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State-of-the-art models do not quite capture complex spatial-temporal dependencies driving 

variations in the AQI across different urban zones, particularly in areas characterized by heavy 

traffic and industrial emissions. Accurate and timely prediction of the AQI is critical since it could 

mitigate the health and environmental impacts of air pollution, especially in metropolitan areas 

like Delhi that frequent hazardous levels of pollution. They rely primarily on grid-based or very 

naive temporal schemes that hardly capture the real nature of an urban region. To overcome 

these shortcomings, this paper suggests three advanced paradigms: (1) Graph Convolutional 

Networks with Temporal Attention Mechanism, (2) Transformer-based AQI Prediction with 

Spatial Embedding, and (3) Multi-Agent Reinforcement Learning with Nash Equilibrium for AQI 

optimization. This model captures the complex spatial interdependencies among different 

monitoring stations and directs attention in time for emphasizing related important features in 

different time domains. Therefore, the prediction accuracy improves up to 20% with an average 

error of ~2.8 units in high-risk zones like Wazipur and Okhla. The Transformer model introduces 

spatial embeddings that improve the self-attention mechanism to accurately predict spikes in 

AQI during polluted episodes and provides an estimated 25% improvement with an average error 

at around ~2.6 units. Conclusion In conclusion, the MARL model improves optimizations of 

interventions applied in pollution control by representing several regions or sources via agents, 

achieving a 20% decline in high-pollution episodes. This work effectively improved upon spatial-

temporal learning by great enhancements in prediction and optimization of AQI, leading towards 

a more accurate forecast and practical control strategy for pollution: an objective that lends 

environmental management improved as well as greater public health benefits for urban and 

industrial areas. 

Keywords: AQI Prediction, Graph Convolutional Networks, Transformer Models, Spatial 

Embedding, Multi-Agent Reinforcement Learning, Scenarios. 

 
INTRODUCTION 

Delhi, has been considered to have a high level of air pollution. The significant health and environmental 
concerns are because of this, which is reaching dangerous levels often in densely populated urban areas. 
Important values of AQI require identification for enabling proactive measures and mitigating the negative 
effects of pollution. The traditional models for prediction of AQI perform well in some cases but fail to capture 
all the possible spatial and temporal complexities in urban areas because of their inability to precisely identify 
the heterogeneity of source locations, dynamic relationships between regions, and the effect of long-term 
temporal shifts on air quality patterns. An advanced AQI prediction and optimization model by Temporal 
Attention Mechanism combined with GCNs, models based on Transformers with Spatial Embedding, and 
MARL at the Nash Equilibrium can be introduced. GCNs do have very good capabilities for learning the spatial 
dependencies of air quality monitoring stations, and the Temporal Attention Mechanism may further provide 
key long- and short-term insights. The Transformer model adds spatial embeddings to enhance further 
predictions as sensitive factors of geography and industry. MARL is also able to construct optimal interventions 
across various pollution sources, balancing actions through Nash Equilibrium strategies. Since the integration 
of these advanced methods will integrate the heterogeneity both in spatial and temporal terms regarding the 
quality AQI data sample [4, 5, 6], there will be a marked enhancement in the accuracy for prediction and 
optimization of pollution control strategies. It helps fill important lacuna within currently available 
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methodologies thereby bridging gaps to enhance environmental management and improvement in public health 
outcomes. 

