the method is enhanced by the unpredictability of modular traversal and the 

inherent difficulty in reversing the modular transformation without knowledge of the private keys. 

Furthermore, by leveraging properties of modular arithmetic and prime moduli, the system offers 

resistance to various cryptographic attacks while maintaining computational efficiency [4, 7]. 

 

2 Preliminaries 

2.1 Ananta-Graphs and Traversal Mechanism 

Ananta-Graphs are a class of dynamic graphs constructed by iteratively applying a mathematical 

function to generate vertices and edges. Each node represents an integer, and directed edges signify 

transitions from one node to another based on a defined function. These graphs are inherently 

infinite in nature, reflecting dynamic behaviors over the integer set [6]. 

In this work, we focus on a modular version of Ananta-Graphs inspired by the Collatz 

conjecture. The classical Collatz sequence is generated by repeatedly applying the function f (n) 

= 3n +1 (followed by a division by 2 for even numbers), leading to complex, yet structured 

trajectories over integers. However, in our system, we simplify the traversal by considering only 

the modular form of 3n + 1, defined as: 

𝑓 (𝑛)  =  (3𝑛 +  1)𝑚𝑜𝑑 𝑚 

where m is a chosen prime modulus. 

This modular traversal results in a finite cyclic graph structure where nodes and edges are 

bounded within the modular space. By selecting different starting nodes (base nodes) and applying 

the modular function iteratively for a number of steps determined by private keys, unique traversal 

paths are established. These paths ultimately define public keys and shared secret keys in our 

key exchange mechanism [5, 9, 10]. 

The use of modular Ananta-Graph traversal introduces nonlinearity and unpredictability in key 

generation, making it challenging for an external observer to predict or reverse engineer the keys 

without knowledge of the private traversal steps [11]. 

 

2.2 Modular Arithmetic Basics 

Modular arithmetic involves performing calculations where numbers ”wrap around” after reaching a 

certain value known as the modulus. For integers a, b, and modulus m, the congruence relation is 

defined as: 

𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑚) 

Meaning, a and b leave the same remainder when divided by m. 
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Modular operations are fundamental in cryptography due to their cyclic behavior and the 

difficulty of reversing certain operations, especially when large prime moduli are used. In this 

scheme, modular arithmetic ensures that traversals remain bounded and unpredictable, enhancing 

the cryptographic strength [3, 5]. 

 

2.3 Symmetric Key Cryptography Concepts 

Symmetric key cryptography employs a single secret key for both encryption and decryption 

processes. The security of the system depends on keeping the shared secret undisclosed to 

adversaries. 

Typically, symmetric systems offer: 

• High-speed encryption and decryption. 

• Lower computational overhead compared to asymmetric systems. 

• Dependence on secure key exchange mechanisms to initiate communication. 

In the proposed system, symmetric encryption is used after securely deriving a shared secret 

through Ananta-Graph traversal. The encryption process involves lightweight operations like XOR 

combined with modular transformations, and the output ciphertext is encoded into readable 

alphabetic characters for ease of transmission [11]. 

 

Proposed Methodology 

This section describes the methodology used to achieve secure symmetric key encryption using 

modular traversal of Ananta-Graphs. The processes of key generation, encryption, and decryption 

are detailed, along with an overall protocol outline in pseudocode. 

 

2.4 Key Generation Using Modular Traversal 

Key generation relies on the traversal of an implicit Ananta-Graph using a modular transformation. 

The steps involved are: 

• A public base node v0 and a prime modulus m are agreed upon between the two parties. 

• Each party (Alice and Bob) selects a private integer (a for Alice, b for Bob) as their private 

key. 

• Alice and Bob independently compute their public keys: 

vA = f (a)(v0) and vB = f (b)(v0) 

where f (k) denotes applying the traversal function k times. 

• Upon exchanging public keys, the shared secret key K is computed: 

K = f (a)(vB) = f (b)(vA) 
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This ensures that both Alice and Bob independently compute the same shared key without 

exposing their private keys. 

