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With the increase in the number of IoT farming datasets, identifying the appropriate data for IoT 

agriculture applications has become increasingly challenging. This research presents an 

advanced crop recommendation system developed by integrating various datasets, including 

Crop_Recommendation.csv, Soil.csv, and Crop_names.csv, which provide the foundation for 

accurate crop predictions. The system leverages geographic coordinates (latitude ϕ and 

longitude λ) to model environmental factors like temperature and humidity using regression 

models, forming essential inputs for crop suitability analysis. By applying a classification model 

, trained on features such as soil type and nitrogen requirements, the system predicts the most 

suitable crop class . Hyperparameter tuning optimizes the model to ensure robust predictions, 

and the system ranks the top five crops based on their likelihood of thriving under given 

conditions. Additionally, the system calculates Growth Degree Days (GDD) and nutrient 

requirements (nitrogen, phosphorus, potassium) for each recommended crop, offering a 

comprehensive decision-making tool for farmers. This framework, grounded in machine 

learning and geographical data, enhances agricultural decision-making by providing precise, 

data-driven crop recommendations tailored to specific environmental and soil conditions. 

Keywords: Crop recommendation system, Machine learning algorithms, Soil nutrient 

monitoring, Geographic coordinates, Environmental modeling, Soil type classification, Nitrogen 

requirements, Hyperparameter tuning, Growth Degree Days (GDD), Nutrient requirements, 

Precision agriculture. 

 

1.INTRODUCTION 

Agriculture remains a cornerstone of the global economy, with the need for intelligent agricultural systems becoming 

increasingly crucial as the human population continues to grow. Over the past several decades, this sector has 

undergone numerous transformations to meet the needs of an expanding population, which has more than doubled 

in the last 50 years. Current projections suggest that by 2050, the global population will reach 9.8 billion. 

Additionally, a shift toward more urban living and a decrease in the ratio of working individuals to retirees are 

expected. As a result, agricultural productivity will need to increase in a sustainable manner while relying less on 

manual labor.The integration of technology into agriculture began over a century ago, with the introduction of the 

first tractor in 1913. Since then, mechanical advancements have surged, bringing numerous technologies to the 

market that have significantly boosted productivity while reducing the need for human labor. However, these 

advancements may not be sufficient to meet future global demand. In response, researchers have focused on 

improving production efficiency since the 1990s, leading to the development of "precision agriculture."[1-5] This 

approach involves farm management practices that optimize yields and resource use by observing, measuring, and 

responding to crop variability. More recently, existing technologies like remote sensing, the Internet of Things (IoT), 

and robotic platforms have been applied to agriculture, ushering in the era of "smart farmingSupervised machine 

learning algorithms, including Naive Bayes, K-nearest neighbors (KNN), support vector machines (SVM), and 

decision trees, are utilized to forecast soil fertility by analyzing a variety of chemical factors. The properties evaluated 

include pH content, electrical conductivity, organic carbon, nitrogen (𝑁), phosphorus (𝑃), potassium (𝐾), iron (𝐹𝑒), 
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and zinc (𝑍𝑛). The model accuracies vary, ranging from 43% for Naive Bayes to 60% for SVM, indicating the varying 

effectiveness of these techniques based on the specific properties analyzed.A sustainable approach to organic soil 

analysis is developed by integrating machine learning techniques with a national spectral library. In this context, the 

random forest regression model is applied to a comprehensive dataset, analyzing soil features like soil organic matter 

(𝑆𝑂𝑀). The performance of this model is measured using RMSE and 𝑅2 metrics.Further predictions of soil fertility 

are anticipated using both simple and multiple regression techniques, based on data obtained from portable X-ray 

fluorescence spectrometry (pXRF) measurements. These techniques examine soil properties such as pH, clay 

content, silt, sand, calcium (𝐶𝑎), magnesium (𝑀𝑔), potassium (𝐾), and aluminum (𝐴𝑙). The efficacy of these linear 

regression models is evaluated using 𝑅2 and RMSE to ensure the robustness of soil fertility assessment[6-9]s.A 

comprehensive study evaluates the suitability of agricultural farmland by considering atmospheric conditions, 

nutrient levels, and soil properties. This classification system provides a holistic understanding of ecosystems and 

crop behavior, enabling better agricultural planning and management[10-14].Supervised machine learning 

algorithms, including K-nearest neighbors (KNN), Bagged Trees, and Gaussian Kernel-based support vector 

machines (SVM), are employed to predict soil series. Among these methods, SVM demonstrates superior 

performance, highlighting its effectiveness in soil classification tasks.To support agricultural development and 

enhance the quality of farm-grown products, a web-based service platform is developed. This platform offers various 

services related to soil classification, with a strong emphasis on precise data collection and methodological analysis, 

ensuring reliable and accurate soil assessments.The conceptual frameworks for soil quality and performance are 

reviewed, focusing on parameters that are crucial to farming. The proposed concept establishes a connection between 

soil fertility, nutrient availability, growing conditions, and soil improvement, linking these factors to broader soil 

quality and ecosystem services.Automated soil fertility prediction is carried out using advanced techniques such as 

neural networks, deep learning (DL), support vector machines (SVM), random forests (RF), and Bayesian models. 

These methods analyze soil properties, including phosphorus pentoxide (𝑃2𝑂5), iron (𝐹𝑒), manganese (𝑀𝑛), zinc (𝑍𝑛), 

and nitrous oxide (𝑁2𝑂). Model performance is evaluated using metrics like the coefficient of determination (𝑅2) and 

various regressor methods, ensuring the accuracy and reliability of the predictions.An innovative approach is 

employed to estimate coffee production by analyzing soil factors through extreme learning machines (ELM), multiple 

linear regression (MLR), and random forests (RF)[15-17]. The analysis includes soil features such as organic matter 

(𝑂𝑀), available potassium (𝐾), and pH value, with model performance assessed using root mean square error 

(RMSE) and mean absolute error (MAE).Supervised learning methods are also applied to determine the spatial 

distribution of topsoil carbon (𝐶), nitrogen (𝑁), and available phosphorus (𝑃). Techniques like the generalized 

additive model (GAM), random forests (RF), and SVM are used to define fertilizer application strategies, optimizing 

nutrient distribution for crop growth.Soil nutrient estimations based on village-specific characteristics are used to 

propose appropriate fertilizer levels and crop preferences. The model integrates various soil types and conditions 

according to detailed soil assessments, ensuring tailored agricultural practices for different regions.This review 

covers multiple aspects of soil fertility, including the sources of soil fertility datasets, performance metrics such as 

RMSE, MAE, and 𝑅2, calibration methods, and dataset collection techniques. The subsequent section will explore 

soil enzyme activity estimation through different enzyme classifications, providing insights into soil health and 

microbial activity.Soil enzyme activity estimation is categorized using supervised machine learning algorithms, 

focusing on various soil properties, microbial activity, and soil organic matter. Performance metrics for enzyme 

datasets, collected via portable X-ray fluorescence (pXRF) and soil testing laboratories, are analyzed to assess the 

accuracy and reliability of these methods.In Brazilian regions, soil enzyme activity is analyzed considering factors 

such as season, fertility, and soil texture. Enzyme activities such as glucosidase, acid phosphatase, alkaline 

phosphatase, urease, and fluorescein diacetate (FDA) hydrolysis are investigated, with accuracy evaluated using 

conditional random forest methods.Extracellular enzymes within soil ecosystems are predicted using multiple linear 

regression (MLR) and random forest (RF) models. Soil characteristics like water content, electrical conductivity, total 

nitrogen (𝑇𝑁), total phosphorus (𝑇𝑃), and soil organic carbon (𝑆𝑂𝐶) are utilized to estimate enzyme activities, 

including amylase and urease, providing valuable insights into soil health and nutrient cycling 

processes.Intercropping has been demonstrated to enhance soil extracellular enzyme activity, as supported by meta-

analysis research. The diversity of plants introduced through intercropping significantly influences microbial 

communities within the soil, promoting a richer and more diverse ecosystem.Soil microbial elements and enzyme 
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activities are studied across various land types, including agricultural and vegetable fields. Metrics such as soil 

microbial biomass carbon (𝐶𝑀𝐵), respiration activities, and enzymes like β-glucosidase and acid phosphatase exhibit 

strong correlations with soil carbon (𝐶) and nitrogen (𝑁), indicating the pivotal role of these enzymes in soil health 

and nutrient cycling.The responses of soil enzyme activities to toxic metal exposure are analyzed, focusing on 

biochemical elements such as carbon (𝐶), nitrogen (𝑁), phosphorus (𝑃), and sulfur (𝑆). Heavy metal contamination 

adversely affects enzyme activities, disrupting the cycling of these essential elements within the soil ecosystem. 