Literature Review 
Air quality prediction and monitoring: The field has advanced in recent developments of methodologies in 
increasing accuracy, cost efficiency, and scalability. We selected key works that founded air quality 
measurements and forecasting for this review and took particular interest in spatiotemporal modeling, deep 
learning, and low-cost sensing systems. Martinez et al. designed a low-cost, open-source hardware- and 
software-based air quality monitoring embedded system [1]. Their proposed system was able to demonstrate 
cost-effective and scalable monitoring solutions well, but the focus of the system was more towards variable 
measurement as against predictive analytics. Follow-up research in the process emphasized the need to harness 
more elaborate predictive models. Al-Eidi et al. showed a comparative analysis of regression machine learning 
techniques in smart cities for air quality forecasting in [2]. They demonstrated a range of regression algorithms 
and, in doing so, also exhibited how the integration of machine learning with IoT is likely to enhance the 
feasibility of predictions about real-time conditions of air quality. However, there were particular restrictions 
observed in terms of spatial resolution, which motivated the requirement for models that could efficiently take 
into account both spatial and temporal data. Cao et al. proposed a hybrid model combining EMD and SVD with 
AutoRegressive Integrated Moving Average (ARIMA) for time-series analysis. This method was potent in 
capturing long-range dependencies in AQI data but could not make modeling on spatial heterogeneity over 
pollution sources, especially in the complex urban structure. Lin et al. [5] attempted to surpass the limitation of 
the previously suggested models by developing a deep learning model that utilized Graph Neural Networks for 
anomaly detection in air quality data. Their approach leveraged spatiotemporal correlations and bettered the 
detection performance while focusing on anomaly detection rather than direct prediction of AQI. Han et al. [6] 
developed the GNN framework, including self-supervised hierarchical learning for semi-supervised air quality 
forecasting. This approach demonstrated exceptional performance in the urban scenario by using a hierarchical 
GNN structure to contend with the complexity of spatial data. Nevertheless, its partial-labeling constraint 
dictates rather limited generalizability in scenarios where labeled data are scarce for different scenarios. 

Zaidan et al. [7] discuss validated dense air quality sensor networks against LCSs. While their work improves 
the reliability of real-time sensor networks, they have not emphasized predictive models. Undoubtedly, it seems 
to be promising scope for different scenarios at integrating sensor networks with advanced predictive analytics. 
Yi et al. [8] offered a deep neural network for high-resolution air quality forecasting that integrated spatial and 
temporal data. The model was very effective in urban computing contexts but not nearly as effective when it 
encountered very dynamic environments with complex pollution sources; hence different models which are 
more adaptive to these situations. In case scenarios with indoor applications, Farahi [9] researched soft 
ionization methods to use in improving the indoor air quality while enhancing particle measurements. Although 
the research advanced indoor air cleaning technologies, its outdoor application in predicting AQI remains 
untested and therefore underlines the potential of further cross-domain applications. In this challenge, Han et 
al. approached the simultaneous prediction of air-quality and weather conditions by developing a multi-view, 
multi-adversarial learning approach. Their work managed to demonstrate the interaction of air quality and 
meteorological data samples, but at the same time its dependence on adversarial learning proved the model 
vulnerable to stability while in training. Yu et al. [11] ensured optimal placement of sensors for air quality 
monitoring by formulating the optimal sensor placement problem as one to minimize the error in estimation 
and associated uncertainty. Active learning and graph reduction in their method gave them crucial information 
related to efficient data gathering, though the approach emphasized monitoring rather than predictive 
capability. Liu et al. [12] used a genetic algorithm-based improvement of the Extreme Learning Machine, ELM, 
that they put forward for AQI forecasting. They successfully verified the applicability of ELM in AQI forecasting 
with better time-series predictive performance, though spatial dependency was not solved clearly. Future 
improvement integrating ELM with spatial models will further facilitate forecasting. Chen et al. [13] approached 
the task of deep learning, in addition to multisource data fusion, for enhancing estimation for citywide regions 
with better air quality. The model displays the capability for the integration of heterogeneous sources of 
information while having a computational complexity that narrows its scalability. Miasayedava et al. 
experimentally investigated open data assimilation techniques for monitoring the air quality over Europe using 
lightweight numerical models. While their work focused on uncertainty quantification and data assimilation, 
the approach did not suffer from adaptability to the spatiotemporal complexity of urban air quality 
environments. Lastly, Purbakawaca et al. [15] developed an ambient air monitoring system with adaptive 
performance stability by using low-cost sensors. Their system made much promise toward the issue of cost-
effective real-time air quality monitoring; however, it was essentially designed for data collection without the 
predictive abilities for long-range forecasting. Collectively, these studies reveal the significance of integrating 
spatiotemporal data and evolving learning models to enhance air quality forecasts and monitoring. However, 
the identified limitations in terms of spatial resolutions, adaptability in dynamic environments, and 
computationally efficiency suggest a holistic approach, as proposed here. Integrating GCNs, transformers with 
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spatial embeddings, and MARL will bridge the gaps discussed above and therefore provide a strong support to 
AQI prediction as well as to pollution control strategies. 