 

Algorithm 1 Key Generation Using Modular Traversal of Ananta-Graph 

1: Input: Base node v0, prime modulus m, Alice’s private key a, Bob’s private key b 

2: Output: Shared secret key K 

3: Alice computes public key: vA = f (a)(v0) mod m 4: 

Bob computes public key: vB = f (b)(v0) mod m 5: 

Alice receives vB, Bob receives vA 

6: Alice computes shared key: K = f (a)(vB) mod m 7: 

Bob computes shared key: K = f (b)(vA) mod m 8: 

Return K 

 

2.5 Encryption Process 

Once the shared key K is established: 

• The plaintext message is treated as a sequence of characters. 

• Each character is converted to its ASCII value. 

• An XOR operation is performed between each ASCII value and the shared key. 

• The resulting cipher values are mapped back to printable alphabetic characters using 

modular encoding. 

This transformation ensures that the ciphertext appears as readable text while maintaining 

confidentiality. 

 

Algorithm 2 Encryption Process Using Shared Key 1: 

Input: Plaintext message M , shared secret key K 2: 

Output: Ciphertext C 

3: for each character c in message M do 

4: Convert c to ASCII value 

5: Compute encrypted value: e = ASCII(c) ⊕ K 

6: Convert e back to a character and append to ciphertext 

7: end for 

8: Return Ciphertext C 

 

2.6 Decryption Process 

The decryption process involves reversing the encryption steps: 

• Each character from the received ciphertext is mapped back to its corresponding cipher 

value. 

• An XOR operation with the shared key is performed to retrieve the original ASCII values. 

• The ASCII values are converted back into the original plaintext characters. 
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Since the XOR operation is symmetric, applying it twice with the same key restores the 

original message. 

 

Algorithm 3 Decryption Process Using Shared Key 

1: Input: Ciphertext C, shared secret key K 2: 

Output: Decrypted plaintext message M 3: 

for each character e in ciphertext C do 

4: Convert e to ASCII value 

5: Compute decrypted value: d = ASCII(e) ⊕ K 

6: Convert d back to a character and append to message 

7: end for 

8: Return Decrypted message M 

 

2.7 Overall Protocol Description 

The complete protocol for secure communication can be described by the following pseudocode: 

 

Algorithm 4 Symmetric Encryption Using Modular Traversal of Ananta-Graphs 

1: Agree on public values: base node v0 and prime modulus m 

2: Alice chooses private key a, Bob chooses private key b 

3: Alice computes vA = f (a)(v0) and sends to Bob 4: 

Bob computes vB = f (b)(v0) and sends to Alice 5: 

Alice computes shared key K = f (a)(vB) 

6: Bob computes shared key K = f (b)(vA) 

7: Alice encrypts her message M using K and sends ciphertext C to Bob 

8: Bob decrypts ciphertext C using K to retrieve message M 

 

3 Implementation Details 

3.1 Python Tkinter Application Overview 

The proposed cryptographic system is implemented using Python with the Tkinter library to 

design a simple Graphical User Interface (GUI). The application provides input fields for users to 

enter the base node, prime modulus, and private keys for Alice and Bob. Buttons are provided to 

compute the shared secret key, encrypt a given message, and decrypt an encrypted message. The 

shared key is derived using modular traversal based on the Ananta-Graph transformation, and 

encryption/decryption is performed using simple XOR operations between the key and the ASCII 

values of the message characters. The application ensures ease of use and quick visualization of 

each stage in the encryption process. 

 

3.2 Sample Inputs and Outputs 

Below are sample values used during the operation of the application: 
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Figure 1: Encryption and Decryption Process. 

 

3.3 Discussion on Parameters: Base Node, Modulus, Private 

Keys 

The security and correctness of the scheme depend heavily on the chosen parameters: 

• Base Node (v0): Should be a small positive integer to ensure computational 

efficiency. 
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• Modulus (m):  Must be a large prime number. A larger prime enhances the 

security of the key generation process by ensuring a greater traversal space and 

unpredictability. 

• Private Keys (a, b): Should be randomly selected and kept confidential. Larger private 

keys lead to deeper traversals in the graph, increasing the difficulty of brute- force attacks. 

