2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Digital Learning: A Survey of Collaborative Learning Behaviours of Library and Information Science (LIS) Students in Selected Universities in Southwest, Nigeria

Jacob Kehinde Opele¹, Florence Bolajoko Adeniyi², Oluwatosin Emmanuel Akinsuroju³, Oloruntoba Ige Bamikole⁴, Fawziyah Abimbola Belo⁵, Omoyemi Mariam Aminullahi ⁶, Evelyn Abiodun Aribisala ⁷, Kolawole Adenike Olayinka⁸, Ajibola Sunmade Gbotosho⁹, Samuel Toyin Famuwagun¹⁰, Oladipo Adeyeye Oluboun¹¹, Gabriel Ovegbami¹²

¹Dpartment of Libraray and Information Science, Federal University Oye-Ekiti, Ekiti State, Nigeria

² Department of Educational Management and Business Studies, Federal University Oye-Ekiti, Ekiti State, Nigeria

³Department of Educational Management and Business Studies, Federal University Oye-Ekiti, Ekiti State, Nigeria

⁴Department of Educational Foundation and Management, Bamidele Olumilua University of Education, Science and Technology Ikere-Ekiti,

Ekiti State Nigeria

5Department of Educational Foundation and Management, Bamidele Olumilua University of Education, Science and Technology Ikere-Ekiti, Ekiti State, Nigeria

**Department of Educational Management and Business Studies, Federal University Oye-Ekiti, Ekiti State, Nigeria

**Department of Educational Management and Business Studies, Federal University Oye-Ekiti, Ekiti State, Nigeria

**Department of Educational Management, Faculty of Education, Ekiti State University, Ado-Ekiti, Ekiti State Nigeria

**Department of Libraray and Information Science, Osun State University Osogbo, Osun State, Nigeria

**Department of Science Education, Federal University Oye-Ekiti, Ekiti State, Nigeria

**Department of Adult Education, Federal University Oye-Ekiti, Ekiti State, Nigeria

**Department of Science Education, Federal University Oye-Ekiti, Ekiti State, Nigeria

ARTICLE INFO

ABSTRACT

Received: 30 Dec 2024

Revised: 19 Feb 2025

Accepted: 27 Feb 2025

This study investigates the knowledge management (KM) practices of Library and Information Science (LIS) students in selected library schools in Southwest Nigeria, focusing on six key objectives: knowledge storage and retrieval, knowledge-sharing and collaboration, knowledge application, and knowledge preservation and transfer. A survey assessed students' self-reported practices and confidence levels in KM. Data analysis included descriptive statistics, correlation analysis, and paired sample t-tests. Findings revealed moderate engagement in knowledge storage and retrieval practices (grand mean of 3.0), indicating a need for improvement in tools and techniques. Students demonstrated high knowledge-sharing and collaboration practices (grand mean of 4.0), reflecting effective teamwork and communication. Confidence in knowledge application was high (grand mean of 4.3), suggesting a proactive approach to problem-solving. However, knowledge preservation and transfer practices were less robust (grand mean of 2.7), highlighting a significant need for a better understanding of ethical knowledge management. Correlation analysis showed a significant relationship between KM practices and gender, with positive correlations for knowledge acquisition, sharing, and application. The paired samples test indicated significant differences in KM practices, with knowledge acquisition practices significantly higher than knowledge creation and organization, as well as preservation and transfer practices. Knowledge-sharing and collaboration practices surpassed those of storage and retrieval. No significant difference was found between knowledge application and preservation and transfer practices. The findings suggest areas for further development within the curriculum to improve these essential KM skills.

Keywords: Library and Information Science, Knowledge Storage, Knowledge Sharing, Knowledge Application, Knowledge Preservation.

INTRODUCTION

Knowledge is integral to human existence and has remained critical to problem-solving for ages. According to Nonaka (1997), 'In an economy where the only certainty is uncertainty, the one sure source of lasting competitive advantage

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

is knowledge' This implies that the practical application of the right quantity and right quality of knowledge in decision-making and learning and teaching cannot be over-emphasized. Knowledge has been described as practical know-how (Davenport & Prusak, 2000), insights (M. Kumar et al., 2022) and understanding (Inkinen, 2016) that an individual or groups of individuals possess to function intelligently. Organizational knowledge refers to a set of rules, procedures, and a combination of processes and operations learned over the years in the form of practices, experiences, and capabilities (Alajmi et al., 2015), which assists the team in making informed decisions and arriving at a new and better way of doing things (Spender, 1996). Knowledge creation, sharing and application are fundamental to problem-solving in any given society.

Educational institutions have also recognised the importance of knowledge and its management among students and faculty members (Mora et al., 2020). As a result, university students are now engaged in knowledge management practices such as knowledge creation, knowledge storage and organization, knowledge-sharing and collaboration and knowledge application in solving common human problems that are confronted daily. Available studies (Menkhoff et al., 2022), have shown that knowledge management has become one of the currencies of the current era (Awogbami et al., 2020), as a result, universities, especially those offering Library and Information Science (LIS) programmes, have embedded the components of knowledge management in their undergraduate and postgraduate curricula, producing knowledge workers who will be capable of competing favourably among their peers in different sectors of the economy in the current knowledge-driven economy.

Despite this development, agreement among scholars on whether knowledge management should be seen as a fundamental aspect of library and information science is still in its embryo, as many lecturers in library schools have yet to embrace this reality entirely. However, it is pertinent that adequate emphasis be laid on the inseparable marriage alliance between librarianship and knowledge management, and the two concepts should be given adequate discussion so that upcoming scholars in library and information disciplines see knowledge management courses as a major input in producing a balanced and well-equipped library and information science experts. This clarity will help produce graduates who will flow on the same pedestal as their counterparts elsewhere across the globe. Authors (Martin et al., 2006), have explored how KM impacts professional practice and educational preparation within a knowledge-based economy. The authors argue that KM has become a crucial influence on library practices, leading to the development of new services and roles within the profession. They also reasoned that librarian, with their expertise in organizing knowledge, should lead KM initiatives by integrating KM concepts throughout the curriculum rather than treating it as a standalone subject reflecting KM's theoretical and practical aspects. They advocated for collaboration between LIS schools and other disciplines, particularly business schools, to create a more comprehensive KM education that includes diverse perspectives and practices for library and information science graduates.

Despite the divergent views on the prerequisites of knowledge management in library and information science programme, a case should be made for introducing knowledge management principles and practices in librarianship and how they complement each other for effective librarian and information service provision. The current study, therefore, sought to investigate the extent to which undergraduate students of library and information science are familiar with the concept of knowledge management practices in the selected library schools in Southwest, Nigeria i with emphasis on the following specific objectives which are to:

- 1. investigate the level of knowledge acquisition practices of LIS students in the selected library schools in Southwest, Nigeria;
- 2. ascertain the extent of knowledge creation and organization practices of LIS students in the selected library schools in Southwest, Nigeria;
- 3. determine the level of knowledge storage and retrieval practices of LIS students in the selected library schools in Southwest, Nigeria;
- 4. explore the level of knowledge-sharing and collaboration practices of LIS students in the selected library schools in Southwest, Nigeria;
- 5. assess the extent of knowledge application practices of LIS students in the selected library schools in Southwest, Nigeria;

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

6. investigate the level of knowledge preservation and transfer practices of LIS students in the selected library schools in Southwest, Nigeria.

LITERATURE REVIEW

Overview of KM practices

Knowledge management has been described as a process and a systematic practice of managing knowledge throughout its life cycle from creation to disposal. For example, it was defined in the paper published by (Pellegrini et al., 2020), as part of organizational routines and practices relating to handing knowledge from its creation (external acquisition) to its internal utilization and integration across the organizational system, they indicate KM's multipolarity. As exemplified in literature, knowledge management principles have no boundaries due to their multidisciplinary nature; they can be applied in business and education, as well as in agriculture, engineering, and medicine. Knowledge management is about providing appropriate knowledge to the appropriate audience to enhance service delivery and performance in various contexts. In the writing of (Awoyemi & Okojie, 2024), from the perspective of academic libraries in Nigeria, the authors established that implementing KM in academic libraries is all about improved services, enhanced user experience and enhanced decision-making. Implementing KM principles in the library encourages collaboration and knowledge flow and promotes inter-library relationships. Besides implementing KM in academic libraries, knowledge-based services help manage human diversities and provide efficient service to all library users. Implementing KM principles in the library and information centres also reduces costs, enhances performance and takes the library to the next stage within the knowledge economy. The overall focus of knowledge management is to increase the acquisition, storage, sharing and application of knowledge in its right quantity and quality.