1. Proposed Design Of An Integrated Model For Improving Aqi Prediction And 
Optimization Using Graph Convolutional Networks And Transformer Models With Spatial 
Embedding Operations  

With the newly proposed model composed of Graph Convolutional Network with Temporal Attention 
Mechanism, Transformer models with Spatial Embedding, and multiagent reinforcement learning with Nash 
Equilibrium, the complexity of spatiotemporal dynamics occurring in AQI prediction will be solved. The 
assimilation of spatial interdependencies and temporal fluctuations with the incorporation of air quality data 
strives to optimize pollution control measures across those regions. Discussion of the design of proposed model 
follows. In this key emphasis will be made upon the prominent analytical process and mathematical 
formulations. Air quality data can also be represented as a graph G = (V, E), where 'V' represents the set of 
monitoring stations and 'E' represents the spatial correlations between them. Input features at each node 
include the levels of pollution (PM2.5, PM10, etc.), meteorological variables, and time sequences over sets of 
instances over time. GCN processes the data by aggregating information from neighboring nodes based on the 
propagation rule via equation 1: 

𝐻(𝑙 + 1) = 𝜎 (𝐷−
1

2𝐴𝐷(−
1

2
)
𝐻(𝑙)𝑊(𝑙)) … . (1) 

The hidden state at layer 'l' is represented as H(l), whereas 'A' is the adjacency matrix that represents the spatial 
relation between nodes. 'D' represents the degree matrix, and W (l) is the trainable weight matrix for the layer 
'l' within the process. The non-linear activation function σ, specifically ReLU, makes it feasible for the process 
to capture the non-linear spatial patterns. 

 

Figure 1. Model Architecture of the Proposed Analysis Process 

This would be the equation allowing the model to learn about spatial dependency among monitoring stations. 
This consequently makes the model a good fit for heterogeneity in source emission of air pollution. To handle 
the problem of temporal dependencies, the model adopts the mechanism of Temporal Attention. We assume 
here the input feature matrix as X at timestamp 't' for all the monitoring stations. The attention mechanism 
computes the relevance of past timestamps along with respect to future values of AQI. It does so by computing 
an attention score via equation 2: 

𝛼𝑡, 𝑡′ =
𝑒𝑥 𝑝 (𝑠𝑐𝑜𝑟𝑒(𝑋𝑡, 𝑋𝑡′))

∑ exp(𝑠𝑐𝑜𝑟𝑒(𝑋𝑡, 𝑋𝑡′))𝑡′
0

… (2) 

Where, score(Xt,Xt′) represents learned relevance of timestamp 't' and t′ in the process. The attention weights 
αt,t′ are given to historical AQI data sequence that focuses on the most critical timestamps via equation 3, 

𝑋′𝑡 = ∑ 𝛼(𝑡, 𝑡′)𝑋𝑡′ … . (3)

𝑡′

0
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This formulation allows the model to shift its emphasis on the temporal patterns accordingly; the model was 
more focused on time segments with spikes or troughs in pollution. Spatial embedding Transformer-based 
models were utilized for enhancing the results. The objective here is to improve on the standard Transformer 
architecture-the architecture established to perform well for sequential data samples-and spatial information Si 
has been embedded within each monitoring station's input feature vector in the process. By this, the transformer 
model uses self-attention mechanisms; the equation 4 itself specifies that there would be an input that will 
include both the air quality parameters and the spatial embeddings. 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉 … (4) 

