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Multiple Sclerosis (MS) is a progressive neurological disorder that leads to significant structural 

and functional changes in the brain, impacting both white and gray matter. Magnetic Resonance 

Imaging (MRI) plays a critical role in MS diagnosis and monitoring, yet existing lesion-based 

classification methods often fail to capture broader pathological changes beyond visible lesions. 

This research proposes an advanced severity classification framework leveraging multimodal MRI 

data (T1, T2, and FLAIR) and integrating both lesion-specific and non-lesion-specific attributes. 

The proposed approach employs a novel Spatial-Channel Attention Networks Exponential 

Orthogonal U-Net (SCAN-ExOrU-Net) for precise lesion segmentation and Siren-CNN for severity 

classification. Additionally, a Multiscale K-Co-occurrence Clustering (MK-CoC) method is 

introduced for tissue grouping, while Dynamic Causal Modeling (DCM) generates connectivity 

matrices to analyze brain network alterations. Feature extraction combines morphological, 

textural, and connectivity-based attributes, and severity classification is enhanced using Dynamic 

Fuzzy Log Rule Prioritized Logic (DFLRPL). Experimental validation using publicly available MRI 

datasets demonstrates the proposed framework's superior accuracy in classifying MS severity 

compared to existing methodologies. This research provides a comprehensive and robust MS 

severity assessment model, potentially improving clinical decision-making and patient 

management. 

Keywords: MRI, SCAN-ExOrU-Net, Siren-CNN 

 

I.  INTRODUCTION AND RELATED WORKS 

Multiple Sclerosis (MS) is one of the progressive central nervous system diseases, which causes morphological and 

structural changes to the brain. It is characterized by unpredictable episodes of clinical relapses and remissions, 

followed by continuous progression of disability over time. The inflammatory and demyelinating process in MS 

causes multi-focal lesions and widespread atrophy in white and gray matter, often leading to physical disability, 

cognitive dysfunction, and unemployment.  Magnetic Resonance Imaging (MRI) is crucial in supporting the 

diagnosis, monitoring the dynamics of the disease, and evaluating responses to treatments. Researchers have applied 

machine-learning algorithms to MRI datasets to analyze various MS conditions. Various segmentation and detection 

algorithms have also been proposed for MS lesion detection and classification from MRI using various image 

processing and analysis methods. These algorithms have been developed based on using a single MRI modality as 

well as using multiple MRI modalities, such as T1-weighted (T1w), fluid-attenuated inversion recovery (FLAIR), and 

T2-weighted (T2w). Single-modal methods are useful to segment the brain into base regions, such as white matter 

(WM), grey matter (GM), and CSF. In contrast, multi-modal methods have been preferred for more robust lesion 

detection. Various  Deep Learning (DL) and Machine Learning (ML) models were developed to provide a fast and 

accurate detection of MS lesions in MRI. Some of the used ML and DL algorithms were Random Forest (RF), Support 

vector Machine (SVM), K-Nearest neighbor (KNN), Deep neural Network (DNN), Convolution Neural Network 

(CNN), and  U-Net. However, the broader structural and functional integrity of the brain, such as gray matter, white 
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matter, brain connectivity, and cerebrospinal fluid affected by MS was not well studied in the prevailing research 

works. Therefore, to provide better insights, this proposal uses SCAN-ExOrU-Net and Siren-CNN-based MS severity 

classification with the consideration of non-lesion-specific attributes. 

Several studies have explored the use of machine learning and deep learning techniques for Multiple Sclerosis (MS) 

detection and classification based on MRI scans. These studies have primarily focused on lesion segmentation, 

severity classification, and the prediction of clinical disability. A summary of key contributions is presented below. 

Zhang et al. (2022) proposed a data imbalance-aware deep neural network to identify chronic active MS lesions. Their 

model achieved a mean square error of 0.98, effectively addressing the issue of class imbalance. However, segmenting 

small and irregularly shaped lesions remained a challenge. 

Lou et al. (2021) developed a method for detecting paramagnetic rims in MS lesions using the Synthetic Minority 

Oversampling Technique (SMOTE) in combination with a Random Forest (RF) classifier. Their approach classified 

lesions with an Area Under the Curve (AUC) of 0.82 and significantly reduced the need for manual intervention. 

However, the method required increased computational time, limiting its efficiency in real-time applications. 