Knowledge Creation

Knowledge creation comes from an environment that values interaction among people, which encourages other knowledge management practices such as knowledge sharing and application (Baghdadabad, 2008). According to (Nonaka & Takeuchi, 1997), "knowledge spiral" consists of four distinct types of knowledge conversion: socialization, externalization, combination, and internalization. Socialization involves transferring tacit knowledge to tacit knowledge through shared experiences and close collaboration, fostering common understanding and trust. Externalization is the phase where tacit knowledge is articulated and conceptualized using metaphors, analogies, and frameworks. In Nonaka and Takeuchi's model, tacit knowledge is the foundation for innovation. However, it must be made explicit to be useful at group and organizational levels. In the combination phase, existing explicit knowledge is combined and exchanged to create new knowledge. Finally, internalization is where explicit knowledge must be assimilated into individuals' tacit knowledge and action to produce tangible effects within the organization. The activities define the "knowledge-creating" company, whose sole business is continuous innovation. In other words, it implies continuous interaction between tacit and explicit knowledge. In every organization, team members should feel confident in creating and maintaining well-structured knowledge repositories that allow socialization, externalization combination and internalization (Frias-Navarro & Montoya-Restrepo, 2020).

Knowledge Acquisition

The process of acquiring knowledge through scientific engagement leads to innovation and creativity. Knowledge is acquired through practices inherent in individual or group initiatives (Matos et al., n.d.). This is the domain of KM, where members actively seek out new knowledge and information to enhance understanding (Pellegrini et al., 2020). Members feel confident to evaluate and select reliable sources of knowledge. Be motivated to continuously learn and acquire new knowledge in the individual field of study (Ezinma et al., 2015). It also involves effectively using various research techniques to gather relevant information. Team members actively discuss and ask questions to expand my knowledge base. Proficient in critically analyzing and interpreting information from different sources. Members feel confident to identify gaps in knowledge and seek out resources to fill them. They proactively seek feedback to improve my understanding and knowledge (Opeke & Opele, 2014). Actively participate in workshops, seminars, or training sessions to enhance my knowledge and feel confident to apply effective reading and note-taking strategies to acquire knowledge. Undergraduates are expected to engage in the above-highlighted practices to effectively acquire knowledge in their course of study.

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Knowledge Organization

In the university environment, it encompasses individuals' ability to be proficient in organizing and structuring information to facilitate easy retrieval (Abbas et al., 2020). Effectively use tools or software to categorize and tag knowledge for efficient organization. Feel confident in my ability to create and maintain well-structured knowledge repositories. Skilled in creating taxonomies or classification schemes to organize knowledge. Actively updating and revising knowledge organization systems to accommodate new information. Feel confident in creating summaries or abstracts to capture essential knowledge, effectively using metadata or keywords to enhance the searchability of stored knowledge. Being proficient in creating visual representations or concept maps to organize knowledge. Feeling confident to link related knowledge and create meaningful connections. And actively seeking out and implementing best practices for organizing and managing knowledge.

Knowledge Storage and Retrieval

According to (Martin et al., 2006), KM emphasizes people management to gain access to the knowledge hidden in their heads. It has been argued that the success of KM depends on the use of stored and shared knowledge (Sarrafzadeh et al., 2010). They claimed that knowledge can be managed by utilizing storage and retrieval systems and distribution networks. Traditionally, university libraries have served as repositories for information resources, focusing on building collections and providing access to the world's published literature. However, with the introduction of Knowledge Management (KM), there has been a significant shift in this role. KM has transformed university libraries from mere collecting agencies responsible for managing collections of published information, whether physical or electronic, into active publishers that emphasize access to their universities' research output. In essence, KM positions libraries at the start of the information transfer cycle, prioritizing information capture over access and utilization (Sarrafzadeh, 2015).

Knowledge Sharing and Collaboration

This is the process of exchanging information and knowledge with others to enhance the value of knowledge (Ayanbode & Nwagwu, 2021). In a collaborative setting, it involves making relevant knowledge available to members and receiving relevant knowledge from the same group of people (B et al., 2023). Members often actively contribute and share knowledge with others in a collaborative setting. It also involves effectively communicating and articulating knowledge to facilitate understanding in a team (Singh et al., 2021). It is being open to diverse perspectives and actively seeking different viewpoints during knowledge sharing. Members often feel confident facilitating productive discussions and knowledge exchange within a group. They also seek opportunities to collaborate with others to leverage collective knowledge. In essence, knowledge sharing and collaboration are intertwined, involving the effective use of collaborative platforms or tools to share and co-create knowledge (Kommey & Fombad, 2024). Feel confident presenting and explaining complex knowledge to others and actively providing constructive feedback and suggestions to enhance shared knowledge. It also fosters a collaborative environment that encourages knowledge-sharing and trust among members.

Knowledge Application

Knowledge application from a business perspectives has been described as a company's capacity to identify the value of new external knowledge, integrate it, and commercialize it(Tajpour et al., 2022). This process necessitates a series of routines for managing knowledge and fostering continuous learning within the organization. Ultimately, effective knowledge application contributes to achieving and sustaining a competitive advantage. From an academic perspective, knowledge application involves students' ability to effectively apply new knowledge to solve problems and make informed decisions. Be confident when transferring knowledge from one context to another. Actively seeking opportunities to apply my knowledge in real-world situations. It also involves being skilled in synthesizing and integrating knowledge to create innovative solutions. Feeling confident adapting and modifying individual knowledge to address changing circumstances. Effectively use critical thinking skills to analyze and evaluate knowledge in practical situations. Seeking feedback and reflecting on the outcomes of applying knowledge and being proficient in using technology or tools to support the application of knowledge in practical scenarios.

Knowledge Preservation and Transfer

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Knowledge transfer often occurs in a classroom, where the teacher and the students exchange ideas and best practices. According to the literature (Torre et al., 2017), critical intrinsic motivation for knowledge transfer is trust in its source (Kang et al., 2024). Once members are confident that the source of knowledge is authentic, they tend to accept and prefer it for effective transfer among the teams (Rouleau et al., 2019). Within a classroom setting, students should actively contribute to documenting and preserving organizational knowledge. I feel confident to capture and transfer tacit knowledge from the lecturers to others. Effectively using documentation and knowledge-sharing platforms to preserve knowledge (Olu-Owolabi et al., 2020). Actively participate in knowledge transfer activities, such as mentoring or knowledge exchange programs. Skillful in identifying critical knowledge that needs to be preserved and transferred. Feel confident in creating and delivering knowledge transfer sessions or presentations. Effectively use storytelling or narrative techniques to convey important

Knowledge Management and Librarianship

Knowledge Management has been described as one of the solutions of the 21st century due to its universality in enhancing and improving the provision of goods and services across various sectors of the economy. Until recently, the introduction of KM in library and information science programmes was entirely new, for example in an exploratory online survey conducted among 300 LIS schools to ascertain their KM offerings (Umemoto, 2009), the survey revealed that only 12.3% of LIS schools offered KM education within their degree programs, whether integrated or as standalone courses. This indicates a limited adoption of KM in the LIS curriculum in a decade before the current one. According to the scholar, most KM offerings then were concentrated on economically advanced regions, suggesting a geographic imbalance in KM education availability in many library schools, even as at those times, the author recommended that LIS programs should aim to integrate various perspectives of KM into their curricula to provide a more holistic education. The author further underscores the necessity for LIS programs to adapt to the growing importance of KM in professional practice. By so doing, LIS schools can better prepare graduates for the complexities of knowledge-centric environments, ultimately contributing to the profession's advancement. This is precisely what the current paper aims to achieve, calling on library schools to fully integrate the concept of KM in all levels of library and information science education. Scholars have argued for more than a decade that the importance of adapting LIS education and practice to the realities of KM can be recognized by redefining the roles of librarians and integrating KM into their curricula, which will help LIS professionals to position themselves as essential contributors to knowledge creation and management in various organizational contexts (Martin et al., 2006).