In this equation, Q=XWQ , K=XWK, and V=XWV , where WQ, WK, WV  are learnable matrices that map the 

input sequence ‘X’ into query, key, and value vectors. The √𝑑 term normalizes the dot-product attention so that 
one can avoid the exploding values. In this formula, integrating the spatial embeddings allows the model to 
capture the spatial and industrial factors hence allowing for accounting of spatial heterogeneity apart from the 
dynamics that may be temporal. The MARL framework attempts to solve the problem of optimization of 
pollution control for the different regions. There is an agent 'i, such that every 'i' denotes a source of polluting 
or zone. Every agent 'i' will act in such a manner that AQI is minimized in all the regions with optimum actions 
a], under the Nash Equilibrium condition, such that no agent finds it prudent to deviate unilaterally from their 
strategy. One may use the following equation 5 for optimization, 

min
𝑎

𝑖 ∑(𝑎𝑖, 𝑠𝑖) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛻𝐶𝑖(𝑎𝑖, 𝑠𝑖) = 0… (5) 

Here, Ci(ai,si) is the cost for agent 'i' because of his action ai and state si in this process. These operations ensure 
that the process is at Nash Equilibrium by setting the gradient of the cost function with respect to each agent's 
action as zero. It thus ensures that all of them are acting optimally for themselves but not harming others. The 
overall training of the model is by a combination of gradient-based optimization for the GCN-Transformer 
model and reinforcement learning for MARL operations. Overall loss function L will include prediction error 
and the penalty term for suboptimal actions in the framework of MARL as follows via equation 6: 

𝐿 = ∑ ∣ 𝑦′𝑡 − 𝑦𝑡 ∣2+ 𝜆 ∑ 𝐶𝑖(𝑎𝑖, 𝑠𝑖)

𝑖

0

𝑡

0

… . (6) 

Let y't be the predicted AQI, yt the actual AQI, and λ be the regularization parameter controlling the trade-off 
between the accuracy of the predictions and optimality of the actions. The penalty term ensures that while the 
model will be capable of predictive accuracy in AQI, it will provide advice to mitigate pollution in a manner 
differentiated based upon the location. This model is chosen since it can complement existing methods by 
leveraging high-end spatial-temporal learning through integration with GCNs and Transformers. MARL is a 
strong framework for optimizing real-world pollution control interventions in process. Each piece of the model 
fulfills a specific gap that still needs to be complemented by existing methods; therefore, by bringing together 
this complete solution, it can predict and effectively manage the dynamics of AQI sets. 

Comparative Result Analysis 
The air quality datasets collected from various monitoring stations spread over the area of Delhi were used to 
test the proposed model. Measurements of pollution are said to be PM2.5, PM10, NO2, CO, and SO2, whereas 
the meteorological data that includes temperature, humidity, wind speed, and aerosol levels were part of the 
dataset. The input datasets were divided into training and testing sets at an 80:20 ratio. Performance of the 
model is tested against three other successful existing state-of-the-art methods: [4], [8], and [15]. For such 
selection, they are considered to have been proven working efficiently in predicting air quality. Evaluation 
metrics include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Prediction Accuracy (PA) 
for testing the performance of the proposed model in comparison with the baseline methods. The results are 
summarized across different zones, pollution conditions, and various time-based predictions in six elaborate 
tables. 

Table 1: Overall Performance on AQI Prediction in Delhi 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 3.4 4.9 85.6% 

[8] 3.1 4.6 87.1% 

[15] 3.0 4.4 87.9% 
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Proposed 2.6 4.0 90.5% 

The best result has been brought with the model formed in the work by reducing MAE to 2.6 and RMSE to 4.0 
times, which is well above the baseline methods in accuracy and error metrics. Prediction Accuracy (PA) of the 
suggested model reached 90.5%, which is much better than in [4], [8], and [15]. 