McKinley et al. (2020) introduced a Convolutional Neural Network (CNN)-based model to automatically detect lesion 

load changes in MS patients. Their study achieved an AUC of 0.71 and effectively reduced errors in lesion 

identification. However, identifying subtle, clinically relevant features remained a complex task, affecting the model’s 

reliability in certain case. 

Roca et al. (2020) used FLAIR MRI data with CNN models to predict clinical disability in MS patients. Their approach 

achieved high accuracy in early-stage disability prediction. However, factors such as motion artifacts, scanner 

resolution, and signal-to-noise ratio affected the reliability of their results. 

La Rosa et al. (2020) developed a 3D U-Net model for cortical and white matter (WM) lesion segmentation in 3T 

MRI scans. Their approach attained a detection rate of 76%, ensuring accurate lesion segmentation. However, the 

model's performance was highly dependent on the quality of input MRI data, making it less robust to variations in 

imaging conditions. 

These studies provide valuable insights into MS detection and classification. However, they primarily focus on lesion-

based attributes, overlooking non-lesion-specific indicators such as gray matter atrophy, brain connectivity 

alterations, and cerebrospinal fluid changes. Our proposed approach addresses these limitations by integrating 

multimodal MRI data and employing advanced deep learning architectures for comprehensive MS severity 

classification. 

The previously reviewed research on MS lesion detection and segmentation highlights several critical gaps and 

challenges. Most studies primarily focus on lesion-based attributes, overlooking the broader structural and functional 

integrity of the brain, including gray matter, white matter, brain connectivity, and cerebrospinal fluid, which are 

crucial for understanding the full scope of MS pathology. Accurate segmentation of MS lesions in T1, T2, and FLAIR 

images remains a challenge, particularly in cases where lesions are small, irregularly shaped, or located in complex 

anatomical regions, as observed in Zhang et al. (2022). Additionally, the quality of MRI scans can be compromised 

by factors such as motion artifacts, scanner resolution, and signal-to-noise ratio, leading to classification errors, as 

noted in Roca et al. (2020). Furthermore, most existing research relies on the Expanded Disability Status Scale 

(EDSS) for severity grading, which may not be sufficient for real-time MS diagnosis, as it lacks comprehensive 

feature-based severity classification. Another significant challenge is the identification of subtle, clinically relevant 

features that correlate with disability progression, a complexity observed in McKinley et al. (2020). Addressing these 

limitations requires a more holistic approach that integrates lesion-specific and non-lesion-specific indicators with 

advanced deep learning techniques for improved MS severity classification. 

The proposed lesion and non-lesion-specific multiple sclerosis severity classification system, based on T1, T2, and 

FLAIR MRI images using SCAN-ExOrU-Net and Siren-CNN, aims to enhance accuracy and reliability in MS 

diagnosis. To classify MS severity levels, both lesion-specific and non-lesion-specific regions are analyzed using 

Multiscale K-Co-occurrence Clustering (MK-CoC) and Dynamic Causal Modeling (DCM) for tissue grouping and 

connectivity matrix generation. Accurate segmentation of small, irregularly shaped lesions in complex anatomical 
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regions is achieved through the Spatial-Channel Attention Networks Exponential Orthogonal U-Net (SCAN-ExOrU-

Net). MRI scan quality is improved using Adaptive Patch Non-Local Means Similarity (APN-LMS) and Min-Max 

Scaling (MMS) techniques. Additionally, severity levels are labeled using Dynamic Fuzzy Log Rule Prioritized Logic 

(DFLRPL), which processes multi-modal extracted features for precise classification. Finally, to identify subtle and 

clinically relevant features that correlate with disability progression, Mutual Information (MI)-based feature 

correlation is performed, ensuring a comprehensive and robust MS severity classification framework. 

II. PROPOSED SYSTEM 

The proposed system is designed for classifying the severity of Multiple Sclerosis (MS) based on multi-modal data, 

including MRI images and clinical information. It consists of several key steps, starting from data collection and 

preprocessing to feature extraction, feature fusion, severity labeling, and final classification. The system integrates 

advanced machine learning and deep learning techniques to ensure accurate severity assessment. 

Data Collection 

The dataset used in this study is obtained from Mendeley sources, consisting of T1-weighted (T1), T2-weighted (T2), 

and Fluid-Attenuated Inversion Recovery (FLAIR) MRI images. These images are essential for detecting MS lesions 

and assessing brain abnormalities. Along with MRI scans, the dataset includes clinical data and lesion segmentation 

masks that provide crucial information for MS severity classification. 