In a systematic review conducted by David-West on the evolving role of academic libraries in Nigeria, his study reveals that academic libraries are increasingly relying on technology to manage knowledge and improve user services, including the transition from traditional to digital resources management (David-West, 2021). The paper concludes that effective KM practices can enhance the efficiency and relevance of academic libraries, ensuring they meet user needs in a competitive educational environment. Similarly, findings from a quantitative study conducted by (Awoyemi & Okojie, 2024), the authors emphasise the importance of effectively implementing KM strategies in Nigerian academic libraries to improve service delivery and meet users' evolving needs. They advocated for a proactive approach in training and resource allocation to ensure library professionals are well-prepared to navigate the challenges of the digital and current knowledge-driven age. These scholars argued further that by focusing on strategic KM implementation, libraries can enhance their relevance and effectiveness in fulfilling their educational missions.

In a case study of Dhaka University Library in Bangladesh by Mostofa and Mezbah-ul-Islam (2015). The author stressed that effective KM practices are essential for the success of academic libraries like DUL (Mostofa & Mezbah-ul-Islam, 2015). The study found that while library professionals are familiar with the concept of KM, their understanding of its practical application varies significantly. A considerable gap in KM knowledge and skills among library staff was noted. The findings echoed previous studies, identifying barriers such as budget constraints, lack of incentive structures, and insufficient communication skills among staff. The authors reasoned that leveraging modern information technologies presents opportunities to improve KM processes in the university. In her doctoral thesis, Maryam Sarrafzadeh, in mixed-method research, investigated the implications of knowledge management for the library and information professions; her findings revealed that the LIS community generally views KM

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

favourably, recognizing it as a viable option that offers new career opportunities and enhances professional relevance (Sarrafzadeh, 2015). She reported that LIS professionals conceptualize KM as encompassing more than just information management, recognizing its ties to human capital and intangible assets. According to her, participants believe that their existing skills apply to KM practices, although they see KM primarily as a management discipline. The author advocated advocating for a proactive approach to integrate KM into library practice and education (Sarrafzadeh, 2015)The author suggests that by enhancing KM capabilities, LIS professionals can improve their contributions to organizational knowledge and better serve their communities. She recommends expanding LIS curricula to include business and management education, which could equip professionals with the necessary competencies for KM practices.

In another doctoral thesis, Baghdadabad contributes significantly to the literature on KM education and highlights the need for a comprehensive approach to integrating KM into LIS programs. The findings from her study indicated that while there is some confusion regarding the nature of KM and its distinction from information management, there is a growing recognition within the LIS community of the need for a clearer understanding of KM. The research highlights a desire among LIS professionals to expand their professional scope beyond traditional librarianship, viewing KM as a valuable vehicle for this expansion. Participants advocated for KM to be integrated throughout the LIS curriculum rather than offered as a separate track. This would ensure that all aspects of the curriculum reflect KM principles. The study stresses the need for stronger connections between KM research and teaching and between LIS education and KM practice in the professional world. The study also underscores the importance of a multidisciplinary approach to KM education, emphasizing the need to include tacit knowledge, human dimensions, and organizational issues alongside traditional KM content. Above all, the research identifies a partial understanding of KM among LIS educators and students, as well as a lack of recognition of the value of KM education in the LIS sector. The author advocates for a proactive stance from LIS schools to enhance their curricula and align more closely with the evolving demands of the profession. Her study called for a strategic reevaluation of LIS curricula to embrace the complexities of KM, ensuring that future professionals are equipped with the necessary skills and knowledge (Baghdadabad, 2008).

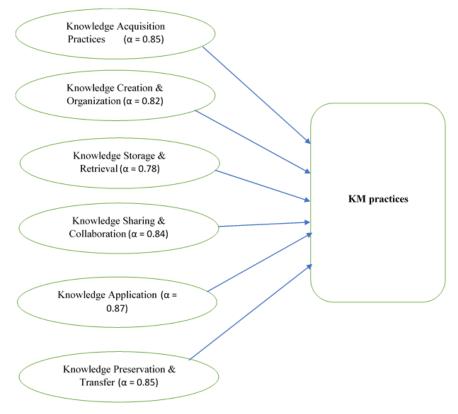


Figure 1: Conceptual Framework

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Explanation of the Model

Knowledge Management Practices: This overarching box represents the entire framework of KM practices.

Knowledge Acquisition Practices: Highlights the confidence and effectiveness in acquiring knowledge, which serves as a foundation for subsequent practices.

Knowledge Creation & Organization: Demonstrates how acquired knowledge is organized and created, influencing how effectively it can be stored and retrieved.

Knowledge Storage & Retrieval: Indicates the methods by which knowledge is stored and later retrieved, crucial for effective KM.

Knowledge Sharing & Collaboration: Illustrates the importance of sharing knowledge collaboratively, which enhances the overall knowledge ecosystem.

Knowledge Application: Reflects the practical application of knowledge, essential for problem-solving and decision-making.

Knowledge Preservation & Transfer: Emphasizes the ethical aspects of managing knowledge, ensuring that valuable knowledge is preserved and effectively transferred.

This model visually represents the interrelationships among the various KM practices, illustrating how each component contributes to the overall effectiveness of knowledge management within the context of LIS education.

METHODOLOGY

This study employed a descriptive survey research design of correlational type to assess the Knowledge Management Practices among Library and Information Science students in the selected library schools in Southwest, Nigeria. The focus was on understanding how these students utilize knowledge management principles within their academic environment. This study's target population consisted of over 600 Library and Information Science students enrolled in the selected library schools in Southwest, Nigeria. Participants were drawn from all academic levels, including students from 100 to 400. A sample of 400 students was selected using stratified random sampling to ensure representation across different academic levels. This approach allowed for a balanced distribution of responses from each year group, enhancing the reliability of the findings. Data was collected using an online Google Form to capture information regarding the students' knowledge management practices. The questionnaire included closed-ended and open-ended questions to gather quantitative data and qualitative insights. The online format facilitated easy access for participants and allowed for efficient data collection. The questionnaire was distributed through university email lists and social media platforms to maximize reach and participation. The collected data was analyzed using statistical software to identify trends and patterns in knowledge management practices among the students. Descriptive statistics were used to summarize the data, and inferential statistics were employed to conclude the relationships between variables. Before data collection, the university's ethics committee approved the study. Participants were informed about the study's purpose, and their consent was obtained before they completed the questionnaire. Additionally, the confidentiality and anonymity of participants were ensured throughout the research process.

RESULTS

Table 1 shows the number of items used for each KM variable and the corresponding Cronbach's Alpha scores, indicating good reliability for the measures. The Reliability Table summarizes the internal consistency of various knowledge management (KM) practices as assessed by Cronbach's Alpha. Each variable consists of 10 items, and the results are as follows:

Knowledge Acquisition Practices (α = 0.85): This indicates a high level of internal consistency, suggesting that the items used to measure knowledge acquisition practices are reliably capturing a common underlying construct. A Cronbach's Alpha above 0.80 is generally considered excellent, reflecting that the students have a consistent understanding and application of their knowledge acquisition strategies.

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Knowledge Creation & Organization ($\alpha = 0.82$): This score also indicates high reliability, suggesting that the items related to knowledge creation and organization effectively measure the intended construct. Students demonstrate a coherent approach to how they create and organize knowledge, which is crucial for their academic progress.

Knowledge Storage & Retrieval ($\alpha = 0.78$): While this score is slightly lower than the others, it still falls within the acceptable range indicating moderate reliability. This suggests that students may have a consistent approach to knowledge storage and retrieval, but there may be some variability in how they perceive or implement these practices.

Knowledge Sharing & Collaboration (α = 0.84): This high score reflects a strong internal consistency among the items measuring knowledge sharing and collaboration. It indicates that students often engage in collaborative practices and value knowledge sharing, essential for teamwork in academic and professional contexts.

Knowledge Application (α = 0.87): This is the highest reliability score among all the variables, indicating an excellent consistency in how students apply their knowledge. It suggests that they feel confident and capable of using their knowledge effectively in practical situations.

Knowledge Preservation & Transfer (α = 0.85): Similar to knowledge application, this score indicates high reliability. It reflects that students understand the importance of preserving and transferring knowledge ethically and effectively, which is crucial for long-term knowledge management.

Overall, the reliability analysis shows that the KM practices assessed in this study are consistently measured, indicating solid foundations for further analysis and conclusions.