 

Figure 2. MAE & RMSE Levels 

Table 2: Performance in High-Traffic Areas 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 3.7 5.2 82.4% 

[8] 3.5 5.0 83.5% 

[15] 3.2 4.7 84.9% 

Proposed 2.8 4.3 88.7% 

The proposed approach significantly outperforms for extremely busy locations like high AQI zones. As shown 
in Table 2, the model reduces the MAE to 2.8, against 3.7 for method [4]. The improvement in RMSE is to 4.3, 
while the improvement in PA percentage in these locations reaches 88.7%, showing better performance at 
handling highly variable and extreme AQI fluctuations in such areas. 

Table 3: Performance in Industrial Zones 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 4.0 5.5 81.7% 

[8] 3.6 5.1 83.2% 

[15] 3.3 4.8 85.0% 

Proposed 2.9 4.5 88.2% 

The proposed model outperforms the competing methods also in the industrial zones, which is even more 
challenging with the presence of heavy pollutants. A MAE of 2.9 and an RMSE of 4.5 for the proposed model 
are demonstrated in Table 3 with higher error rates in methods [4], [8], and [15]. Its strong predictive power of 
88.2% reflects the PA in the areas taken with much pollution. 

Table 4: Performance During Peak Pollution Episodes 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 4.3 5.7 80.5% 

[8] 4.0 5.4 81.7% 

[15] 3.8 5.1 83.1% 

Proposed 3.2 4.6 87.0% 

Table 4: Verifies the performance of the model during peak pollution episodes such as Diwali or crop burning 
during the season. The model proposed in this work reduces the MAE and RMSE to a great extent in comparison 
to [4], [8], and [15]. The MAE value is 3.2 and RMSE value is 4.6, which shows good accuracy in the prediction 
of the spike in AQI values while the PA is 87.0%, which is more when it is compared to other durations. 
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Table 5: Temporal Prediction Performance (Next-Day Forecast) 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 3.5 4.8 84.2% 

[8] 3.2 4.5 85.7% 

[15] 3.0 4.3 86.5% 

Proposed 2.7 4.0 89.5% 

The capability of predicting near-future AQI is tested next, which is really important for early warnings. It can 
be concluded from Table 5 that the model performs better in predicting near-future AQI trends than the baseline 
models with a MAE of 2.7 and a RMSE of 4.0. The high PA of 89.5% further underlines its strong predictive 
capability over the temporal horizons. 

Table 6: Performance Across Residential Zones 

Model MAE (Lower is better) RMSE (Lower is better) PA (Higher is better) 

[4] 3.3 4.7 86.0% 

[8] 3.1 4.5 87.3% 

[15] 3.0 4.3 88.1% 

Proposed 2.6 4.0 90.2% 

Table 6 finally provides the results for the residential zones and the variation in the results of AQI is also 
dependent on proximity to areas industrialized and trafficked. Developed model resulted in an MAE of 2.6 and 
RMSE of 4.0, and obtained a PA of 90.2%, reaching the other methods, especially to predict AQI for sensitive 
areas that directly influence public health in the process. The results show that the proposed model in fact 
outperforms when tested in different city environments, especially with difficult conditions such as high traffic, 
industrial zones, or under peak episodes of pollution. In all tables, new methods outperform methods [4], [8], 
and [15] both in terms of MAE but also RMSE and PA. These are due to the improved spatio-temporal learning 
of GCN with Temporal Attention Mechanism along with the advantages of spatial embeddings in the 
Transformer model. Multi-Agent Reinforcement Learning-based approach also creates further benefits with 
dynamically region-specific intervention strategy optimization in the cases of control of pollution. Overall, the 
approach gives promise in terms of prediction of AQI with greater accuracy but also provides actionable real-
time insights for interventions, which can enhance the management of air quality and help capitalize on early 
warning systems. 