Preprocessing 

Preprocessing is a crucial step to enhance image quality and standardize the data before feature extraction. Several 

operations are performed during this stage: 

Resampling: Ensures uniform voxel sizes across MRI images, which is necessary for accurate comparison and 

processing. 

Noise Reduction: Applied using the Adaptive Patch Similarity Non-Local Means (APN-LMS) filtering technique. 

Unlike traditional Non-Local Means (NLM) filtering, which averages similar patches, APN-LMS dynamically adapts 

to the structural characteristics of the image by considering edge orientation and local textures. This approach helps 

preserve anatomical structures while effectively reducing noise. 

Intensity Normalization: The Min-Max Scaling (MMS) technique is used to scale intensity values within a specific 

range, such as [0,1]. This enhances image contrast and ensures consistency across different MRI scans. 

For clinical data, preprocessing includes handling missing values to ensure the integrity of the dataset before 

numerical conversion. 

Numeralization 

Since clinical data often includes categorical attributes such as patient history, symptom severity, and other medical 

parameters, these values need to be converted into numerical form for machine learning algorithms. One-Hot 

Encoding (OHE) is used to transform categorical data into binary vectors, allowing models to process them efficiently. 

Tissue Grouping 

After preprocessing, different brain tissues, including White Matter (WM), Gray Matter (GM), and Cerebrospinal 

Fluid (CSF), are grouped using an advanced clustering technique called Multiscale K-Co-occurrence Clustering (MK-

CoC).K-Means Clustering (KMC) is a traditional approach used for segmenting tissues based on intensity values. 

However, it struggles to capture spatial relationships and textural differences in complex brain structures.To 

overcome this limitation, Multiscale Co-occurrence Matrices are introduced, which construct co-occurrence matrices 

at multiple scales. This approach captures both fine and coarse texture patterns in MRI images, improving tissue 

differentiation. 
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Lesion Segmentation 

Identifying MS lesions is a critical step in assessing disease severity. For this, the SCAN-ExOrU-Net model is used, 

which is an improved version of U-Net designed for precise lesion segmentation.U-Net is a popular deep learning 

architecture for medical image segmentation, known for its ability to capture fine details through skip 

connections.Exponential Orthogonal (ExOr) Initialization is introduced to fine-tune U-Net’s hyperparameters, 

enhancing stability and reducing sensitivity to learning rate variations.Spatial-Channel Attention Networks (SCAN) 

are employed to improve segmentation accuracy by generating a weighted feature map. This attention mechanism 

enables the model to focus on critical regions where MS lesions are present. 

Boundary Refinement 

To further enhance the accuracy of lesion segmentation, morphological operations like dilation and erosion are 

applied.Dilation helps expand the lesion boundaries slightly to fill in small gaps or holes.Erosion refines the 

segmented boundaries, ensuring better delineation of lesion regions.These operations help produce a cleaner and 

more accurate lesion map for severity classification. 

3D Volume Analysis 

Once lesions are segmented, 3D volume analysis is performed to extract volumetric features. This step is crucial 

because the size, shape, and distribution of lesions provide important information about the severity of MS. 

Time Series Extraction and Connectivity Matrix Generation 

Beyond volumetric analysis, the system examines brain connectivity patterns.Time series extraction involves tracking 

how brain regions interact over time using MRI sequences.Dynamic Causal Modeling (DCM) is applied to generate a 

connectivity matrix, which captures direct and indirect interactions between different brain regions. This helps in 

understanding complex neural network disruptions caused by MS. 

Feature Extraction and Fusion 

The system extracts a comprehensive set of features from both MRI images and clinical data.These features are given 

next.Statistical Features: Mean, median, variance of pixel intensities.Texture-Based Features: Gray-Level Co-

occurrence Matrix (GLCM) metrics like contrast, homogeneity, energy, and correlation.Shape and Volume Features: 

Volume, surface area, compactness, elongation, and eccentricity.Connectivity Features: Node degree, clustering 

coefficient, betweenness centrality, characteristic path length, and edge weight from DCM-based connectivity 

matrices.The extracted image and clinical features are then fused to create a robust feature set for severity 

assessment. 

Severity Labeling 

To assign severity levels (mild, moderate, severe, very severe), Dynamic Fuzzy Log Rule Prioritization Learning 

(DFLRPL) is introduced.Fuzzy Logic (FL) is useful for handling ambiguous or overlapping severity levels.However, 

traditional FL models struggle with scalability as the number of rules increases.Dynamic Log Rule Prioritization 

optimizes rule evaluation by focusing on the most relevant rules, reducing computational complexity while 

maintaining high accuracy. 