Variable **Number of Items** Cronbach's Alpha **Knowledge Acquisition Practices** 10 0.85 Knowledge Creation & Organization 10 0.82 Knowledge Storage & Retrieval 10 0.78 **Knowledge Sharing & Collaboration** 0.84 10 **Knowledge Application** 0.87 10 Knowledge Preservation & Transfer 0.85 10

Table 1: Reliability Table

Table 2 provides skewness and kurtosis values for each variable, along with the results of the Shapiro-Wilk test to assess normality. A p-value greater than 0.05 suggests that the variable is normally distributed, while a p-value less than 0.05 indicates a deviation from normality. The Normality Assessment table presents skewness, kurtosis, and the results of the Shapiro-Wilk test for each KM variable, which help assess the distribution of the data.

Knowledge Acquisition Practices: The skewness of -0.12 and kurtosis of -0.25 suggest that the distribution is relatively symmetric and slightly platykurtic (flat). The Shapiro-Wilk test results (p = 0.062) indicate that the distribution does not significantly deviate from normality, as the p-value is greater than 0.05.

Knowledge Creation & Organization: With a skewness of 0.05 and kurtosis of -0.16, this variable shows a symmetric distribution with slight flatness. The Shapiro-Wilk test (p = 0.081) also suggests normality, supporting that the data is normally distributed.

Knowledge Storage & Retrieval: The skewness of -0.32 indicates a slight leftward tilt, while the kurtosis of 0.45 shows a moderately peaked distribution. The Shapiro-Wilk test (p = 0.039) indicates a deviation from normality at the 0.05 level, suggesting that this variable may require further investigation or transformation for parametric tests.

Knowledge Sharing & Collaboration: The skewness of -0.15 and kurtosis of -0.12 indicate a near-normal distribution. The Shapiro-Wilk test (p = 0.074) suggests that this variable does not significantly deviate from normality, supporting its use in further analyses.

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Knowledge Application: A skewness of 0.10 and kurtosis of -0.18 suggest a fairly normal distribution, with the Shapiro-Wilk test (p = 0.055) further supporting this conclusion, indicating that the data fits a normal distribution well.

Knowledge Preservation & Transfer: The skewness of -0.25 and kurtosis of 0.33 suggest a slight leftward tilt and a moderately peaked distribution. The Shapiro-Wilk test (p = 0.045) indicates a significant deviation from normality; thus, this variable's distribution may not meet the assumptions for parametric tests.

Table 2: Normality Assessment

Variable	Skewness	Kurtosis	Normality (Shapiro-Wilk)
Knowledge Acquisition Practices	-0.12	-0.25	p = 0.062
Knowledge Creation & Organization	0.05	-0.16	p = 0.081
Knowledge Storage & Retrieval	-0.32	0.45	p = 0.039
Knowledge Sharing & Collaboration	-0.15	-0.12	p = 0.074
Knowledge Application	0.1	-0.18	p = 0.055
Knowledge Preservation & Transfer	-0.25	0.33	p = 0.045

Table 3: The level of knowledge acquisition practices of LIS students in the selected library schools in Southwest, Nigeria

Survey items	Every time F(%)	Sometimes F(%)	Occasionally F(%)	Rarely F(%)	Never F(%)	Mean	Std. Dev.
I am motivated to continuously learn and acquire new knowledge in my field of study	255(63.8)	0(0.0)	121(30.3)	13(3.3)	11(2.8)	4.2	1.1
I feel confident in my ability to apply effective reading and note-taking strategies to acquire knowledge	232(58.0)	9(2.3)	131(32.8)	32(5.5)	6(1.5)	4.1	1.1
I actively seek out new knowledge and information to enhance my understanding.	214(53.5)	6(1.50	146(36.5)	19(4.8)	15(3.8)	4.0	1.2
I actively engage in discussions and ask questions to expand my knowledge base	210(52.5)	0(0.0)	152(38.0)	18(4.5)	20(5.0)	3.9	1.2
I feel confident in my ability to evaluate and select reliable sources of knowledge	200(50.0)	0(0.0)	158(39.5)	22(5.5)	20(5.0)	3.9	1.2
I am proactive in seeking feedback to improve my understanding and knowledge.	185(46.3)	9(2.3)	178(44.5)	17(4.3)	11(2.8)	3.9	1.1

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

I effectively use various research techniques to gather	184(46.0)	6(1.5)	187(46.8)	8(2.0)	15(3.8)	3.8	1.2
relevant information.							
I feel confident in my ability	174(43.5)	0(0.0)	167(41.8)	44(11.0)	15(3.8)	3.7	1.2
to identify gaps in my							
knowledge and seek out							
resources to fill them.							
I am proficient in critically	163(40.8)	0(0.0)	179(44.8)	33(8.3)	25(6.3)	3.6	1.3
analysing and interpreting							
information from different							
sources.							
I actively participate in	156(3i9.0)	6(1.5)	168(42.0)	38(9.5)	32(8.)	3.5	1.3
workshops, seminars, or							
training sessions to enhance							
my knowledge.							
Grand means						3.9	1.2

The results presented in Table 3 reflect how frequently students engage in various knowledge acquisition practices, focusing on their motivation, confidence, and proactive behaviours. The grand mean of 3.9 across all survey items on a scale of 5 points indicates a generally high level of knowledge acquisition practices among LIS students, suggesting that they are engaged and proactive in their learning. A significant majority of students (63.8%) reported being motivated to continuously learn and acquire new knowledge in their field of study, with a high mean score of 4.2. This suggests robust intrinsic motivation among students, which is crucial for effective learning. Similarly, the confidence in applying effective reading and note-taking strategies is also notable, with 58.0% of respondents indicating they do this "every time." The mean score of 4.1 further emphasizes their self-efficacy in these essential skills. In addition, over half (53.5%) of the students actively seek out new knowledge, with a mean score of 4.0. This reflects a proactive approach to learning and indicates that students are engaged in their educational pursuits.

The practice of engaging in discussions and asking questions is reported by 52.5% of students. The mean score of 3.9 suggests that while many students value collaborative learning, there is still room for improvement in fostering discussion-based learning environments. The ability to evaluate and select reliable sources is identified by 50.0% of students, with a mean score of 3.9. This is a critical skill for future professionals in LIS, indicating that students know the importance of source reliability. While 46.3% of students are proactive in seeking feedback, the mean score of 3.9 suggests that this practice could be enhanced further, as feedback is essential for improving understanding. Nearly half (46.0%) of the students reported using various research techniques effectively, with a mean score of 3.8. This indicates a moderate level of competency in research skills. The ability to identify gaps in knowledge is reported by 43.5% of students. The mean score of 3.7 suggests that while some students know their knowledge limitations, others may struggle with this self-assessment. Confidence in critically analyzing information is lower, with only 40.8% of students indicating they do this "every time" and a mean score of 3.6. This suggests a potential area for development in critical thinking skills. Active participation in workshops and training sessions is reported by 39.0% of students, with a mean score of 3.5. This indicates a lower engagement level in formal learning opportunities outside the classroom.