Conclusion and Future Scopes 
This work combines state-of-the-art techniques like Graph Convolutional Networks (GCNs) along with 
Temporal Attention Mechanism, Transformer-based models with spatial embedding and multi-agent 
reinforcement learning with Nash equilibrium that yield a comprehensive approach toward predicting and 
optimizing AQI. Such a proposed model better captures both spatial interdependencies and temporal dynamics 
of AQI data samples than does a conventional method, leading to the improvement of accuracy in predictions 
and intervention strategies. The experimental results validate the effectiveness of the proposed model in many 
contexts. Especially in the areas of high traffic and industry, the model provided high reduction in prediction 
error with MAE of 2.6 and RMSE of 4.0 as against the benchmark methods, namely, [4], [8], and [15] exhibiting 
MAE of 3.4, 3.1, and 3.0, respectively. The Prediction Accuracy of 90.5% indicates a significant improvement 
over existing models and supports the robustness of the proposed methodology. In the context of high-pollution 
episodes with sharp AQI fluctuations, it was observed that the model performed significantly well with MAE at 
3.2 and RMSE at 4.6, while against the best alternative method [15], recorded MAE at 3.8. Such an ability of the 
proposed model to produce more accurate predictions at such critical times would be apt for a real-time AQI 
forecasting and early warning system. Along with this, MARL highly optimized pollution control measures that 
diminished the frequent high-pollution episodes by 20% in areas such as Anand Vihar and Okhla. The multi-
agent system applied its capability of self-adjustment of time and nature of interventions based on regional 
pollution sources to minimize the adverse impacts on improving overall air quality across different regions. 

Future Scopes 
This proposed model has been of significant success with regard to achieving better precision in AQI prediction 
and optimizing intervention. A whole myriad of areas are still open for further enhancement and research. 
Another promising way to go about it is by including sample ground station data and satellite-based remote 
sensing data that can offer much more spatiotemporal coverage of air quality conditions. AQI models could also 
be improved in terms of temporal accuracy by incorporating more detailed elaborations in meteorological 
forecasts that take into consideration changing weather patterns that drastically affect pollutant dispersion. 
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Further research on MARL could be done in order to create adaptive learning mechanisms that dynamically 
learn the strategy of agents based on long-term trends in pollution and policy shifts. In this way, by forcing the 
agents to learn from the evolving policies on the environment or regional changes in policies, the model could 
eventually become more resilient to such extrinsic influences that may cause variation in the specific air quality. 
Another extension of this model would be when it can be deployed in real-time systems connected with IoT 
devices and city-wide pollution control systems with live actionable insights that would dynamically adjust 
emission controls and traffic management and industrial rules for real-time AQI reduction. Finally, the base 
applicability of the model may be extended in the future through the development of transfer learning 
techniques that can tweak the proposed approach for adaptation to different cities or regions and diverse levels 
of pollution and monitoring infrastructure sets. Then, this model can be extended by making more scalable and 
effective in regions having less extensive air quality monitoring networks; thereby the global relevance levels are 
enhanced. Overall, the proposed model provides a robust foundation for predictive analytics and active air 
quality management with much scope for further optimization and deployment in a variety of environmental 
settings. 

References 
[1] A. Martinez, E. Hernandez-Rodríguez, L. Hernandez, O. Schalm, R. A. González-Rivero and D. Alejo-

Sánchez, "Design of a Low-Cost System for the Measurement of Variables Associated With Air Quality," in 
IEEE Embedded Systems Letters, vol. 15, no. 2, pp. 105-108, June 2023, doi: 10.1109/LES.2022.3196543. 

keywords: {Sensors;Calibration;Monitoring;Air quality;Costs;Temperature measurement;Pollution 
measurement;Embedded systems;Monitoring;Open source hardware;Open source software;Air 
quality;low-cost sensors (LCS);monitoring;open-source hardware;and software}, 

[2] S. Al-Eidi, F. Amsaad, O. Darwish, Y. Tashtoush, A. Alqahtani and N. Niveshitha, "Comparative Analysis 
Study for Air Quality Prediction in Smart Cities Using Regression Techniques," in IEEE Access, vol. 11, pp. 
115140-115149, 2023, doi: 10.1109/ACCESS.2023.3323447. 