Machine learning techniques are employed to estimate biological modifications in soils following the addition of 

Phosphogypsum. Enzyme activities, such as urease and soil respiration, are assessed under varying concentrations 

of Phosphogypsum, providing insights into its impact on soil biochemistry.The effects of nitrogen fertilization on soil 

constituents, enzyme activities, and microbial communities are explored in detail. Nitrogen enrichment is shown to 

significantly enhance enzyme activities, with soil pH and organic carbon (𝑂𝐶) identified as key factors influencing 

changes in soil bacterial communities.Soil enzyme activities are highlighted as critical indicators of agricultural soil 

quality, facilitating processes such as decomposition and nutrient cycling. These activities respond dynamically to 

changes in soil management practices, making them practical indicators for assessing soil health and fertility.The 

impact of environmental factors and climate change on soil microorganisms is examined, particularly regarding the 

decomposition of chemicals by soil microorganisms. Variations in crop growth and physiological structure due to 

climate change also affect the efficacy of bioremediation efforts, as these changes influence the microbial 

community’s ability to degrade pollutants.For decades, enhancing agricultural productivity has relied on the strategic 

utilization of soil minerals to ensure optimal crop growth. Historically, agricultural yield has been improved by 

converting organic materials, such as manure and crop residues, into essential nutrients. However, the 19th century's 

rapid industrialization and population expansion required a significant increase in agricultural output. This demand 

led to the development and widespread use of industrially produced phosphorus (𝑃) fertilizers. Following the success 

of phosphorus fertilization, nitrogen (𝑁) fertilization became an essential step, leading to the adoption of inorganic 

nitrogen (𝑁), phosphorus (𝑃), and potassium (𝐾) fertilizers as foundational elements in crop development strategies. 

Given the complexity of soil fertility, we can model the interaction of these factors mathematically. Let 𝐹𝑠(𝑡) represent 

the soil fertility function over time 𝑡, where: 

𝐹𝑠(𝑡) = 𝑓(𝑁(𝑡), 𝑃(𝑡), 𝐾(𝑡), ℎ(𝐶𝑀𝐵(𝑡), 𝑝𝐻(𝑡), 𝑂𝐶(𝑡), 𝑆(𝑡))) 

Here, 𝑁(𝑡), 𝑃(𝑡), and 𝐾(𝑡) represent the time-dependent concentrations of nitrogen, phosphorus, and potassium, 

respectively. The function ℎ(𝐶𝑀𝐵(𝑡), 𝑝𝐻(𝑡), 𝑂𝐶(𝑡), 𝑆(𝑡)) captures the influence of soil microbial biomass carbon 

(𝐶𝑀𝐵(𝑡)), pH, organic carbon (𝑂𝐶), and sulfur (𝑆) on soil fertility.This equation underscores how these soil properties 

interact dynamically to influence soil fertility 𝐹𝑠(𝑡), ultimately impacting agricultural productivity.Effective soil 

management requires a thorough understanding of the complex interactions between these variables. By integrating 

multiple scientific disciplines and applying mathematical models to nutrient dynamics, we can develop optimized 

strategies that enhance crop yields while ensuring environmental sustainability. 

The formulation of a soil fertility strategy within agricultural systems is essential for augmenting production 

capacities to sustain and improve economic returns. Beyond the simple management of soil nutrients, such strategies 

must also consider the myriad factors that influence the soil's capacity to supply nutrients and the efficiency with 

which crops assimilate these nutrients. Several additional elements, including soil moisture content, pH levels, 

salinity, physical structure, and biotic stresses, interact in complex ways to affect a crop's nutritional status. 

Consequently, a well-balanced nutrient profile alone is often insufficient to achieve the optimal functionality of an 

agricultural system[18]. 

Given the critical role of soil nutrients in crop productivity, the interaction of these variables can be modeled using 

mathematical equations. Let 𝐹(𝑡) represent the fertility function, which depends on various soil properties 𝑆𝑖(𝑡), 

where: 

𝐹(𝑡) = 𝑓(𝑁(𝑡), 𝑃(𝑡), 𝐾(𝑡), 𝑔(𝑀(𝑡), 𝑝𝐻(𝑡), 𝑆(𝑡), 𝐵(𝑡))) 

Here: 
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• 𝑁(𝑡), 𝑃(𝑡), and 𝐾(𝑡) represent the time-dependent concentrations of nitrogen, phosphorus, and potassium, 

respectively. 

• 𝑔(𝑀(𝑡), 𝑝𝐻(𝑡), 𝑆(𝑡), 𝐵(𝑡)) is a function representing the interaction of soil moisture 𝑀(𝑡), pH levels 𝑝𝐻(𝑡), 

salinity 𝑆(𝑡), and biotic stress factors 𝐵(𝑡) over time. 

This equation illustrates how these soil properties dynamically interact to influence the fertility function 𝐹(𝑡), and by 

extension, agricultural productivity. 

Effective soil fertility management necessitates a deep understanding of the intricate interactions between soil 

nutrients and other environmental factors. The integration of multiple scientific disciplines, combined with a 

mathematical approach to modeling nutrient dynamics, can lead to optimized strategies that not only enhance crop 

yields but also ensure economic and environmental sustainability. 

This comprehensive understanding allows for the development of more robust and resilient agricultural systems, 

capable of adapting to varying conditions while maintaining productivity and ecological balance.Plant growth and 

development are fundamentally dependent on the availability and proper balance of essential nutrients. These 

nutrients, categorized into macronutrients and micronutrients, are integral to a range of physiological and 

biochemical processes that are vital to the plant life cycle. This paper delves into the roles of these nutrients, 

emphasizing their importance in photosynthesis, energy transfer, and overall plant health[19]. 

Machine learning algorithms, which are broadly classified into three categories—supervised learning, unsupervised 

learning, and reinforcement learning—are increasingly applied in the field of agricultural science. Specifically, in the 

context of soil fertility prediction, supervised machine learning techniques have proven to be highly effective due to 

their capability in handling both classification and regression tasks. These techniques encompass a variety of 

algorithms, including random forests, support vector machines (SVM), decision trees, linear regression, logistic 

regression, AdaBoost, XGBoost, Naive Bayes, and k-nearest neighbors (k-NN). 

This study is centered on the application of supervised machine learning techniques for predicting soil fertility by 

leveraging key soil chemical properties such as soil organic carbon (OC), pH, and electrical conductivity (EC). The 

primary objective is to identify the most effective model that can accurately predict soil fertility based on these soil 

characteristics. The methodology involves evaluating multiple algorithms and conducting a comparative analysis to 

determine the most suitable supervised machine learning models. 

To mathematically model soil fertility prediction, we define a supervised machine learning model 𝑀𝜃 as a function 

that maps input features 𝑋 (soil characteristics such as OC, pH, EC) to an output prediction 𝑦̂ (soil fertility level). This 

can be represented as: 

𝑦̂ = 𝑀𝜃(𝑋) 

where 𝑋 represents the vector of input features, and 𝜃 denotes the model parameters that are optimized during the 

training process. 

Given a dataset {(𝑋𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑋𝑖 is the feature vector for the 𝑖-th observation and 𝑦𝑖  is the corresponding soil 

fertility level, the goal is to minimize the loss function 𝐿(𝑦𝑖 , 𝑦̂𝑖) over the training set to find the optimal model 

parameters 𝜃∗: 

𝜃∗ = arg⁡min
𝜃
 ∑  

𝑛

𝑖=1

𝐿(𝑦𝑖 , 𝑀𝜃(𝑋𝑖)) 

Soil enzyme activity is a critical component of the biochemical cycles within soil ecosystems, significantly influencing 

the decomposition of organic matter, nutrient cycling, and overall soil health. These activities are closely associated 

with various soil properties, including soil organic matter (SOM), physical characteristics, microbial activity, and soil 

biomass. Accurately understanding and predicting soil enzyme activity is essential for optimizing agricultural 

practices and maintaining soil health. Supervised machine learning algorithms have emerged as powerful tools for 
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predicting soil enzyme activities based on these properties, offering a data-driven approach to enhancing agricultural 

productivity and sustainability[20-25]. 

The prediction of soil enzyme activity 𝑦̂ can be mathematically formulated using a supervised learning model 𝑀𝜃, 

which maps input features 𝑋 (e.g., soil organic matter (SOM), soil pH, moisture content, microbial biomass) to an 

output prediction 𝑦̂: 

𝑦̂ = 𝑀𝜃(𝑋) 

Here, 𝑋 represents the vector of input features, and 𝜃 denotes the parameters of the machine learning model that are 

learned during the training process. 

The objective is to find the optimal parameters 𝜃∗ that minimize the prediction error, which is typically quantified by 

a loss function 𝐿(𝑦̂, 𝑦). This optimization problem can be expressed as: 

𝜃∗ = arg⁡min
𝜃
 
1

𝑛
∑  

𝑛

𝑖=1

𝐿(𝑀𝜃(𝑋𝑖), 𝑦𝑖) 

where: 

• 𝑛 is the number of training examples, 

• 𝑋𝑖 is the feature vector for the 𝑖-th observation, 

• 𝑦𝑖  is the observed soil enzyme activity for the 𝑖-th observation. 

A common loss function used in regression tasks is the mean squared error (MSE), defined as: 

𝐿(𝑦̂, 𝑦) =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)
2 

The goal is to adjust the model parameters 𝜃 such that the MSE is minimized, resulting in a model that accurately 

predicts soil enzyme activity based on the input features. This approach allows for the systematic prediction of soil 

enzyme activity, facilitating the optimization of agricultural practices and contributing to the overall health of soil 

ecosystems. 

Application of Supervised Machine Learning Algorithms 

Supervised machine learning (ML) algorithms, such as Random Forests, Support Vector Machines (SVMs), Decision 

Trees, and Linear Regression, are extensively utilized to model the intricate relationship between soil properties and 

enzyme activities. These models are designed to capture the complex, often nonlinear interactions between various 

soil factors and enzyme activities, offering valuable insights into soil health and agricultural productivity. 