Table 4: The extent of knowledge creation and Organisation practices of LIS students in the selected library schools in Southwest, Nigeria

Survey items	Strongly Agree F(%)	Agree F(%)	Disagree F(%)	Strongly Disagree F(%)	Mean	Std. Dev.
I feel confident in my ability to create and maintain well-structured knowledge repositories	45(11.3)	263(65.8)	56(14.0)	36(9.0)	2.8	0.8

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

I feel confident in creating summaries or	44(11.1)	246(61.5)	77(19.3)	33(8.3)	2.8	0.8
abstracts to capture key knowledge.						
I feel confident in my ability to link related	35(8.8)	256(64.0)	62(15.5)	47(11.8)	2.7	0.8
knowledge and create meaningful						
connections						
I actively seek out and implement best	36(9.0)	235(58.8)	96(24.0)	33(8.3)	2.7	0.8
practices for organizing and managing						
knowledge						
I am proficient in creating visual	39(9.8)	229(57.3)	88(22.0)	44(11.0)	2.7	0.8
representations or concept maps to						
organize knowledge						
I am proficient in organizing and	21(5.3)	265(66.3)	59(14.8)	55(13.8)	2.6	0.8
structuring information to facilitate easy						
retrieval						
I effectively use tools or software to	23(5.8)	249(62.3)	86(21.5)	42(10.5)	2.6	0.7
categorize and tag knowledge for efficient						
organization.						
I actively update and revise my knowledge	31(7.8)	242(60.5)	75(18.8)	52(13.0)	2.6	0.8
organization systems to accommodate new						
information.						
I effectively use metadata or keywords to	37(9.3)	228(57.0)	86(21.5)	49(12.3)	2.6	0.8
enhance the searchability of stored						
knowledge.						
I am skilled in creating taxonomies or	32(8.0)	207(51.8)	121(30.3)	40(10.0)	2.6	0.8
classification schemes to organize						
knowledge						
Grand mean					2. 7	0.8

Table 4 highlight the extent of knowledge creation and organization practices among Library and Information Science (LIS) students at the selected library schools in Southwest, Nigeria. The grand mean of 2.7 on a scale of 4 points indicates general but moderate confidence and ability in knowledge creation and organization practices among LIS students. While many students acknowledge their capabilities, the relatively low mean scores suggest a significant opportunity for growth in these areas. Most students (65.8%) feel confident creating and maintaining well-structured knowledge repositories, yet only 11.3% strongly agree. The mean score of 2.8 indicates a moderate confidence level, suggesting that while many students believe they can manage repositories, there is still some uncertainty.

Similarly, confidence in creating summaries or abstracts is shared by 61.5% of students, with a mean score of 2.8. This suggests that while students can summarise critical knowledge, they may not feel fully proficient. The ability to link related knowledge and create connections is affirmed by 64.0% of respondents, with a mean of 2.7. This shows that students recognize the importance of connecting information but may lack confidence in their skill level. Regarding the active pursuit of best practices for knowledge organization, 58.8% of students agree, but the mean score of 2.7 indicates a need for further development in this area. Proficiency in creating visual aids like concept maps is reported by 57.3% of students, with a mean of 2.7. This reflects a moderate level of comfort with visual organization techniques. Only 66.3% agree that they can organize information for easy retrieval, though the mean score of 2.6 suggests some hesitancy in their abilities.

The use of tools or software for knowledge categorization is acknowledged by 62.3% of students, with a mean of 2.6. This indicates a familiarity with technology in knowledge management but suggests that many students may not feel fully skilled. The active updating of knowledge organization systems is noted by 60.5% of respondents, with a mean of 2.6. This suggests that while students recognize the importance of maintaining current systems, they may not prioritize this practice. Confidence in using metadata or keywords for enhancing searchability is shared by 57.0% of students, but the mean score of 2.6 indicates room for improvement in this essential skill. Skills in creating

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

taxonomies or classification schemes are affirmed by only 51.8% of students, with a mean of 2.6. This suggests that many students may find this aspect of knowledge organization challenging.

Table 5: The level of knowledge storage and retrieval practices of LIS students in the selected library schools in Southwest, Nigeria

Survey items	Very high	High extent	Moderately F(%)	Low extent	To a very low	Mean	Std. Dev.	
	extent	F(%)	Γ(%)	F(%)	extent		Dev.	
	F(%)				F(%)			
I effectively use bookmarks or saved searches to keep track of relevant knowledge sources.	47(11.8)	96(24.0)	161(40.3)	77(19.3)	19(4.8)	3.2	1.0	
I feel confident in my ability to retrieve knowledge from both online and offline sources.	33(8.3)	96(24.0)	184(46.0)	62(15.5)	25(6.3)	3.1	1.0	
I feel confident in my ability to use advanced search features to refine search results.	38(9.5)	103(25.8)	147(36.8)	84(21.0)	28(7.0)	3.1	1.1	
I actively maintain and update my personal knowledge storage systems for easy retrieval.	35(8.8)	65(16.3)	197(49.3)	71(17.8)	32(8.0)	3.0	1.0	
I feel confident in my ability to share knowledge with others using appropriate storage and retrieval methods	20(5.0)	91(22.8)	176(44.0)	94(23.5)	19(4.8)	3.0	0.9	
I am skilled in using citation management tools to track and retrieve referenced knowledge.	17(4.3)	85(21.3)	188(47.0)	85(21.3)	25(6.3)	3.0	0.9	
I actively seek out and utilize knowledge management tools or software for efficient storage and retrieval	23(5.8)	60(15.0)	217(54.3)	64(16.0)	36(9.0)	2.9	0.9	
I effectively use search techniques and filters to locate specific knowledge within repositories.	7(1.8)	77(119.3)	199(49.8)	83(20.8)	34(8.5)	2.9	0.9	
I am proficient in using indexing or tagging systems	20(5.0)	60(15.0)	171(42.8)	105(26.3)	44(11.0)	2.8	1.0	

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

to enhance the findability of stored knowledge							
I am proficient in using digital repositories or databases to store and retrieve knowledge	16(4.0)	38(9.5)	215(53.8)	89(22.3)	42(10.5)	2.7	0.9
Grand mean						3.0	1.0

Table 5 outline the knowledge storage and retrieval practice level among Library and Information Science (LIS) students in the selected library schools in Southwest, Nigeria. The grand mean of 3.0 on the scale of 5 points suggests moderate knowledge storage and retrieval practices among LIS students. While some students demonstrate reasonable confidence and ability in these areas, there is a clear need for improvement across several practices. A total of 40.3% of students reported a moderate extent of using bookmarks or saved searches to track relevant knowledge sources, with a mean score of 3.2. This indicates that while many students utilize these tools, there is potential for increased effectiveness. Confidence in retrieving knowledge from online and offline sources is noted by 24.0% of students who feel they do so to a high extent, and a mean score of 3.1 suggests that retrieval skills are present but not strongly developed across the board. The ability to use advanced search features is acknowledged by 25.8% of students, with a mean score of 3.1. This suggests that while some students are comfortable with these features, many do not fully leverage them. Only 16.3% of students report a high extent of actively maintaining and updating their personal knowledge storage systems, with a mean of 3.0. This reflects a need for greater emphasis on personal knowledge management practices. Confidence in sharing knowledge with others is reported by 22.8% of students, resulting in a mean score of 3.0, indicating that while sharing occurs, it may not be executed effectively or confidently. The use of citation management tools for tracking and retrieving referenced knowledge is noted by 21.3% of students, with a mean score of 3.0. This indicates a moderate level of engagement with these tools.

Only 15.0% of students actively seek out knowledge management tools or software for efficient storage and retrieval, reflected in a mean score 2.9. This suggests a significant opportunity for improvement in tool utilization. Proficiency in using search techniques and filters is low, with only 1.8% of students indicating a very high extent of effectiveness and a mean score of 2.9. This indicates a need for training in effective searching strategies. The ability to use indexing or tagging systems is indicated by 15.0% of students, with a mean score of 2.8. This suggests that students may find it challenging to enhance the findability of stored knowledge. Confidence in using digital repositories or databases to store and retrieve knowledge is reflected by 4.0% of students reporting a very high extent, with a mean of 2.7. This indicates a lack of proficiency that could hinder effective knowledge management.

Table 6: The level of knowledge-sharing and collaboration practices of LIS students in the selected library schools in Southwest, Nigeria

Survey items	Every time F(%)	Sometimes F(%)	Occasionally F(%)	Rarely F(%)	Never F(%)	Mean	Std. Dev.
I am open to diverse perspectives and actively seek out different viewpoints	21i8(54.5)	123(30.8)	57(14.3)	0(0.0)	2(0.5)	4.4	0.8
during knowledge-sharing							
I feel confident in my ability to facilitate productive discussions and knowledge exchange within a group.]	177(44.3)	124(31.0)	85(21.3)	0(0.0)	14(3.5)	4.1	1.0
I actively provide constructive feedback and suggestions to enhance shared knowledge.	134(33.5)	168(42.0)	91(22.8)	0(0.0)	7(1.8)	4.1	0.8