Careful selection of these parameters ensures that the key exchange remains secure and resistant to 

cryptanalytic attacks while maintaining efficient encryption and decryption operations. 

 

4 Security Analysis 

4.1 Resistance to Eavesdropping 

The security of the proposed key exchange and encryption scheme relies on the difficulty of 

predicting the traversal outcomes over the Ananta-Graph. Even if an attacker intercepts the 

public information, namely the base node (v0), the modulus (m), and the public keys (vA and vB), 

they cannot easily determine the private keys (a and b) or the shared secret key (K) without 

solving the underlying modular traversal problem, which is computationally difficult for large 

moduli. This ensures that the system is resistant to passive eavesdropping. 

 

4.2 Resistance to Brute Force Attacks 

Brute force attacks would involve an adversary attempting all possible private keys to derive the 

shared secret key. The number of possible private keys grows with the size of the modulus. If a 

sufficiently large prime modulus is used (e.g., a 128-bit prime), the number of possible keys becomes 

practically infeasible to exhaustively search through, providing strong protection against brute-force 

attacks. Additionally, since the traversal transformation is non-linear and modular, guessing the key 

becomes even more complex than traditional discrete logarithm-based systems. 

 

4.3 Importance of Choosing a Large Prime Modulus 

The choice of the modulus is critical to maintaining security. A small modulus would lead to a 

small traversal space, making it easier for an attacker to perform an exhaustive search or pattern 

analysis. By choosing a large prime number as the modulus: 

• The traversal space is significantly expanded. 

• Collisions and repetitions in traversal are minimized. 

• Reverse engineering the traversal sequence becomes computationally infeasible. 

Therefore, for practical deployment, a prime modulus of at least 256 bits is recommended to meet 

modern cryptographic standards. 
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5 Comparison with Existing Methods 

5.1 Comparison with Diffie-Hellman Key Exchange 

The Diffie-Hellman key exchange protocol is one of the most established methods for secure key 

generation between two parties over an insecure channel[2]. It relies on the difficulty of solving the 

discrete logarithm problem in a finite field. In contrast, the proposed Ananta-Graph based key 

exchange uses modular traversal through a non-linear transformation inspired by the structure of 

the Ananta-Graph. 

Key differences include: 

• Mathematical Foundation: 

– Diffie-Hellman relies on exponential functions and discrete logarithms. 

– The proposed method relies on iterative modular traversal using a simple non-linear 

function. 

• Computation Complexity: 

– Diffie-Hellman involves modular exponentiation, which can be computationally 

intensive. 

– Modular traversal operations are computationally simpler and faster, making the 

proposed scheme lightweight and suitable for low-resource environments. 

• Security Assumptions: 

– Diffie-Hellman’s security is well-studied and depends on the hardness of the discrete 

logarithm problem. 

– The proposed method’s security stems from the difficulty of predicting traversal 

sequences without knowledge of private keys. 

 

5.2 Advantages and Limitations 

Advantages: 

• Simplicity: The use of simple modular arithmetic operations makes the algorithm easy 

to implement and understand. 

• Efficiency: Lightweight operations enable fast execution, even on devices with 

limited computational power. 

• Adaptability: The method can be adapted to different modular functions to enhance 

security. 

Limitations: 

• Security Maturity: Unlike Diffie-Hellman, the security assumptions of the proposed 

method are less studied and require formal cryptanalysis. 

• Parameter Sensitivity: Choosing inappropriate parameters (small modulus, 

predictable private keys) could compromise security. 
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• Scalability: For extremely high-security needs (e.g., post-quantum cryptography), 

further enhancements or hybrid schemes may be necessary. 

6 Conclusion 

In this paper, we propose a lightweight symmetric key cryptography scheme based on modular 

traversal of Ananta-Graphs. The methodology integrates a secure key exchange protocol using simple 

yet effective modular operations derived from the traversal of an initial base node. An encryption and 

decryption mechanism was built upon the generated shared secret key, demonstrating the 

practicality of the approach through a Python Tkinter application. Security analysis highlights that 

with appropriate parameter choices, the scheme offers reasonable resistance against eavesdropping 

and brute-force attacks while maintaining computational efficiency. 
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