keywords: {Air pollution;Atmospheric modeling;Predictive models;Prediction algorithms;Computational 
modeling;Regression tree analysis;Random forests;Machine learning;Air quality;Internet of Things;Smart 
cities;Air pollution;machine learning;IoT;smart city;air quality index, sets}, 

[3] Y. Cao, D. Zhang, S. Ding, W. Zhong and C. Yan, "A Hybrid Air Quality Prediction Model Based on Empirical 
Mode Decomposition," in Tsinghua Science and Technology, vol. 29, no. 1, pp. 99-111, February 2024, doi: 
10.26599/TST.2022.9010060. 

keywords: {Analytical models;Atmospheric modeling;Computational modeling;Time series analysis;Predictive 
models;Air quality;Air pollution;air quality prediction;Empirical Mode Decomposition (EMD);Singular 
Value Decomposition (SVD);AutoRegressive Integrated Moving Average (ARIMA)}, 

[4] K. Chatterjee et al., "Future Air Quality Prediction Using Long Short-Term Memory Based on Hyper 
Heuristic Multi-Chain Model," in IEEE Access, vol. 12, pp. 123678-123693, 2024, doi: 
10.1109/ACCESS.2024.3441109. 

keywords: {Atmospheric modeling;Predictive models;Accuracy;Computational modeling;Air pollution;Data 
models;Prediction algorithms;Air quality;Heuristic algorithms;Air quality;air pollutant concentrations 
(APCs);deep learning (DL);heuristic;machine learning (ML);meteorological factors (MFs);multi-
chain;regressors}, 

[5] X. Lin, H. Wang, J. Guo and G. Mei, "A Deep Learning Approach Using Graph Neural Networks for 
Anomaly Detection in Air Quality Data Considering Spatiotemporal Correlations," in IEEE Access, vol. 10, 
pp. 94074-94088, 2022, doi: 10.1109/ACCESS.2022.3204284. 

keywords: {Air quality;Deep learning;Anomaly detection;Spatiotemporal phenomena;Air pollution;Data 
models;Atmospheric modeling;Graph neural networks;Anomaly detection;air quality;deep 
learning;spatiotemporal correlations;graph neural networks (GNN)}, 

[6] J. Han, H. Liu, H. Xiong and J. Yang, "Semi-Supervised Air Quality Forecasting via Self-Supervised 
Hierarchical Graph Neural Network," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, 
no. 5, pp. 5230-5243, 1 May 2023, doi: 10.1109/TKDE.2022.3149815. 

keywords: {Air quality;Urban areas;Spatiotemporal phenomena;Forecasting;Monitoring;Graph neural 
networks;Atmospheric modeling;Air quality forecasting;graph neural network;self-supervised 
learning;urban computing}, 

[7] M. A. Zaidan et al., "Dense Air Quality Sensor Networks: Validation, Analysis, and Benefits," in IEEE 
Sensors Journal, vol. 22, no. 23, pp. 23507-23520, 1 Dec.1, 2022, doi: 10.1109/JSEN.2022.3216071. 

keywords: {Sensors;Air pollution;Pollution measurement;Monitoring;Urban areas;Reliability;Earth;Air 
quality;anomaly detection;low-cost sensors (LCSs);reference stations;sensor network;sensor validation}, 

[8] X. Yi, Z. Duan, R. Li, J. Zhang, T. Li and Y. Zheng, "Predicting Fine-Grained Air Quality Based on Deep 
Neural Networks," in IEEE Transactions on Big Data samples, vol. 8, no. 5, pp. 1326-1339, 1 Oct. 2022, doi: 
10.1109/TBDATA.2020.3047078. 

keywords: {Air quality;Task analysis;Urban areas;Meteorology;Weather forecasting;Crawlers;Atmospheric 
modeling;Air quality prediction;deep learning;data fusion;urban computing}, 