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Grand mean						4.0	1.0
knowledge to others.							
present and explain complex							
I feel confident in my ability to	134(33.5)	150(37.5)	86(21.5)	0(0.0)	30(7.5)	3.9	1.1
sharing and trust							
that encourages knowledge-							
collaborative environment							
I am skilled in fostering a	122(30.5)	179(44.8)	69(17.3)	4(1.0)	26(6.5)	3.9	1.0
co-create knowledge.							
platforms or tools to share and							
I effectively use collaborative	147(36.8)	145(36.3)	85(21.3)	0(0.0)	23(5.8)	4.0	1.0
leverage collective knowledge.							
collaborate with others to							
I actively seek opportunities to	144(36.0)	168(42.0)	63(15.8)	0(0.0)	25(6.3)	4.0	1.0
networks							
practice or knowledge-sharing							
participate in communities of							
I actively contribute to and	146(36.5)	171(42.8)	58(14.5)	0(0.0)	23(5.8)	4.0	1.1
team							
facilitate understanding in a							
articulate my knowledge to							
I effectively communicate and	137(34.3)	172(43.0)	73(18.3)	0(0.0)	18(4.5)	4.0	1.0
collaborative setting.							
my knowledge with others in a							
I actively contribute and share	111(27.8)	220(55.0)	53(13.0)	0(0.0)	16(4.0)	4.0	0.9

Table 6 provides an analysis of the level of knowledge-sharing and collaboration practices among Library and Information Science (LIS) students in the selected library schools in Southwest, Nigeria. The grand mean of 4.0 indicates a generally high level of knowledge-sharing and collaboration practices among LIS students. The high scores across multiple items suggest that students are engaged, confident, and proactive in collaborating with peers, essential for their academic and professional development. A robust 54.5% of students indicated they are open to diverse perspectives and actively seek out different viewpoints during knowledge-sharing, with a high mean score of 4.4. This suggests a strong inclination towards inclusivity and respect for differing opinions in collaborative environments. 44.3% of students feel confident in facilitating productive discussions, resulting in a mean score of 4.1. This indicates a solid level of self-assuredness in leading group knowledge exchanges. The ability to actively provide constructive feedback is affirmed by 33.5% of students, with a mean score of 4.1. This reflects a commitment to enhancing shared knowledge through meaningful contributions.

A significant 55.0% of students reported that they sometimes contribute and share knowledge in collaborative settings, leading to a mean score of 4.0. This demonstrates a positive attitude towards teamwork and knowledge sharing. Confidence in effectively communicating and articulating knowledge is reported by 34.3% of students, with a mean of 4.0. This indicates that students can clearly convey their ideas within collaborative contexts. 36.5% of students actively contribute to and participate in knowledge-sharing networks, resulting in a mean score of 4.0. This suggests healthy engagement in broader knowledge communities. A majority (36.0%) actively seek collaboration opportunities, reflected in a mean score of 4.0. This indicates a proactive approach to leveraging collective knowledge and expertise. The effective use of collaborative platforms or tools for sharing and co-creating knowledge is affirmed by 36.8% of students, with a mean of 4.0. This shows that students are familiar with technology that supports collaboration. Skills in fostering an environment that encourages knowledge-sharing and trust are reported by 30.5% of students, resulting in a mean of 3.9. This suggests a good foundation for creating supportive collaborative spaces, although there is room for improvement. Confidence in presenting and explaining complex knowledge to others is indicated by 33.5% of students, with a mean of 3.9. While there is a reasonable level of confidence, enhancing this skill could benefit students in their future careers.

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Table 7: Extent of knowledge application practices of LIS students in the selected library schools in Southwest, Nigeria

Survey items	Every time F(%)	Sometimes F(%)	Occasionally F(%)	Rarely F(%)	Never F(%)	Mean	Std. Dev.
I effectively apply my knowledge to solve problems and make informed decisions	232(58.0)	124(31.0)	29(7.3)	2(0.5)	13(3.3)	4.4	0.9
I actively seek opportunities to apply my knowledge in real- world situations.	190(47.5)	168(42.0)	39(9.8)	3(0.8)	0(0.0)	4.4	0.7
I effectively use critical thinking skills to analyse and evaluate knowledge in practical situations	185(46.3)	167(41.8)	42(10.5)	6(1.5)	0(0.0)	4.3	0.7
I am skilled in synthesizing and integrating knowledge to create innovative solutions	178(44.5)	160(40.0)	55(13.8)	7(1.8)	0(0.0)	4.3	0.8
I feel confident in my ability to transfer knowledge from one context to another.	199(49.8)	136(34.0)	49(12.3)	3(0.8)	13(3.3)	4.3	0.9
I actively seek feedback and reflect on the outcomes of applying my knowledge.	203(50.8)	130(32.5)	43(10.8)	11(2.8)	13(3.3)	4.3	1.0
I feel confident in my ability to communicate and explain the application of my knowledge to others	161(40.3)	167(41.8)	62(15.5)	8(2.0)	2(0.5)	4.2	0.8
I feel confident in my ability to adapt and modify my knowledge to address changing circumstances	190(47.5)	127(31.8)	56(14.0)	14(3.5)	13(3.3)	4.2	1.0
I am proficient in using technology or tools to support the application of knowledge in practical scenarios	164(41.0)	172(43.0)	46(11.5)	8(2.0)	10(2.5)	4.2	0.9
I actively seek out challenges and opportunities to apply and refine my knowledge	172(43.0)	152(38.0)	43(10.8)	18(4.5)	15(3.8)	4.1	1.0
Grand mean						4.3	0.9

Table 7 summarizes the extent of knowledge application practices among Library and Information Science (LIS) students in the selected library schools in Southwest, Nigeria. The grand mean of 4.3 indicates a high level of knowledge application practices among LIS students. The consistently high scores across various items suggest that students are confident and proactive in applying their knowledge to real-world situations, which is essential for their future professional roles. A substantial 58.0% of students reported effectively applying their knowledge to solve problems and make informed decisions, with a high mean score of 4.4. This indicates a strong belief in their problem-solving abilities. 47.5% of students actively seek opportunities to apply their knowledge in real-world situations, yielding a mean score of 4.4. This reflects a proactive approach to learning and application. Confidence in using

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

critical thinking skills to analyze and evaluate knowledge in practical situations is affirmed by 46.3% of respondents, resulting in a mean score of 4.3. This indicates that students recognize the importance of critical thinking in applying their knowledge.

The ability to synthesize and integrate knowledge to create innovative solutions is noted by 44.5% of students, with a mean of 4.3. This suggests a good level of competency in innovative thinking. 49.8% of students feel confident transferring knowledge from one context to another, with a mean score of 4.3. This indicates a strong capacity for adaptability in applying knowledge across different scenarios. A majority (50.8%) actively seek feedback and reflect on the outcomes of their knowledge application, leading to a mean score of 4.3. This demonstrates a commitment to continuous improvement and learning. Confidence in the ability to communicate and explain the application of knowledge to others is reported by 40.3% of students, with a mean of 4.2. This suggests a moderate level of proficiency in articulating knowledge applications. In addition, 47.5% of students feel confident in their ability to adapt and modify their knowledge to address changing circumstances, resulting in a mean score of 4.2. This reflects flexibility in applying knowledge effectively. Proficiency in using technology or tools to support knowledge application is reported by 41.0% of students, yielding a mean score of 4.2. This indicates a reasonable level of comfort with technological tools in practical applications. The extent to which students seek challenges and opportunities to apply and refine their knowledge is affirmed by 43.0%, with a mean score of 4.1. This suggests a willingness to engage in challenging situations for personal and professional growth.