Random Forests 

A Random Forest model 𝑀RF is an ensemble learning method composed of multiple decision trees. Each tree 𝑇𝑗 in 

the forest is trained on a random subset of the data, and the final prediction 𝑦̂ is obtained by averaging the predictions 

from all trees: 

𝑦̂ =
1

𝑚
∑  

𝑚

𝑗=1

𝑇𝑗(𝑋; 𝜃𝑗) 

where: 

• 𝑚 is the number of trees in the forest, 

• 𝑇𝑗 is the 𝑗-th tree in the ensemble, 

• 𝜃𝑗 represents the parameters of the 𝑗-th tree, 
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• 𝑋 is the vector of input features. 

The Random Forest algorithm effectively reduces overfitting and improves predictive accuracy by aggregating the 

outputs of multiple decision trees. 

Support Vector Machines (SVMs) 

An SVM model 𝑀SVM aims to find the optimal hyperplane that maximizes the margin between different classes (in 

classification tasks) or regression boundaries (in regression tasks). The prediction 𝑦̂ for a given input 𝑋 is given by: 

𝑦̂ = 𝑤 ⋅ 𝑋 + 𝑏 

where: 

• 𝑤 is the weight vector, 

• 𝑏 is the bias term. 

The SVM model is particularly effective for high-dimensional spaces and is capable of handling both linear and 

nonlinear relationships by employing different kernel functions. 

Impact on Soil Health and Agricultural Productivity 

By applying these supervised ML models, soil scientists can predict how soil enzyme activities will respond to 

different agricultural practices and environmental conditions. This predictive capability has profound implications 

for nutrient cycling and agricultural productivity. For instance, enzymes involved in the carbon cycle (e.g., β-

glucosidase), nitrogen cycle (e.g., urease), and overall soil health indicators (e.g., dehydrogenase) can be monitored 

and managed using these models. 

Carbon Cycle Enzyme Prediction 

Consider the prediction of β-glucosidase activity, denoted by 𝑦̂β-gluc. The model might use input features such as soil 

organic carbon (SOC), soil pH (𝑝𝐻), and soil moisture (𝑀): 

𝑦̂β-gluc = 𝑀𝜃(SOC, 𝑝𝐻,𝑀) 

This prediction helps in understanding how changes in these soil properties affect the carbon cycling process. By 

analyzing the predicted enzyme activities, agricultural practices can be optimized to enhance soil health, ensuring 

sustainable productivity and ecological balance. 

These models not only provide insights into the current state of soil health but also offer predictive capabilities that 

can guide future soil management practices, contributing to more efficient and sustainable agricultural systems. 

Impact on Soil Health and Agricultural Productivity 

The application of supervised machine learning (ML) models allows soil scientists to predict how soil enzyme 

activities will respond to various agricultural practices and environmental conditions. This predictive capability has 

profound implications for nutrient cycling and agricultural productivity. By accurately forecasting enzyme activities, 

these models help in understanding and managing essential processes within the soil ecosystem, thereby contributing 

to sustainable agricultural practices[26]. 

For example, enzymes involved in critical biochemical cycles—such as β-glucosidase in the carbon cycle, urease in 

the nitrogen cycle, and dehydrogenase as an overall indicator of soil health—can be effectively monitored and 

managed using these models. The ability to predict the behavior of these enzymes enables better decision-making in 

soil management, leading to enhanced crop yields and improved soil quality. 

Carbon Cycle Enzyme Prediction 

Consider the prediction of β-glucosidase activity, denoted by 𝑦̂β-gluc. This enzyme plays a crucial role in the carbon 

cycle by breaking down complex carbohydrates into simpler forms that plants can absorb and utilize. To predict its 

activity, the model might use input features such as soil organic carbon (SOC), soil pH (𝑝𝐻), and soil moisture (𝑀): 
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𝑦̂β-gluc = 𝑀𝜃(SOC, 𝑝𝐻,𝑀) 

where: 

• 𝑦̂β-gluc is the predicted activity of β-glucosidase, 

• SOC represents the soil organic carbon content, 

• 𝑝𝐻 is the soil pH level, 

• 𝑀 denotes soil moisture, 

• 𝑀𝜃 is the supervised ML model with parameters 𝜃. 

The output of this model provides insights into how changes in soil organic carbon, pH, and moisture levels influence 

the carbon cycling process through the activity of β-glucosidase. By understanding these interactions, agricultural 

practices can be adjusted to optimize carbon cycling, thereby improving soil fertility and supporting sustainable crop 

production. 

Role of Supervised Machine Learning Algorithms in Predicting Soil Enzyme Activity 

Soil enzymes are integral to the biochemical processes that drive the recycling of organic materials within the soil 

ecosystem. Their activities are closely tied to various soil properties, including soil organic matter (SOM), physical 

characteristics, microbial activity, and soil biomass. Depending on their location within the soil, enzymes can be 

classified as either intracellular or extracellular. 

Intracellular enzymes operate within living, metabolically active cells, as well as in dormant or dead cells where 

enzymes are located in the cytoplasm or attached to cell walls. These enzymes are crucial for maintaining cellular 

metabolism and contribute to the overall biochemical activity within the soil. 

Extracellular enzymes, in contrast, are often immobilized within the soil matrix through mechanisms such as 

ionic interactions, covalent bonding, hydrogen bonding, and other forms of binding to clay particles and humic 

substances. These enzymes are pivotal in breaking down soil organic matter (SOM), facilitating nutrient cycling, 

energy transformation, ecological stability, and ultimately, agricultural productivity. 

Despite their importance, agricultural practices such as mechanical tillage and excessive harvesting can negatively 

impact soil enzyme activity, leading to reduced nutrient availability for plants. It is well-documented that enzymatic 

activity tends to decrease with increasing soil depth and that these enzymes respond more rapidly to environmental 

changes and soil management practices than many other soil quality indicators. Consequently, well-established 

assays for a wide range of soil enzyme activities are commonly used as primary methods for assessing soil health 

(Bergstrom et al., 2000). 

The Role of Supervised Machine Learning in Predicting Enzyme Activity 

Supervised machine learning (ML) algorithms play a critical role in predicting soil enzyme activities by modeling the 

complex relationships between soil properties and enzymatic functions. These algorithms, such as Random Forests, 

Support Vector Machines (SVMs), and Decision Trees, are adept at handling nonlinear interactions and can 

effectively analyze large datasets containing diverse soil properties. 

The application of supervised ML algorithms enables soil scientists to predict how enzyme activities will respond to 

various agricultural practices and environmental conditions. For instance, by inputting variables such as SOM 

content, soil pH, moisture levels, and microbial biomass into a supervised ML model, it is possible to predict the 

activity levels of enzymes involved in critical biochemical cycles, such as β-glucosidase in the carbon cycle or urease 

in the nitrogen cycle. 

Such predictions are invaluable for optimizing soil management practices, as they provide insights into how changes 

in soil properties can affect nutrient cycling and overall soil health. By accurately predicting enzyme activities, these 

models help in maintaining ecological stability and enhancing agricultural productivity[27-30]. 
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Supervised Machine Learning in Predicting Soil Enzyme Activity 

Supervised machine learning (ML) algorithms have emerged as powerful tools for predicting soil enzyme activities, 

which are influenced by both biotic and abiotic factors. These algorithms leverage soil properties and environmental 

parameters as input features to predict enzymatic activity levels, which are critical for understanding soil health and 

nutrient cycling. 

Mathematically, the relationship between soil enzyme activity 𝑦̂ and its predictors can be modeled using a supervised 

learning algorithm 𝑀𝜃, which maps a set of input features 𝑋 (e.g., soil organic matter (SOM), soil pH, moisture 

content, microbial biomass) to an output prediction 𝑦̂: 

𝑦̂ = 𝑀𝜃(𝑋) 

where: 

• 𝑋 is the feature vector comprising the relevant soil and environmental characteristics, 

• 𝜃 represents the model parameters that are learned during the training process. 

Algorithmic Approach to Soil Enzyme Activity Prediction 

To predict soil enzyme activities, multiple supervised ML algorithms—such as random forests, support vector 

machines (SVMs), decision trees, and linear regression—can be applied. The primary objective is to develop a model 

that minimizes the prediction error by accurately capturing the complex interactions between soil properties and 

enzyme activities. 

Given a training dataset {(𝑋𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where 𝑋𝑖 represents the feature vector for the 𝑖-th observation and 𝑦𝑖  is the 

observed enzyme activity, the supervised ML model is trained by optimizing the following objective function: 

𝜃∗ = arg⁡min
𝜃
 
1

𝑛
∑  

𝑛

𝑖=1

𝐿(𝑀𝜃(𝑋𝑖), 𝑦𝑖) 

Here: 

• 𝐿(𝑦̂𝑖 , 𝑦𝑖) is a loss function that quantifies the discrepancy between the predicted enzyme activity 𝑦̂𝑖 = 𝑀𝜃(𝑋𝑖) 

and the actual enzyme activity 𝑦𝑖, 

• 𝑛 is the number of observations in the training dataset. 

Commonly used loss functions in regression tasks include: 

• Mean Squared Error (MSE): 

𝐿(𝑦̂𝑖 , 𝑦𝑖) =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)
2 

• Mean Absolute Error (MAE): 

𝐿(𝑦̂𝑖 , 𝑦𝑖) =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦̂𝑖 − 𝑦𝑖| 

The choice of the loss function depends on the specific application and the nature of the data. MSE is sensitive to 

outliers, making it suitable when larger errors need to be penalized more heavily. MAE, on the other hand, provides 

a more robust measure of prediction accuracy when the impact of outliers needs to be minimized. 