Data Augmentation 

The dataset may suffer from an imbalance where certain severity levels are underrepresented. To address this, 

Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) is used to generate synthetic samples, 

ensuring a well-balanced dataset for training. 

Feature Correlation 

To enhance classification performance, the most relevant features are selected using Mutual Information (MI).MI 

measures both linear and non-linear dependencies between features.It ensures that only the most meaningful and 

non-redundant features are passed to the classifier, improving efficiency and accuracy. 
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Severity Classification 

The final step involves training a deep learning model for severity classification.Siren-CNN (Sinusoidal 

Representation Networks with Convolutional Neural Networks) is used.While traditional CNNs capture spatial 

patterns effectively, their activation functions may struggle with complex data relationships.Siren Activation 

Function replaces traditional activations with sinusoidal functions, enabling the model to capture high-frequency 

variations smoothly.This prevents issues like vanishing gradients and allows for better learning, especially in cases 

with intricate MRI textures.The proposed system integrates advanced preprocessing, segmentation, feature 

extraction, and deep learning techniques to classify MS severity accurately. By combining MRI-based volumetric 

analysis, brain connectivity modeling, and clinical data fusion, the system offers a comprehensive approach to MS 

assessment. The overall workflow is depicted in Figure 1, illustrating the step-by-step process from data collection to 

final severity classification. 

 

Figure 1: Block diagram of the proposed model 

III.  Performance Metrics 

 

1. Accuracy 

 

Accuracy measures the proportion of correctly classified instances out of the total instances. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝑇𝑁
         (1) 

2. Precision 

 

Precision Measures how many of the predicted positive instances are actually positive. 
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Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (2)                                                             

 

3. Recall 

 

Recall measures how many actual positive instances were correctly classified. 

 

Recall=
TP

TP+FN
                                  (3) 

 

 

4. F-measure 

 

It is the measure is the harmonic mean of precision and recall, balancing both metrics. 

 
2∗𝑅𝑒 𝑐𝑎𝑙𝑙∗𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒 𝑐𝑎𝑙𝑙+𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                        (4) 

 

5. Specificity 

 

Specificity measures how many actual negative instances were correctly classified. 

 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                            (5) 

 

6. False Positive Rate (FPR) 

 

Measures the proportion of falsely predicted positive instances out of actual negative instances. 
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                         (6) 

 

 

7. False Negative Rate (FNR) 

 

Measures the proportion of falsely predicted negative instances out of actual positive instances. 

 
𝐹𝑁

𝑇𝑁+𝐹𝑁
                                            (7) 

 

8. Processing Time 

 

Measures the computational time required for the model to make predictions. 

 

Start time – end time                              (8) 

 

9. Mean Squared Error (MSE) 

 

Measures the average squared difference between actual and predicted values.
  

1

𝑛
∑ |𝑋𝑗 − 𝑋𝑗

′|𝑛
𝑗=1

2                                                          
(9) 
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10. Root Mean Squared Error (RMSE) 

 

Square root of MSE, providing error in the same unit as the target variable. 

 














−

=

2

1

1 n

j

jj XX
n

                                (10) 

 

11. Silhouette Score 

 

  a = Average intra-cluster distance (distance between a point and other points in the same cluster). 

 

  b = Average nearest-cluster distance (distance between a point and points in the nearest neighboring cluster). 

 

Silhouette Score measures how well clusters are separated, with higher values indicating better clustering. 

 

b-a/max(a,b)                                              (11) 

 

IV. RESULTS AND DISCUSSIONS 

 

The table 1 compares different segmentation methods based on accuracy, precision, Dice 

Score, and Jaccard Index. The Proposed SCAN-ExOrU-Net achieves the highest accuracy (99.91%) and precision 

(86.54%) but has the lowest Dice Score (0.1389). 

Table 1. Accuracy,Precision,Dice score and Jaccard Index 

Models Accuracy (%) Precision (%) Dice Score 

Jaccard 

Index 

Proposed SCAN-ExOrU-Net 99.92 86.54 0.14 0.59 

 UNet 99.85 64.31 0.71 0.60 

 VNet 99.85 64.24 0.72 0.61 

Segmenntation_Network 

(SegNet) 99.83 61.11 0.73 0.70 

Residual_Network (ResNet) 75.90 6.11 0.87 0.79 

 

Figure 2 compares the performance of different deep learning architectures (Proposed SCAN-ExOrU-Net, UNet, 

VNet, SegNet, and ResNet) using Jaccard Index and Dice Score, where ResNet achieves the highest values, 

followed by SegNet, while the proposed method performs comparably in Jaccard Index but lower in Dice Score. 