Table 8: The level of knowledge preservation and transfer practices of LIS students in selected library schools in Southwest, Nigeria

Survey items	Very high extent F(%)	High extent F(%)	Moderately F(%)	Low extent F(%)	To a very low extent F(%)	Mean	Std. Dev.
I feel confident in my ability to balance the need for knowledge sharing with ethical and legal obligations	99(24.8)	131(32.8)	10(2.5)	35(8.8)	125(31.3)	3.1	1.6
I actively seek clarification or guidance when faced with ethical dilemmas in knowledge management	97(24.3)	101(25.3)	2(0.5)	54(13.5)	146(36.5)	2.9	1.7
I feel confident in my ability to appropriately attribute and cite sources of knowledge	92(23.0)	110(27.5)	4(1.0)	26(6.5)	168(42.0)	2.8	1.7
I feel confident in my ability to create and deliver knowledge transfer sessions or presentations	97(24.3)	94(23.5)	4(1.0)	51(12.8)	154(38.5)	2.8	1.7
I feel confident in my ability to handle sensitive or confidential knowledge in an ethical manner	103(25.8)	88(22.0)	0(0.0)	43(10.8)	166(41.5)	2.8	1.7
I am skilled in identifying critical knowledge that needs to be preserved and transferred	93(23.3)	99(24.8)	0(0.0)	47(11.8)	161(40.3)	2.8	1.7
I understand and respect intellectual property rights	78(19.5)	120(30.0)	0(0.0)	33(8.3)	169(42.3)	2.8	1.7

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

when using and sharing knowledge							
I actively promote and advocate for responsible and ethical knowledge management practices	101(25.3)	80(20.0)	0(0.0)	54(13.5)	165(41.3)	2.7	1.7
I actively participate in knowledge transfer activities, such as mentoring or knowledge exchange programs	96(24.0)	79(19.8)	0(0.0)	43(10.8)	182(45.5)	2.7	1.7
I am knowledgeable about ethical guidelines and practices related to knowledge management	63(15.8)	127(31.8)	5(1.3)	19(4.8)	186(46.5)	2.7	1.7
I effectively use documentation and knowledge sharing platforms to preserve knowledge	95(23.8)	76(19.0)	6(1.5)	36(9.0)	187(46.8)	2.6	1.7
I actively seek permission and adhere to copyright regulations when using copyrighted material.]	80(20.0)	94(23.5)	0(0.0)	44(11.0)	182(45.5)	2.6	1.7
I effectively communicate and educate others about ethical considerations in knowledge management.	79(19.8)	100(25.0)	2(0.5)	29(7.3)	190(47.5)	2.6	1.7
I am aware of the potential risks and negative consequences of unethical or illegal knowledge management practices	79(19.8)	80(20.0)	10(2.5)	53(13.3)	178(44.5)	2.6	1.7
I actively contribute to the documentation and preservation of organizational knowledge	88(22.0)	67(16.8)	1(0.3)	42(10.5)	202(50.5)	2.5	1.7
I feel confident in my ability to capture and transfer tacit knowledge to others	68(17.0)	69(17.3)	4(1.0)	50(12.5)	209(52.3)	2.3	1.6
Grand mean						2. 7	1. 7

Table 8 outlines the level of knowledge preservation and transfer practices among Library and Information Science (LIS) students in selected library schools in Southwest, Nigeria. The grand mean of 2.7 suggests moderate knowledge preservation and transfer practices among LIS students. The low scores across many items indicate considerable room for improvement in students' understanding and application of ethical knowledge management practices. 24.8% of students feel they can confidently balance knowledge sharing with ethical and legal obligations, leading to a mean score of 3.1. This indicates a moderate level of confidence in navigating ethical considerations. 24.3% actively seek clarification or guidance when faced with ethical dilemmas in knowledge management, with a mean of 2.9. This suggests some uncertainty and a need for better support systems in ethical decision-making.

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Confidence in attributing and citing sources of knowledge is reported by 23.0% of students, resulting in a mean score of 2.8. This indicates a significant area for improvement, as many students may struggle with proper citation practices. 24.3% of students feel confident in creating and delivering knowledge transfer sessions or presentations, with a mean of 2.8. This reflects a moderate level of skill in knowledge dissemination. Confidence in handling sensitive or confidential knowledge ethically is reported by 25.8%, leading to a mean score of 2.8. This suggests that while some students feel capable, many may not fully understand the complexities. 23.3% of students feel skilled in identifying critical knowledge that needs preservation and transfer, with a mean of 2.8. This suggests a need for further training in knowledge management principles.

Also, a mean score of 2.8 indicates that while students acknowledge the importance of intellectual property rights, only 19.5% feel very confident in this area. 25.3% actively promote and advocate for responsible knowledge management practices, resulting in a mean score of 2.7. This reflects a moderate commitment to ethical practices. 24.0% of students participate actively in knowledge transfer activities, with a mean of 2.7. This indicates a need for more engagement in mentorship and exchange programs. Awareness of ethical guidelines related to knowledge management has a mean score of 2.7, with only 15.8% feeling very knowledgeable, highlighting a gap in understanding ethical frameworks. Effectiveness in using documentation and sharing platforms for knowledge preservation is reported by 23.8%, with a mean of 2.6. This suggests that many students may not fully utilize available tools. Confidence in adhering to copyright regulations is reflected in a mean score of 2.6, indicating a need for better education on copyright issues. Confidence in effectively communicating ethical considerations in knowledge management is low, with a mean score of 2.6. This suggests that students may struggle to convey these critical concepts to others. Awareness of the risks and consequences of unethical knowledge management practices has a mean of 2.6, suggesting that students recognize the importance of ethics but may not fully understand the implications. Only 22.0% actively contribute to documenting and preserving organizational knowledge, with a low mean of 2.5. This indicates a significant opportunity for improvement in engagement. Confidence in capturing and transferring tacit knowledge is low, with a mean score of 2.3, highlighting a critical area for skill development.

Table 9: Correlation analysis showing the strength and significance of relationships between various Knowledge Management (KM) practices and the control variable of gender.

Contro	ol Variables		knowledge	knowledge	knowledge	knowledge-	knowledge	knowledge
			acquisition	creation and	storage and	sharing and	application	preservation
			practices	Organisation	retrieval	collaboration	practices	and transfer
				practices	practices	practices		practices
	knowledge acquisition practices	Correlation	1.000	.250	.158	.411	.447	.122
		Sig. P.value		.000	.002	.000	.000	.015
		df	0	397	397	397	397	397
	knowledge	Correlation	.250	1.000	.457	040	.034	.007
	creation and Organisation	Sig. P.value	.000		.000	.430	.500	.895
	practices	df	397	0	397	397	397	397
	knowledge	Correlation	ı .158	.457	1.000	.040	.031	.136
gende	rstorage and retrieval	Sig. P.value	.002	.000		.424	.539	.006
	practices	df	397	397	0	397	397	397
	knowledge- sharing and collaboration practices	Correlation	.411	040	.040	1.000	.666	.241
		Sig. P.value	.000	.430	.424	0.000.	.000	.000
		df	397	397	397	0	397	397
	knowledge	Correlation	ı .447	.034	.031	.666	1.000	.258
	application practices	Sig. P.value	.000	.500	.539	.000	•	.000

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

	df	397	397	397	397	0	397
knowledge	Correlation	.122	.007	.136	.241	.258	1.000
preservation and transfer	Sig. P.value	.015	.895	.006	.000	.000	
practices	df	397	397	397	397	397	0

Table 9 shows that the correlations between gender and various KM practices suggest that gender has a significant relationship with knowledge acquisition, knowledge-sharing, collaboration practices, knowledge application, and knowledge preservation:

Knowledge Acquisition (r = 0.250, p < 0.001): A moderate positive correlation indicates that gender influences knowledge acquisition practices. Knowledge Sharing and Collaboration (r = 0.411, p < 0.001) show a strong positive correlation, suggesting that gender significantly affects collaborative knowledge-sharing practices. Regarding Knowledge Application (r = 0.447, p < 0.001): A strong positive correlation indicates that gender also plays a significant role in knowledge application practices. Knowledge Preservation and Transfer (r = 0.122, p = 0.015): This indicates a weak but statistically significant correlation, suggesting some influence of gender on preservation and transfer practices.

Knowledge Creation and Organization vs. Knowledge Storage and Retrieval (r = 0.457, p < 0.001): A strong positive correlation suggests that as knowledge creation practices improve, so do storage and retrieval practices. Knowledge Creation vs. Knowledge Sharing and Collaboration (r = -0.040, p = 0.430): The negative correlation here indicates no significant relationship, implying that knowledge creation practices do not significantly affect sharing and

: Knowledge Storage vs. Knowledge Sharing and Collaboration (r = 0.040, p = 0.424): No significant correlation indicates that these practices may operate independently. Knowledge Storage vs. Knowledge Preservation and Transfer (r = 0.136, p = 0.006): This weak positive correlation suggests a slight relationship, indicating that better storage practices may enhance preservation and transfer.

Knowledge Sharing vs. Knowledge Application (r = 0.666, p < 0.001): This strong positive correlation indicates that effective knowledge sharing and collaboration significantly enhance knowledge application practices. Knowledge Sharing vs. Knowledge Preservation (r = 0.241, p < 0.001): This indicates a moderate positive correlation, suggesting collaboration may positively influence preservation efforts.