By optimizing the loss function, the supervised ML model learns to accurately predict soil enzyme activities based on 

the given input features. This predictive capability is vital for enhancing soil management practices, improving 

nutrient cycling, and ultimately contributing to the sustainability of agricultural ecosystems. 
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2.PROPOSED MODEL 

Supervised machine learning models for predicting soil enzyme activities have significant implications for 

understanding and managing soil health. These models can help identify nutrient imbalances and assess the impact 

of agricultural practices on enzyme activities, which are crucial for nutrient cycling, particularly in the carbon (C), 

nitrogen (N), and phosphorus (P) cycles. For instance, carbon cycle-related enzymes such as β-glucosidase and 

invertase, general activity indicators like dehydrogenase and catalase, and nitrogen cycle enzymes such as urease, 

can all be monitored and predicted using ML models to inform better soil management practices.The ability of 

supervised ML models to integrate complex datasets and predict enzyme activities with high accuracy makes them 

invaluable for agricultural planning and decision-making. By continuously updating these models with new data, 

farmers and soil scientists can anticipate changes in soil health due to environmental shifts or management practices, 

thus enhancing the sustainability and productivity of agricultural systems.In this study, various supervised machine 

learning models were trained and evaluated using performance metrics such as accuracy, precision, recall, F1-score, 

and the area under the receiver operating characteristic curve (AUC-ROC). The dataset was split into two subsets: 

80% for training and 20% for testing. Each algorithm applied to the soil fertility prediction task—whether regression 

models, SVMs, decision trees, random forests, or k-NN—yields different levels of prediction accuracy, reflecting its 

ability to generalize from the training data to unseen test data. 

The best-performing model is identified by comparing the accuracy of these algorithms in predicting soil fertility 

across different phases, such as low, moderate, and high fertility levels. The accuracy 𝛼 of each model 𝑀𝑗 is calculated 

using the following formula: 

𝛼(𝑀𝑗) =
Number of Correct Predictions

Total Number of Predictions
 

The model with the highest accuracy 𝛼∗ = max𝑗  𝛼(𝑀𝑗) is selected as the optimal model for predicting soil fertility. 

Supervised machine learning models are instrumental in predicting soil fertility, a crucial task in modern agriculture 

that informs better management practices and enhances crop yield. By training and evaluating multiple algorithms 

on soil chemical properties, this study demonstrates the effectiveness of machine learning in providing accurate 

predictions, thereby supporting sustainable agricultural practices. The comparative analysis of model performances 

ensures that the most accurate model is chosen for practical application, leading to more reliable predictions of soil 

fertility phases. 

Macronutrients 

Carbon, Hydrogen, and Oxygen: 

Carbon (C), hydrogen (H), and oxygen (O) are integral to the process of photosynthesis, wherein carbon dioxide 

(CO₂) is converted into glucose. Hydrogen, derived from water (H₂O), and oxygen are also directly involved in this 

process, highlighting their crucial roles in energy production and organic molecule synthesis within plants. 

Nitrogen: 

Nitrogen (N), absorbed as ammonium (NH₄⁺) or nitrate (NO₃⁻), is a vital component of amino acids, the building 

blocks of proteins, and nucleic acids, which are essential for plant growth and development. Nitrogen is also a key 

element in chlorophyll, the pigment responsible for capturing light energy during photosynthesis. 

Phosphorus: 

Phosphorus (P), mainly taken up as phosphate ions (HPO₄²⁻, H₂PO₄⁻), is crucial for the formation of nucleic acids 

and the energy currency of cells, adenosine triphosphate (ATP). This nutrient is indispensable for energy transfer 

processes within plant cells, making it fundamental for growth and reproduction. 

Micronutrients 

Potassium: 

Potassium (K) plays a multifaceted role in plant metabolism, including enzyme activation, osmoregulation, and stress 
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response. Its presence is critical for the regulation of stomatal openings, which control water loss and gas exchange, 

thus directly affecting photosynthesis and water use efficiency. 

Calcium and Magnesium: 

Calcium (Ca) is essential for the structural integrity of plant cell walls and membrane stabilization, playing a key role 

in cellular signaling. Magnesium (Mg), as the central atom in the chlorophyll molecule, is indispensable for 

photosynthesis, facilitating the capture of light energy. 

Sulfur, Copper, and Manganese: 

Sulfur (S) is important for synthesizing certain amino acids and vitamins. Copper (Cu) and manganese (Mn) are 

required for various redox reactions and enzyme activation. Manganese, in particular, is critical for the photolysis of 

water during photosynthesis, while copper is essential for lignin synthesis and stress resistance. 

Iron: 

Iron (Fe) is pivotal in the synthesis of chlorophyll and functions as an electron carrier in both photosynthesis and 

respiration. Its deficiency can lead to chlorosis, a condition characterized by yellowing leaves due to inadequate 

chlorophyll production. 

Boron, Chlorine, and Zinc: 

Boron (B) is crucial for cell wall formation and reproductive growth, while chlorine (Cl) is involved in osmotic 

regulation and ionic balance within the plant. Zinc (Zn) is necessary for enzyme function, protein synthesis, and the 

production of growth hormones, making it vital for overall plant health and development. 

Dataset 

Dataset Overview: 

Attributes Crop_Recommendation.csv Soil.csv Crop_names.csv 

Source Kaggle - Crop Recommendation Dataset Kaggle - Soil CSV Kaggle - Crop Names CSV 

No. of Samples 2200 43 35 

Attributes 8 2 2 

Used for Classification Classification Classification 

Labels Count 22 7 35 

 

1. Crop_Recommendation.csv: 

o Source: The data is sourced from Kaggle, specifically from the Crop Recommendation Dataset. It 

contains information relevant to recommending suitable crops based on various attributes. 

o No. of Samples: There are 2200 samples in this dataset, which indicates the number of data entries 

or rows available. 

o Attributes: The dataset includes 8 attributes, which likely represent various factors such as soil 

type, environmental conditions, or other relevant metrics used for predicting crop suitability. 

o Used for: This dataset is used for classification tasks, where the goal is to classify or recommend 

crops based on the input attributes. 

https://www.kaggle.com/atharvaingle/crop-recommendation-dataset
https://www.kaggle.com/shekharyada/crop-soilcsv
https://www.kaggle.com/aj021977/crop-names
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o Labels Count: There are 22 unique labels, which probably correspond to 22 different crops that 

the model can recommend. 

2. Soil.csv: 

o Source: This dataset is sourced from Kaggle as well, from the Soil CSV dataset. It contains data 

related to soil characteristics. 

o No. of Samples: The dataset includes 43 samples. 

o Attributes: There are 2 attributes in this dataset, which might include soil type, pH level, or other 

soil-related metrics. 

o Used for: Similar to the Crop Recommendation dataset, this one is also used for classification 

purposes, potentially classifying soil types or their suitability for certain crops. 

o Labels Count: There are 7 unique labels, indicating 7 different soil types or classifications. 

3. Crop_names.csv: 

o Source: This dataset is also from Kaggle, from the Crop Names CSV dataset. It likely provides a 

reference or mapping for crop names used in the recommendation system. 

o No. of Samples: There are 35 samples in this dataset. 

o Attributes: The dataset has 2 attributes, which could include the crop ID and the corresponding 

crop name. 

o Used for: This dataset is used for classification, probably helping in categorizing or identifying crops 

based on their names or other identifiers. 

o Labels Count: There are 35 unique labels, likely representing 35 different crops. 

These datasets form the backbone of the crop recommendation system. The Crop_Recommendation.csv is the 

primary dataset for making predictions, while Soil.csv provides critical soil-related features, and Crop_names.csv 

offers a reference for crop identification. Together, they enable the system to accurately classify and recommend 

crops based on environmental and soil conditions, enhancing agricultural decision-making. 

1. Identifying Latitude and Longitude: 

o Let the latitude and longitude of a location be denoted as 𝜙 (latitude) and 𝜆 (longitude). These serve 

as inputs to a function 𝐹env, which models environmental factors: 

2. 𝐹env(𝜙, 𝜆) = {𝑇(𝜙, 𝜆), 𝐻(𝜙, 𝜆), … } 

where 𝑇 represents temperature and 𝐻 represents humidity. These outputs are crucial for determining crop 

suitability. 

3. Predicting Current Temperature and Humidity: 

o Using the geographic coordinates 𝜙 and 𝜆, we predict the environmental conditions 𝑇(𝜙, 𝜆) 

(temperature) and 𝐻(𝜙, 𝜆) (humidity) through regression models: 

4. 𝑇(𝜙, 𝜆) = 𝑓𝑇(𝜙, 𝜆) + 𝜖𝑇 , ⁡𝐻(𝜙, 𝜆) = 𝑓𝐻(𝜙, 𝜆) + 𝜖𝐻 

where 𝑓𝑇 and 𝑓𝐻 are models of temperature and humidity, and 𝜖𝑇, 𝜖𝐻 are the error terms. 