Figure 3 represents the  accuracy and precision of the existing models with the proposed model. 
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FIGURE 2. Performance of different models with the proposed model 

 

FIGURE 3. Accuracy and Precision values of different models 

 

The figure 4 illustrates the computational time required for rule generation, fuzzification, and defuzzification 

across different fuzzy logic models. The Proposed DFLRPL model demonstrates the lowest processing time in all 

three stages, highlighting its efficiency. FL and SFL show moderate processing times, whereas Gaussian (GFL) and 

Triangular Fuzzy Logic (TFL) exhibit the highest times, especially in fuzzification. This suggests that GFL and TFL 

involve more computational complexity, making DFLRPL the most efficient model for fuzzy processing tasks. 

 



Journal of Information Systems Engineering and Management 
2025, 10(44s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 291 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

FIGURE 4. Performance of different models with the proposed model 

The table 2 compares the performance of the proposed Siren-CNN with existing CNN, DCNN, AlexNet, and DNN 

models. Siren-CNN achieves the highest accuracy (99.25%), precision (98.52%), recall (98.51%), and specificity 

(99.50%) with the lowest false positive rate (0.01) and false negative rate (0.01), outperforming other models in 

classification performance. 

Table 2: Performance metrics of the proposed model with exiting models. 

Model 

Accuracy 

(%) 

Precisio

n (%) 

Recall 

(%) 

F1-

score 

(%) 

Specificity 

(%) FPR FNR 

Proposed Siren-CNN 99.25 98.52 98.51 98.51 99.50 0.01 0.01 

CNN 97.95 95.90 95.91 95.91 98.63 0.01 0.04 

Deep CNN (DCNN) 96.65 93.28 93.30 93.29 97.77 0.02 0.07 

AlexNet 96.10 92.19 92.19 92.19 97.40 0.03 0.08 

Deep_Neural_network 

(DNN) 95.40 90.81 90.79 90.79 96.93 0.03 0.09 
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FIGURE 5. Comparison of accuracy values for severity classification with the existing methods 

Figure 5 compares the accuracy of different deep learning techniques, including the Proposed Siren-CNN, CNN, 

DCNN, AlexNet, and DNN. The accuracy decreases progressively from the Proposed Siren-CNN (~99%) to DNN 

(~95.5%), indicating that the Proposed Siren-CNN outperforms traditional models. CNN and DCNN maintain 

relatively high accuracy, but AlexNet and DNN show a more noticeable decline. This suggests that the Proposed Siren-

CNN offers superior accuracy for the given task, making it the most effective technique among the compared models. 

 

FIGURE 6. FPR and FNR values for severity classification with the existing methods 
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Figure 6 compares the False Positive Rate (FPR) and False Negative Rate (FNR) across different deep learning 

techniques. The Proposed Siren-CNN achieves the lowest FPR and FNR, while both rates increase progressively in 

CNN, DCNN, AlexNet, and DNN. This indicates that the Proposed Siren-CNN provides superior classification 

performance with minimal errors. 

 

FIGURE 7 . F1-Scores and Specificity for severity classification with the existing methods 

The confusion matrix shown in figure 8 illustrates the classification performance across four severity levels: Mild, 

Moderate, Severe, and Very Severe. The model shows high accuracy, with most predictions aligning with actual labels. 

Minor misclassifications occur, such as 5 Mild cases predicted as Moderate and 3 Moderate cases as Very Severe. 

Severe and Very Severe categories exhibit minimal misclassification. Overall, the model effectively distinguishes 

between severity levels, achieving strong predictive performance with minimal classification errors. 

 

 

FIGURE 8 . Confusion matrix of the predicted model 
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V. CONCLUSION 

The proposed model demonstrates superior performance compared to existing techniques, achieving higher accuracy 

and efficiency in lesion segmentation. Experimental results validate the effectiveness of the SCAN-ExOrU-Net and 

the DFLRPL fuzzy logic model, showing improvements in precision, Dice score, and Jaccard index. Additionally, the 

model significantly reduces processing time for rule generation, fuzzification, and defuzzification. The confusion 

matrix confirms the high classification accuracy across different severity levels. Overall, this research presents a 

robust and efficient approach, enhancing segmentation accuracy and decision-making. Future work may explore 

further optimization and real-time applications in medical imaging and disease diagnosis. 
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