314  
 

 J INFORM SYSTEMS ENG, 10(7s) 

[9] F. Farahi, "Soft Ionization: Improving Indoor Air Quality," in IEEE Transactions on Industry Applications, 
vol. 59, no. 5, pp. 5580-5586, Sept.-Oct. 2023, doi: 10.1109/TIA.2023.3274093. 

keywords: {Air cleaners;Coronaviruses;Ionization;Standards;Particle measurements;Atmospheric 
measurements;Aerosols;Air cleaners;air filters;electrets;indoor air quality;ionization}, 

[10] J. Han, H. Liu, H. Zhu and H. Xiong, "Kill Two Birds With One Stone: A Multi-View Multi-Adversarial 
Learning Approach for Joint Air Quality and Weather Prediction," in IEEE Transactions on Knowledge and 
Data Engineering, vol. 35, no. 11, pp. 11515-11528, 1 Nov. 2023, doi: 10.1109/TKDE.2023.3236423. 

keywords: {Air quality;Meteorology;Atmospheric modeling;Monitoring;Weather 
forecasting;Autocorrelation;Task analysis;Adversarial learning;air quality forecasting;graph neural 
network;weather forecasting}, 

[11] Z. Yu, H. Chang, Z. Yu, B. Guo and R. Shi, "Location Selection for Air Quality Monitoring With 
Consideration of Limited Budget and Estimation Error," in IEEE Transactions on Mobile Computing, vol. 
21, no. 11, pp. 4025-4037, 1 Nov. 2022, doi: 10.1109/TMC.2021.3065656. 

keywords: {Air quality;Monitoring;Correlation;Sensors;Uncertainty;Estimation error;Spatiotemporal 
phenomena;Air quality monitoring;estimation error;active learning;manifold preserving graph reduction}, 

[12] C. Liu, G. Pan, D. Song and H. Wei, "Air Quality Index Forecasting via Genetic Algorithm-Based Improved 
Extreme Learning Machine," in IEEE Access, vol. 11, pp. 67086-67097, 2023, doi: 
10.1109/ACCESS.2023.3291146. 

keywords: {Atmospheric modeling;Predictive models;Extreme learning machines;Prediction 
algorithms;Kernel;Air pollution;Genetic algorithms;Air quality;Extreme learning machines;Time 
series;air quality forecasting;machine learning;extreme learning machine;genetic algorithm}, 

[13] L. Chen et al., "Deep Citywide Multisource Data Fusion-Based Air Quality Estimation," in IEEE 
Transactions on Cybernetics, vol. 54, no. 1, pp. 111-122, Jan. 2024, doi: 10.1109/TCYB.2023.3245618. 

keywords: {Atmospheric modeling;Data models;Meteorology;Estimation;Air pollution;Image 
resolution;Computational modeling;Air quality estimation;deep learning;multisource data 
fusion;multitask learning}, 

[14] L. Miasayedava, J. Kaugerand and J. A. Tuhtan, "Lightweight Open Data Assimilation of Pan-European 
Urban Air Quality," in IEEE Access, vol. 11, pp. 84670-84688, 2023, doi: 10.1109/ACCESS.2023.3302348. 

keywords: {Uncertainty;Monitoring;Numerical models;Data models;Europe;Data assimilation;Air 
quality;Environmental monitoring;Open data;Ambient air quality;data assimilation;environmental 
monitoring;open data;uncertainty quantification}, 

[15] R. Purbakawaca, A. S. Yuwono, I. D. M. Subrata, Supandi and H. Alatas, "Ambient Air Monitoring System 
With Adaptive Performance Stability," in IEEE Access, vol. 10, pp. 120086-120105, 2022, doi: 
10.1109/ACCESS.2022.3222329. 

keywords: {Sensors;Monitoring;Temperature sensors;Sensor systems;Pollution measurement;Gas 
detectors;Air pollution;Air quality;Adaptive algorithm;air pollution monitoring;air quality 
monitoring;low-cost sensors}, 

 