5. Machine Learning Classification Algorithms: 

o Given a set of features 𝐗 = {𝑇(𝜙, 𝜆), 𝐻(𝜙, 𝜆), 𝑆type, 𝑁req, … }, where 𝑆type is the soil type and 𝑁req is the 

nitrogen requirement, a classification model ℳ(𝜃) is applied to predict the crop class 𝐶𝑖: 

6. 𝐶̂𝑖 =ℳ(𝜃; 𝐗) 
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Here, ℳ(𝜃) is trained using labeled data to classify which crop class 𝐶𝑖 is best suited for the given conditions. 

7. Hyperparameter Tuning: 

o The machine learning model parameters 𝜃 are optimized through hyperparameter tuning to 

minimize a loss function 𝐿(𝜃), ensuring the model generalizes well to new data. Let 𝜃∗ represent the 

optimal set of parameters: 

8. 𝜃∗ = arg⁡min
𝜃
 𝐿(𝜃; 𝐗, 𝐶𝑖) 

The tuned model ℳ(𝜃∗) is then used for making final predictions. 

9. Predicting Top 5 Crops: 

o The tuned model ℳ(𝜃∗) outputs the probabilities for each crop type. The top 5 crops {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} 

are chosen based on the highest probability scores 𝑃(𝐶𝑖|𝐗): 

10. {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} = arg⁡top5⁡ 𝑃(𝐶𝑖|𝐗) 

where 𝑃(𝐶𝑖|𝐗) represents the likelihood of crop 𝐶𝑖 being suitable for the given input conditions 𝐗. 

11. Calculating Growth Degree Days (GDD): 

o The GDD is calculated as the cumulative heat required for a crop to grow, where: 

12. GDD=∑  𝑛
𝑖=1 max (

𝑇max,𝑖+𝑇min,𝑖

2
− 𝑇base, 0) 

Here, 𝑇max,𝑖  and 𝑇min,𝑖 are the daily maximum and minimum temperatures, and 𝑇base is the crop-specific base 

temperature below which no growth occurs. 

13. Calculating Nutrient Requirements: 

o For each crop, the system calculates the required amount of nitrogen (Nreq), phosphorus (Preq), and 

potassium (Kreq) to support a specific yield (e.g., 200 lb yield). The nutrient requirements are 

computed based on the following general relation: 

14. Nreq = 𝑓𝑁(yield, soil⁡type), ⁡Preq = 𝑓𝑃(yield, soil⁡type), ⁡Kreq = 𝑓𝐾(yield, soil⁡type) 

where 𝑓𝑁, 𝑓𝑃, and 𝑓𝐾 are functions that map yield and soil type to the respective nutrient requirements. 

15. Displaying Details: 

o The system displays the top 5 crop recommendations, the calculated GDD, and the necessary 

nutrient requirements for the selected crops to the user in a user-friendly format. This presentation 

helps in decision-making for the best crop management practices. 

The datasets form the foundation for the crop recommendation model by providing the training data needed to 

develop the classification algorithm. The datasets also supply essential feature values for different regions and soil 

types, which influence the output predictions. 

• Location Data (𝜙, 𝜆): The input variables for predicting environmental conditions such as temperature and 

humidity. 

• Soil Properties (𝑆type): Features like soil pH, moisture levels, and organic content that influence crop 

growth and nutrient absorption. 

• Crop Labels: The output variable representing the target class 𝐶𝑖 for classification. 

This framework leverages geographical, environmental, and agricultural data, encoded into mathematical models 

and algorithms, to optimize and automate the crop recommendation process. 

1. Soil Quality Index (SQI) Calculation 
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• Equation: 

Index𝑥 = √𝑆1 × 𝑆2 × 𝑆3 ×⋯× 𝑆𝑛
𝑛 ⁡(1) 

Mathematical Insight: 

o The geometric mean is used to combine various soil parameters, each represented by a score 𝑆𝑖. The 

𝑛th root ensures that the influence of each parameter is proportional, preventing any single factor 

from disproportionately affecting the overall soil quality index. This method is particularly useful in 

soil science because it accounts for the multiplicative nature of the factors affecting soil quality. 

• Practical Significance: 

o The SQI offers a comprehensive evaluation of soil quality by integrating multiple aspects, such as 

chemical, physical, and biological properties. Farmers and land managers can use this index to assess 

the overall health of the soil and make informed decisions about land management, crop selection, 

and resource allocation. 

2. Chemical Quality Index (CQI) Calculation 

• Equation: 

CQI=√EC×pH×ESP×CaCO3 × CaSO4 × CEC
6

⁡(2) 

Mathematical Insight: 

o The CQI is a geometric mean of six key chemical parameters that influence soil quality. This index is 

particularly sensitive to the balance of soil nutrients and pH levels, which are critical for crop growth. 

Each parameter contributes equally to the CQI, ensuring a balanced evaluation. 

• Practical Significance: 

o By analyzing the CQI, farmers can determine the chemical suitability of the soil for various crops. 

For instance, soils with high salinity (EC) or imbalanced pH may require amendments to improve 

crop yields. Understanding the CQI helps in the sustainable management of soil resources, 

particularly in regions prone to soil degradation. 

3. Physical Quality Index (Pqi) Calculation 

• Equation: 

PQI=√HC×WHC×BD×ST×SS×SD
6

⁡(3) 

Mathematical Insight: 

o The PQI incorporates factors like hydraulic conductivity (HC), water holding capacity (WHC), and 

bulk density (BD), which are critical for water movement and root penetration in soil. The geometric 

mean approach ensures that no single physical attribute dominates the index. 

• Practical Significance: 

o The PQI is vital for assessing the soil's physical structure, which directly impacts plant root growth 

and water infiltration. For example, compacted soils with low hydraulic conductivity may need tilling 

or other physical interventions to improve crop performance. 

4. Fertility Quality Index (FQI) Calculation 

• Equation: 

FQI=√SOM×AvK×AvP×AvN
4

⁡(4) 

Mathematical Insight: 
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o The FQI aggregates four key indicators of soil fertility: soil organic matter (SOM), available 

potassium (AvK), available phosphorus (AvP), and available nitrogen (AvN). These nutrients are 

essential for plant growth, and their balanced availability is crucial for soil fertility. 

• Practical Significance: 

o The FQI provides insights into the nutrient status of the soil. High FQI values indicate that the soil 

has adequate nutrients for crop growth, while low values may suggest the need for fertilization or 

organic matter additions. Farmers can use the FQI to optimize fertilizer applications and improve 

crop yields sustainably. 

5. Final Soil Quality Index (FSQI) Calculation 

• Equation: 

FSQI=√CQI×PQI×FQI
3

⁡(5) 

Mathematical Insight: 

o The FSQI integrates the chemical, physical, and fertility aspects of soil into a single index. The 

geometric mean across these three indices ensures a balanced overall assessment of soil quality, 

where each aspect contributes equally to the final score. 

• Practical Significance: 

o The FSQI serves as a comprehensive measure of soil health, guiding land management practices. It 

helps in identifying soils that are optimal for agriculture, those that require improvement, and those 

that may be at risk of degradation. This index is essential for long-term agricultural planning and 

sustainable land use. 

The Soil Quality Model's indices offer a multidimensional view of soil health, integrating chemical, physical, and 

fertility factors into cohesive metrics that inform agricultural decision-making. These indices are not only 

scientifically robust due to their mathematical foundations but also practically valuable for enhancing crop 

production and maintaining soil health over time. By leveraging these indices, farmers and land managers can 

implement targeted interventions, optimize resource use, and promote sustainable agricultural practices. 

Enzyme Classification Based on Soil pH 

• pH Class in Soil: The table categorizes the soil into different pH levels, such as acidic, sub-acidic, and 

alkaline. 

• Categorization of Enzyme Activity: It lists the enzymes that are active within these specific pH ranges. 

• Soil pH Ideal Range: For each enzyme, an ideal soil pH range is provided where that enzyme exhibits 

optimal activity. 

1. Acidic pH Content Present in the Soil: 

o Cellobiohydrolase Enzyme: Optimal in a pH range of 4.0-4.5. 

o β-xylanase Enzyme: Operates best within a pH range of 4.5-5.5. 

o Arylsulphatase Enzyme: Functions optimally at a pH of 3.0. 

2. Sub-Acidic Features in Soil with pH Content: 

o α-glucosidase Enzyme: Ideal pH range is between 3.0-7.2. 

o β-glucosidase Enzyme: Best activity observed within a pH range of 3.0-4.75. 

o β-N-acetyl glucosaminidase Enzyme: Optimal pH is in the range of 3.0-5.0. 

3. pH Acidic or Alkaline Content: 
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o Acidic pH: Enzymes functioning in this range have an ideal pH of 3.0-5.0. 

o Alkaline pH: Enzymes that operate in an alkaline environment have a preferred pH range of 9.5-

11.5. 

o pH Phosphodiesterase: This enzyme works best in a pH range of 3.0-5.5. 

Algorithms : 

Algorithm 1: Ensemble Regression (Rewritten with Greek Variables) 

Phase 1: Take Level Predictions 

For 𝜏 ← 1 to Θ do 

1. Take a base prediction Π𝜏 based on Δ 

Phase 2: Generate a New Dataset from Δ 

For 𝜄 ← 1 to 𝜇 do 

1. Construct a newly extracted data set containing {𝛼𝜄
𝜈, 𝛽𝜄} where 

𝛼𝜄
𝜈 = {𝜋𝜅(𝛼𝜄)} for 𝜅 = 1 to Θ 

Phase 3: Take 2nd Level Predictions 

For 𝜏 ← 1 to Θ do 

1. Take a base prediction 𝜋𝜏 based on Δ 

2. Generate a newly extracted data set containing {𝛼𝜄
𝜈, 𝛽𝜄} where 

𝛼𝜄
𝜈 = {𝜋𝜅(𝛼𝜄)} for 𝜅 = 1 to Θ 

Phase 4: Take 3rd-Level Predictions 

1. Take a new prediction Π𝜈
𝜈 according to the recently retrieved data. 

2. Return Π(𝑥) = Π𝜈
𝜈(𝜋1(𝛼), 𝜋2(𝛼),… , 𝜋Θ(𝛼)) 

Mathematical Proof for Each Phase: 

1. Phase 1: 

o Start with the dataset Δ = {𝛼𝑖 , 𝛽𝑖} and take the prediction based on the available information. 

o For each iteration, Π𝜏 is derived using a function that maps Δ to a prediction. 

2. Phase 2: 

o New datasets are constructed by applying the ensemble of predictions to the initial dataset. This is 

mathematically represented as constructing a new 𝛼𝜄
𝜈, where 𝛼𝜄

𝜈 = {𝜋𝜅(𝛼𝜄)}. 

o This step iterates over all elements in the dataset to generate this new mapping. 

3. Phase 3: 

o Predictions at this level involve retraining on the newly constructed datasets and then reapplying 

predictions. 

o The mapping 𝛼𝜄
𝜈 is extended over multiple iterations to ensure robust predictions. 

4. Phase 4: 

o The final prediction Π(𝑥) is an ensemble over all the intermediate predictions, combining each level 

of prediction into the final output. 
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o This step synthesizes all previous phases to yield the final ensemble prediction. 

Cluster Formation 

Original Equation: 

𝑂𝐹 = −∑  

𝑐

𝑗=1

∑ 

𝑛

𝑖=1

|𝐶𝑖𝑗|
2 

Rewritten Equation with Greek Variables: 

Ω = −∑  

𝜒

𝛾=1

∑ 

𝜈

𝜄=1

|Ξ𝛾𝜄|
2 

where: 

• Ω is the objective function representing the optimization of cluster formation. 

• 𝛾 represents the cluster index. 

• 𝜄 represents the node index. 

• Ξ𝛾𝜄 corresponds to the cluster membership indicator. 

Proof: 

The objective function Ω is designed to minimize the squared distance of nodes within each cluster, thereby ensuring 

that the nodes are grouped into clusters based on proximity. By minimizing this function, the energy consumption 

for communication between nodes in the same cluster is reduced. 

1. Define the distance metric Δ(𝜉𝜄 , 𝜉𝜅) between nodes 𝜉𝜄 and 𝜉𝜅 within the same cluster. 

2. Extend the metric to include energy consumption Ψ(𝜉𝜄 , 𝜉𝜅) by relating the distance to the energy model. 

3. Incorporate the energy model into the objective function Ω such that:Ω′ = Ω + 𝜆∑  
𝜒
𝛾=1 ∑  𝜈

𝜄=1 Ψ(𝜉𝜄 , 𝜉𝜅)where 𝜆 

is a scaling factor that balances the influence of energy consumption in cluster formation. 

Energy Efficient Path Selection 

Θ𝜏 = max
𝜏=1,...,𝜈

  [
∑  𝜈
𝜅=1  Δ𝜎(𝜒𝜄 , 𝜒𝜅)

ΞΘ(𝜈𝜅)
] 

where: 

• Θ𝜏 is the hop count maximizing function. 

• Δ𝜎(𝜒𝜄, 𝜒𝜅) represents the distance between nodes. 

• ΞΘ(𝜈𝜅) is the cost function associated with the hop count. 

Proof: 

The equation maximizes the hop count Θ𝜏 by considering the distance between nodes and the associated costs. The 

function seeks to balance energy efficiency with reliable communication paths. 

1. Define the cost function ΞΘ(𝜈𝜅) for a given node 𝜈𝜅. 

2. Extend ΞΘ to include energy constraints and network reliability factors:Θ𝜏
′ = Θ𝜏 + 𝜌 ⋅

𝐸𝜏(𝜈𝜅)

𝑅𝜎(𝜈𝜅)
where 𝐸𝜏 is the 

energy factor, and 𝑅𝜎 is the reliability metric. 

3. Derive the optimal path selection based on the extended cost function. 
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ΓNorm
′ =

Γ′ − Γ𝜇
′

Γ𝜈
′ − Γ𝜇

′
 

where: 

• ΓNorm
′  refers to the normalized data. 

• Γ′ indicates the original data. 

• Γ𝜇
′  and Γ𝜈

′  represent the minimum and maximum values from the dataset, respectively. 

Proof: 

Normalization is the process of converting data to a dimensionless scale to ensure similar distributions across 

different features. This is crucial for ensuring that each feature contributes equally to the model's predictions. 

1. Start by identifying the range of the dataset, defined by the minimum (Γ𝜇
′) and maximum (Γ𝜈

′) values. 

2. The normalization process scales each data point Γ′ by subtracting the minimum and dividing by the 

range:ΓNorm
′ =

Γ′−Γ𝜇
′

Γ𝜈
′ −Γ𝜇

′  

Covariance Matrix Calculation using SEK Function 

Φ𝜈 =
Π𝛼 − 𝜇

𝜎
 

where: 

• Φ𝜈 refers to the scaled value. 

• Π𝛼 indicates the preprocessed dataset. 

• 𝜇 and 𝜎 represent the mean and standard deviation. 

Proof: 

The scaled value Φ𝜈 is essential for standardizing the data before applying further statistical analysis, such as 

covariance matrix computation. 

1. Begin by calculating the mean 𝜇 and standard deviation 𝜎 of the dataset Π𝛼. 

2. Scale each data point by subtracting the mean and dividing by the standard deviation:Φ𝜈 =
Π𝛼−𝜇

𝜎
 

3. Extend the scaling process by incorporating a weighted mean 𝜇𝑤 and adjusted standard deviation 𝜎𝑤 for 

datasets with varying feature importance:Φ𝜈
′ =

Π𝛼−𝜇𝑤

𝜎𝑤
where 𝜇𝑤 and 𝜎𝑤 are computed by weighting each 

feature's contribution. 

Covariance Matrix Using SEK: 

Ψ(𝜙𝑥, 𝜙𝑦) = 𝑒
−
||𝜙𝑥−𝜙𝑦||

2

2𝜌2  

where: 

• Ψ(𝜙𝑥, 𝜙𝑦) models the covariance between features 𝜙𝑥 and 𝜙𝑦. 

• 𝜌 signifies the length scale, analogous to the standard deviation in the kernel function. 

Proof: 

The SEK function (Squarred Exponential Kernel) smooths the covariance calculation by incorporating a length scale 

𝜌, which controls the sensitivity of the covariance to the distance between features. 

1. Define the distance between two features 𝜙𝑥 and 𝜙𝑦 as Δ(𝜙𝑥, 𝜙𝑦). 
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2. The SEK function is applied to model this distance in a covariance matrix Ψ(𝜙𝑥, 𝜙𝑦):Ψ(𝜙𝑥, 𝜙𝑦) = 𝑒
−
||𝜙𝑥−𝜙𝑦||

2

2𝜌2  

3. Extend the function to include a varying length scale 𝜌(𝜉) based on the feature importance:Ψ′(𝜙𝑥, 𝜙𝑦) =

𝑒
−
||𝜙𝑥−𝜙𝑦||

2

2𝜌(𝜉)2 where 𝜉 is a weighting factor adjusting 𝜌 for each feature. 

Dimensionality Reduction 

ΩDR = {𝜇1; 𝜇2; … ; 𝜇𝜈} 

where: 

• ΩDR represents the dimensionality-reduced feature set. 

• 𝜇1, 𝜇2, … , 𝜇𝜈 are the significant eigenvectors. 

Proof: 

Dimensionality reduction reduces the number of features while retaining the most significant information. This is 

done by selecting the eigenvectors corresponding to the largest eigenvalues. 

1. Compute the eigenvalues Λ and eigenvectors Υ of the covariance matrix Ψ. 

2. Order the eigenvectors 𝜇1, 𝜇2, … , 𝜇𝜈 based on their corresponding eigenvalues in descending order. 

3. Select the top 𝜈 eigenvectors as the reduced feature set ΩDR: 

ΩDR = {𝜇1; 𝜇2; … ; 𝜇𝜈} 

4. Extend this by introducing a threshold 𝜏 to decide the number of eigenvectors based on the cumulative 

explained variance: 

ΩDR
′ = {𝜇𝑖⁡|⁡Cumulative Variance≥𝜏} 

5. Z-score Calculation: 

𝜁 =
𝛾 − 𝜇Γ
𝜎Γ

 

where: 

o 𝜁 is the Z-score. 

o 𝛾 represents the original data point. 

o 𝜇Γ and 𝜎Γ are the mean and standard deviation of the population, respectively. 

6. Mean Calculation: 

𝜇Γ =
1

𝜈
∑  

𝜈

𝜄=1

𝛾𝜄 

where: 

o 𝜇Γ is the mean of the dataset. 

o 𝛾𝜄 represents individual data points. 

o 𝜈 is the total number of data points. 

7. Standard Deviation Calculation: 
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𝜎Γ = √
1

𝜈
∑  

𝜈

𝜄=1

  (𝛾𝜄 − 𝜇Γ)
2 

where: 

o 𝜎Γ represents the standard deviation. 

8. Mean and Standard Deviation Calculation when Population Values are Unknown: 

𝛾̂ =
𝛾 − 𝜇‾Γ
𝜎‾Γ

 

where: 

o 𝛾̂ is the estimated normalized value. 

o 𝜇‾Γ and 𝜎‾Γ are estimated mean and standard deviation. 

9. Matrix Variance Calculation: 

Ω =
(𝛾 − 𝜆̂)

𝜆̂
 

where: 

o Ω represents the variance in matrix form. 

o 𝜆̂ is the estimate used for normalization. 

10. Variance: 

Var(𝛾𝜄) = 𝜎Γ
2(1 − 𝜉𝜅) 

where: 

o 𝜉𝜅 represents a factor influencing the variance calculation. 

11. Alternative Variance Calculation: 

Var(𝛾𝜄) = 𝜎Γ
2 (1 −

1

𝜈
∑  

𝜈

𝜅=1

  (𝛾𝜅 − 𝜆̂)) 

12. Residual Calculation: 

𝜉𝜅 =
𝜎Γ

√1 − 𝜉𝜅
 

where: 

o 𝜉𝜅 is the residual value after scaling. 

13. Function Scaling (Integer Encoding): 

𝛾′ =
(𝛾 − 𝛾min) × Var(𝛾𝜄)

(𝛾max − 𝛾min) × 𝜎Γ
2  

where: 

o 𝛾′ is the scaled value. 
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Extended Proof and Explanation: 

1. Z-score Calculation Proof: 

o Z-score normalization is used to rescale the data such that it has a mean of 0 and a standard deviation 

of 1. 

o Extend the calculation by considering the weighted mean 𝜇Γ𝑤 and weighted standard deviation 𝜎Γ𝑤 

to adjust for feature importance:𝜁′ =
𝛾−𝜇Γ𝑤

𝜎Γ𝑤
 

2. Variance and Residual Calculation Proof: 

o The variance calculations are adjusted by introducing a weighting factor 𝜅𝑤 to account for the 

importance of different features in the dataset:Var(𝛾𝜄)
′ = 𝜅𝑤 × 𝜎Γ

2 (1 −
1

𝜈
∑  𝜈
𝜅=1   (𝛾𝜅 − 𝜆̂)) 

3. Function Scaling (Integer Encoding) Proof: 

o Integer encoding scales the variable values to start at 0. This is crucial for certain machine learning 

models that require normalized inputs:𝛾′ = 𝜅𝑠 ×
(𝛾−𝛾min)×Var(𝛾𝜄)

(𝛾max−𝛾min)×𝜎Γ
2 where 𝜅𝑠 is a scaling factor that 

adjusts the encoded values based on the model's requirements. 

Mathematical Description of Scale-Wise Hybrid CNN-Transformer Network 

Overview 

The architecture comprises two primary stages: Encode and Decode, connected via a Pyramid Pooling 

mechanism. 

1. Encoding Stage: 

o The encoding process uses a sequence of convolutional and Transformer-based blocks to extract 

hierarchical features from the input image. 

o Each stage in the encoder downsamples the feature maps, reducing their spatial resolution while 

increasing their depth. 

2. Decoding Stage: 

o The decoder reconstructs the final output from the encoded features, typically performing 

upsampling operations. 

o The ASA (Adaptive Spatial Attention) modules are applied in the decoding stages to refine the 

feature maps before final output. 

Key Components and Mathematical Representation 

1. ResNet50 Block (Represented as ℛ): 

o Each ResNet block is composed of convolutional layers, followed by batch normalization and ReLU 

activation. 

o Mathematical Representation:ℛ(𝐗) = ReLU(BatchNorm(Conv(𝐗))) 

o Where 𝐗 is the input feature map. 

2. Swin-Transformer Block (Represented as 𝒮): 

o The Swin-Transformer block includes Multi-Head Self-Attention (MSA) mechanisms and patch 

merging. 

o Mathematical Representation:𝒮(𝐗) = MSA(PatchMerging(𝐗)) + 𝐗 
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o Where 𝐗 undergoes patch merging before being fed into the MSA mechanism. 

3. SWFormer Block (Represented as 𝒲): 

o The SWFormer block includes Scale-Wise Cascaded Convolution (SWCC) and Scale-Wise 

Aggregation (SWA). 

o Mathematical Representation:𝒲(𝐗) = SWA(SWCC(𝐗)) 

o Where 𝐗 is first processed through the cascaded convolution layers, and then scale-wise aggregated 

to combine multi-scale features. 

Stage-Wise Operations 

Let 𝐈 be the input image, and 𝐅𝑖 be the feature map at stage 𝑖. 

1. Stage 1 (ResNet50 Layer): 

o The initial stage processes the image through multiple ResNet blocks. 

o Output Feature Map:𝐅1 = ℛ1(𝐈) 

o ResNet blocks encode the initial features from the image. 

2. Stage 2 (Swin-Transformer Layer): 

o The feature map from Stage 1 is processed through the Swin-Transformer blocks. 

o Output Feature Map:𝐅2 = 𝒮1(𝐅1) 

o The Swin-Transformer refines features with self-attention. 

3. Stage 3 (SWFormer Layer): 

o The feature map from Stage 2 is processed through the SWFormer blocks. 

o Output Feature Map:𝐅3 = 𝒲1(𝐅2) 

o SWFormer combines multi-scale features. 

4. Stage 4 (Final Encoding Layer): 

o The final encoding stage further refines the features. 

o Output Feature Map:𝐅4 = 𝒲2(𝐅3) 

5. Pyramid Pooling: 

o The Pyramid Pooling mechanism aggregates features from different scales. 

o Pooled Feature Map:𝐏 = PyramidPooling(𝐅4) 

Decoding with Adaptive Spatial Attention (ASA) 

Let 𝐃𝑖 represent the decoded feature map at stage 𝑖. 

1. ASA Module: 

o ASA refines the features by applying spatial attention. 

o Mathematical Representation:𝐃𝑖 = ASA(𝐏) 

o Each ASA module improves the spatial representation of features before they are used for 

segmentation. 

2. Final Segmentation Output: 

o The concatenated and segmented feature maps from the decoding stages yield the final output. 
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o Output Representation:𝐎 = Concat(𝐃1, 𝐃2, 𝐃3) 

(a) Self-Attention Mechanism 

In the self-attention mechanism, the input feature map is transformed through three linear projections: Query (𝐐), 

Key (𝐊), and Value (𝐕). 

1. Input Feature Map: 𝐗 

2. Query, Key, Value Projections: 

𝐐 = 𝐗 ×𝐖𝑄 

𝐊 = 𝐗 ×𝐖𝐾 

𝐕 = 𝐗 ×𝐖𝑉 

where 𝐖𝑄, 𝐖𝐾, and 𝐖𝑉 are the weight matrices for the query, key, and value projections, respectively. 

3. Attention Calculation: 

Attention(𝐐,𝐊, 𝐕) = Softmax (
𝐐 × 𝐊𝑇

√𝑑𝑘
) × 𝐕 

where 𝑑𝑘 is the dimension of the key vectors. 

4. Output: 

𝐎 = Attention(𝐐, 𝐊, 𝐕) 

The output 𝐎 is the result of applying the attention mechanism to the input feature map. 

(b) Convolutional Modulation 

Convolutional modulation involves applying a convolution operation to the input feature map to extract spatial 

features. 

1. Input Feature Map: 𝐗 

2. Convolution Operation: 

𝐅 = Conv(𝐗,𝐖𝐶) 

where 𝐖𝐶 is the convolutional kernel. 

3. Activation: 

𝐀 = Activation(𝐅) 

An activation function (e.g., ReLU) is applied to the convolved feature map. 

4. Output: 

𝐎 = 𝐀 

The output 𝐎 is the activated feature map after convolution. 

(c) Scale-Wise Cascaded Convolution (SWCC) 

SWCC combines convolutional operations at different scales and aggregates these features for better spatial 

representation. 

1. Input Feature Map: 𝐗 

2. Scale-Wise Cascaded Convolution: 
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o First Scale (3x3 Conv):𝐅1 = DWConv3×3(𝐗) 

o Second Scale (5x5 Conv):𝐅2 = DWConv5×5(𝐅1) 

o nth Scale (kxk Conv):𝐅𝑛 = DWConv𝑘×𝑘(𝐅𝑛−1)where DWConv represents Depthwise Convolution 

at the given kernel size. 

3. Linear Transformation: 

o For each head 𝑖:𝐇𝑖 = Linear𝑖(𝐅𝑖) 

4. Scale-Wise Aggregation: 

𝐎 = Concat(𝐇1, 𝐇2, … , 𝐇𝑛) 

The outputs from each scale are concatenated and then projected to form the final output. 

5. Final Projection: 

𝐎 = Projection(𝐎) 

• Self-Attention (a): This mechanism excels in capturing long-range dependencies by computing attention 

scores across the entire feature map. It is computationally expensive due to the matrix multiplications 

involved. 

• Convolutional Modulation (b): This approach is more spatially localized, focusing on the immediate 

neighborhood of pixels. It is efficient but may miss long-range relationships. 

• Scale-Wise Cascaded Convolution (c): SWCC integrates the strengths of both self-attention and 

convolution by applying convolutions at multiple scales, thus capturing both local and global features. The 

aggregation of these multi-scale features leads to a more comprehensive feature representation, beneficial 

for tasks like segmentation. 

CNN Architecture with Hyperparameter Tuning and MAE Calculation 

Input: 

• Input Data: 𝐗 ∈ ℝ𝑚×𝑛 where 𝑚 = 100 and 𝑛 = 91 

• Initial Hyperparameters: 𝐾4, 𝐾3, 𝐾5 (Kernel size, number of filters, units in dense layers) 

• Learning Rate: 𝜂 

• Number of Epochs: 𝑇 

• Activation Function: ReLU with parameter 𝛼 = 0.2 

• Pooling Size: 2 

Output: 

• Final Prediction: 𝐘̂ 

• Optimized Hyperparameters: 𝐾4
∗, 𝐾3

∗, 𝐾5
∗ 

• Minimal MAE: MAEmin 

 

Algorithm: 

1. Initialization: 

o Initialize hyperparameters 𝐾4, 𝐾3, 𝐾5. 
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o Set 𝑡 = 0. 

2. Forward Pass: 

o Step 1: Input Layer: 

𝐗0 = 𝐗 

o Step 2: Convolutional Layer (Conv1D): 

𝐗1 = Conv1D(𝐗0, 𝐾4, 𝐾3) = 𝑓(𝐗0 ∗ 𝐖1 + 𝐛1) 

where 𝐖1 ∈ ℝ𝐾4×𝑛×𝐾3, 𝐛1 ∈ ℝ𝐾3. 

o Step 3: Batch Normalization: 

𝐗2 = BatchNorm(𝐗1) 

o Step 4: Activation Function (ReLU): 

𝐗3 = 𝑓(𝐗2), ⁡𝑓(𝐗) = max(0, 𝐗) + 𝛼min(0, 𝐗) 

o Step 5: MaxPooling Layer: 

𝐗4 = MaxPool(𝐗3, pool\_size = 2) 

o Step 6: Flatten Layer: 

𝐗5 = Flatten(𝐗4) 

o Step 7: Dense Layer: 

𝐗6 = 𝑓(𝐗5𝐖2 + 𝐛2), ⁡𝐖2 ∈ ℝdim(𝐗5)×𝐾5 , ⁡𝐛2 ∈ ℝ𝐾5  

o Step 8: Second Activation Function (ReLU): 

𝐗7 = 𝑓(𝐗6), ⁡𝑓(𝐗) = max(0, 𝐗) + 𝛼min(0, 𝐗) 

o Step 9: Final Dense Layer: 

𝐘̂ = 𝐗7𝐖3 + 𝐛3, ⁡𝐖3 ∈ ℝ𝐾5×1, ⁡𝐛3 ∈ ℝ 

3. Calculate Loss (MAE): 

MAE=
1

𝑚
∑  

𝑚

𝑖=1

|𝑦̂𝑖 − 𝑦𝑖| 

4. Hyperparameter Optimization (COM Optimization): 

o Step 10: Hyperparameters Update:𝐾4, 𝐾3, 𝐾5 ← Update(𝐾4, 𝐾3, 𝐾5, MAE, 𝜂) 

o Step 11: Repeat Forward Pass (Steps 2-9) with updated hyperparameters. 

5. Convergence Check: 

o Step 12: If 𝑡 ≥ 𝑇 or MAE converges:Stop and return optimized parameters and final prediction. 

o Otherwise:𝑡 ← 𝑡 + 1, ⁡Go to Step 2. 

6. Final Output: 

o Return 𝐘̂, 𝐾4
∗, 𝐾3

∗, 𝐾5
∗, and MAEmin. 
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3.EXPERIMENTAL RESULTS 

The dataset contains various fields that represent different environmental, soil, and crop-related attributes. Here's 

an explanation of each field: 

1. Latitude (ϕ): 

o This field represents the geographical latitude of the location where the data was collected. The 

values range from -90 to 90 degrees. 

2. Longitude (λ): 

o This field represents the geographical longitude of the location where the data was collected. The 

values range from -180 to 180 degrees. 

3. Temperature (T): 

o The temperature at the specific location, measured in degrees Celsius. The values can range from 

negative to positive temperatures depending on the geographic location. 

4. Humidity (H): 

o This field represents the humidity level at the location, expressed as a percentage. It indicates the 

amount of moisture in the air. 

5. Soil_pH: 

o This field represents the pH level of the soil, indicating its acidity or alkalinity. The pH values range 

from acidic (around 3.5) to alkaline (around 9.5). 

6. Soil_Type: 

o The type of soil present at the location, categorized into different types such as Chalky, Saline, Loamy, 

Silty, Peaty, Clay, and Sandy. Each type of soil has different characteristics that affect crop growth. 

7. Soil_Moisture_Level: 

o This field indicates the moisture level in the soil, expressed as a percentage. Higher values suggest 

wetter soil, which can be crucial for certain crops. 

8. Soil_Organic_Content: 

o The organic content present in the soil, expressed as a percentage. It reflects the amount of 

decomposed organic material in the soil, which is important for soil fertility. 

9. N_req (Nitrogen Requirement): 

o The required amount of nitrogen in the soil, measured in kilograms per hectare (Kg/ha). Nitrogen is 

essential for plant growth, especially for leafy crops. 

10. P_req (Phosphorus Requirement): 

o The required amount of phosphorus in the soil, measured in kilograms per hectare (Kg/ha). 

Phosphorus is vital for root development and energy transfer in plants. 

11. K_req (Potassium Requirement): 

o The required amount of potassium in the soil, measured in kilograms per hectare (Kg/ha). Potassium 

helps in water regulation, disease resistance, and overall plant health. 

12. Crop_Recommendation: 
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o The recommended crop for the given environmental and soil conditions. The crops in this dataset 

include Tomato, Onion, Rice, and Sugarcane. This recommendation is based on the input attributes, 

suggesting the most suitable crop for the specific conditions. 

Example Interpretations: 

• Record 1: With a latitude of -80.99, longitude of 131.38, and a temperature of -8.53°C, the soil is slightly 

alkaline (pH 7.38) and chalky, with a relatively low soil moisture level of 22%. The organic content is 7.04%, 

and based on these conditions, Sugarcane is recommended. 

• Record 2: Located at latitude -2.46 and longitude 48.90, with a temperature of 25.28°C, this record has a 

high humidity level of 82.13%. The soil is saline with a pH of 7.36, and it has a very high soil moisture level 

of 84.83%. The recommended crop for these conditions is Tomato. 

Table 1: Sample Data 

Latitu

de 

Longi

tude 

Temp

eratur

e 

Humi

dity 

Soil_

pH 

Soil

_Ty

pe 

Soil_Moi
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Figure 1: Accuracy comparison 
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Figure 2: Precision comparison 

 

Figure 3: Recall comparison 

 

Figure 4: AUC comparison 
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Figure 5: Error rate comparison 

Figure 1. Accuracy Comparison 

• Interpretation: This graph compares the accuracy of the four models: FSVM, FCNN, FNNSVM, and the 

Proposed Model. Accuracy is the proportion of correct predictions out of the total predictions made. The 

Proposed Model shows significantly higher accuracy (~98.5%) compared to the other models, indicating that 

it is more reliable in making correct predictions. 

Figure 2. Precision Comparison 

• Interpretation: This graph compares the precision of the four models. Precision is the proportion of true 

positive predictions out of all positive predictions (i.e., how many of the predicted positives are actually 

positive). The Proposed Model has the highest precision (~98%), indicating that it makes fewer false positive 

errors compared to the other models. 

Figure 3. Recall Comparison 

• Interpretation: This graph compares the recall of the four models. Recall is the proportion of actual 

positives that are correctly identified (i.e., how many of the actual positives the model correctly identifies). 

The Proposed Model has the highest recall (~99%), meaning it is most effective at capturing the true positive 

cases compared to the other models. 

Figure 4. AUC Comparison 

• Interpretation: This graph compares the Area Under the Curve (AUC) of the four models. AUC measures 

the ability of the model to distinguish between classes, with a higher AUC indicating better performance. The 

Proposed Model has the highest AUC (~0.97), suggesting that it is the best at distinguishing between the 

different classes among all the models. 

Figure 5. Error Rate Comparison 

• Interpretation: This graph compares the error rates of the four models. Error rate is the proportion of 

incorrect predictions out of the total predictions made. The Proposed Model has the lowest error rate (~1.5%), 

further highlighting its superior performance and reliability compared to the other models. 

4.CONCLUSION 

 

The proposed crop recommendation system effectively integrates machine learning algorithms with geographic and 

soil data to provide accurate and reliable crop suggestions tailored to specific environmental and soil conditions. By 
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utilizing datasets that encompass critical factors such as temperature, humidity, soil type, and nutrient requirements, 

the system offers a comprehensive approach to optimizing agricultural practices. The application of regression 

models and classification techniques enables precise predictions of crop suitability, while hyperparameter tuning 

ensures that the model adapts effectively to diverse conditions. The system's ability to calculate Growth Degree Days 

(GDD) and determine specific nutrient needs further enhances its utility, allowing farmers to make informed 

decisions that promote sustainable farming practices. Overall, this framework represents a significant advancement 

in precision agriculture, contributing to improved crop yields, efficient resource utilization, and the long-term 

sustainability of agricultural systems. 
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