Knowledge Application vs. Knowledge Preservation and Transfer (r = 0.258, p < 0.001): This moderate positive correlation shows that effective application of knowledge is associated with better preservation and transfer practices. Overall, correlation analysis indicates that gender affects several KM practices, particularly knowledge acquisition, sharing, and application. Additionally, there are notable relationships among the different KM practices, with strong correlations between knowledge sharing and application and between knowledge creation and storage. These findings can inform strategies for enhancing KM practices among Library and Information Science students at your institution.

Table 10: Paired Samples Test examining the differences between paired KM practices and assessing their significance

			Std.	_	5% dence val of ne rence	_	df t	Sig. (2- ailed)
Pair 1 Knowledge acquisition practices - knowledge creation and organization practices	11.83	8.78	.44	10.96	12.69	26.93	399	.000

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

	.48	-11.74	-9.86 - 22.63 ³⁹⁹ .000
	.71	-2.21	.59 -1.13 399 .259
-4.81 15.78	.79	-6.36	-3.26 -6.09399 .000
15.83 8.23	.41	15.01	16.64 38.45399 .000
-8.87 10.04	.50	-9.85	-7.88 - 399 .000 17.67
	81 14.29 -4.81 15.78 15.83 8.23	81 14.29 .71 -4.81 15.78 .79 15.83 8.23 .41	-4.81 15.78 .79 -6.36

From the Paired Samples Test in table 10

Pair 1: Knowledge Acquisition Practices vs. Knowledge Creation and Organization Practices

Mean Difference: 11.825 (Knowledge acquisition practices are higher); Standard Deviation: 8.781; t-value: 26.932; Significance (2-tailed): p < 0.001. There was a statistically significant difference, with knowledge acquisition practices significantly higher than knowledge creation and organization practices.

Pair 2: Knowledge Storage and Retrieval Practices vs. Knowledge Sharing and Collaboration Practices

Mean Difference: -10.803 (Knowledge sharing and collaboration practices are higher). Standard Deviation: 9.548; t-value: -22.629; Significance (2-tailed): p < 0.001. This result indicates a statistically significant difference, showing that knowledge-sharing and collaboration practices are significantly higher than storage and retrieval practices.

Pair 3: Knowledge Application Practices vs. Knowledge Preservation and Transfer Practices

Mean Difference: -0.808 (Not significant); Standard Deviation: 14.296; t-value: -1.130 Significance (2-tailed): p = 0.259. There was no statistically significant difference between knowledge application practices and knowledge preservation and transfer practices.

Pair 4: Knowledge Acquisition Practices vs. Knowledge Preservation and Transfer Practices

Mean Difference: -4.810 (Knowledge acquisition practices are higher). Standard Deviation: 15.782; t-value: -6.096; Significance (2-tailed): p < 0.001. This result shows a statistically significant difference, with knowledge acquisition practices significantly higher than knowledge preservation and transfer practices.

Pair 5: Knowledge Application Practices vs. Knowledge Creation and Organization Practices

Mean Difference: 15.828 (Knowledge application practices are higher). Standard Deviation: 8.233; t-value: 38.450; Significance (2-tailed): p < 0.001. There was a highly significant difference, indicating that knowledge application practices are significantly higher than knowledge creation and organization practices.

Pair 6: Knowledge Storage and Retrieval Practices vs. Knowledge Acquisition Practices. Mean Difference: -8.868 (Knowledge acquisition practices are higher). Standard Deviation: 10.040; t-value: -17.665; Significance (2-tailed): p < 0.001. This result demonstrates a statistically significant difference, with knowledge acquisition practices significantly higher than storage and retrieval practices.

Overall, knowledge acquisition practices consistently show higher values compared to knowledge creation and organization, preservation and transfer, and storage and retrieval practices. Also, knowledge-sharing and collaboration practices significantly exceed knowledge storage and retrieval practices. Also, Knowledge application practices are notably higher than both knowledge creation and organization practices, as well as knowledge preservation and transfer practices. On the other hand, the comparison between knowledge application practices and knowledge preservation and transfer practices did not yield a significant difference. These insights suggest that certain knowledge management practices are more developed or emphasized than others among Library and

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Information Science students in the selected library schools in Southwest, Nigeria, highlighting areas for potential improvement or further research.

DISCUSSION

This research aimed to evaluate the knowledge management (KM) practices of Library and Information Science (LIS) students in the selected library schools in Southwest, Nigeria. The study found that LIS students reported moderate engagement in knowledge storage and retrieval practices, with a mean score of 3.0. This suggests that while students utilize some tools and techniques, there is significant room for enhancement. Similar assertions have been corroborated by scholars such as (Siddique et al., 2023); (Awogbami et al., 2021) in their various studies and recommendations. Thus, the institution may consider integrating more effective KM tools and training sessions that emphasize best practices in knowledge storage and retrieval to foster better outcomes (Wong & Aspinwall, 2005). In addition, there was a high level of engagement in knowledge-sharing and collaboration practices, as indicated by a grand mean of 4.0. This finding suggests that LIS students value teamwork and effective communication, essential skills in the library and information science field. Opele has reported similar findings in his study of interprofessional collaboration among health workforce (Opele, 2022). It is worth emphasizing that encouraging collaborative projects and peer-to-peer learning can further harness this strength and promote a culture of knowledge sharing within the academic community.

The findings from the current study revealed that the students demonstrated strong confidence in knowledge application, reflected in a grand mean of 4.3. This indicates their proactive approach to applying theoretical knowledge to real-world problems, an essential competency for future professionals in LIS. Findings from related studies also agree with the same reports (S. A. Kumar, 2010). Hence, it may be beneficial to continue fostering practical learning opportunities, such as internships or project-based learning, to enhance their application skills further. In contrast, knowledge preservation and transfer practices scored significantly lower, with a grand mean of 2.7. this is expected, as shown in the literature, because in most cases, knowledge preservation and transfer are often carried out at the level of organization, such as university libraries (Sarrafzadeh et al., 2010). This highlights a critical gap in students' understanding of ethical knowledge management and the techniques necessary for effective knowledge preservation. Targeted interventions, such as workshops or courses focused on these areas, could significantly bolster students' abilities to manage knowledge responsibly and sustainably.

The correlation analysis revealed statistically significant relationships between KM practices and gender, particularly in knowledge acquisition, sharing, and application. This is in consonant with the findings of (Masadeh et al., 2019), who reported that females engaged more in social interaction than their male friends. This finding suggests that gender may influence students' engagement with KM practices, warranting further exploration into how these dynamics affect learning outcomes. Similarly, the paired samples test highlighted significant differences in the means of various KM practices. Notably, knowledge acquisition practices were significantly higher than knowledge creation and organization, as well as knowledge preservation and transfer practices. This discrepancy suggests a preference among students for acquiring knowledge over creating or preserving it. Conversely, literature has shown that females seem more friendly with information sharing than their male counterparts (Eftekharzadeh, 2008); (Lwoga et al., 2010). Additionally, the strong performance in knowledge sharing and collaboration compared to storage and retrieval practices indicates that students may be more comfortable working in teams rather than independently managing knowledge. The findings suggest a need for curriculum development that addresses the identified gaps in knowledge preservation and transfer. Integrating more comprehensive training on ethical knowledge management practices and preservation techniques could enhance students' overall KM competencies.

Finally, while LIS students in the selected library schools in Southwest, Nigeria exhibit strengths in collaboration and application, there remains a critical need for targeted interventions to improve their knowledge preservation and transfer practices. By addressing these gaps, educational institutions can better prepare students for the challenges of the library and information science profession.

CONCLUSION

This study highlights the current state of knowledge management (KM) practices among Library and Information Science (LIS) students in the selected library schools in Southwest, Nigeria. The study concluded that while students

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

exhibit strong practices in knowledge-sharing and application, there are noticeable gaps in knowledge storage, retrieval, preservation, and transfer. The moderate engagement in knowledge storage and retrieval practices suggests that enhanced tools and techniques are needed. In contrast, the weaker performance in knowledge preservation and transfer underscores the importance of integrating ethical considerations and effective methods into the curriculum. Overall, the outcome of this study provides a foundation for improving KM practices within the LIS program, ensuring that students are well-prepared for future professional challenges.

IMPLICATIONS

Theoretical Implications

This study contributes to the theoretical framework surrounding knowledge management (KM) within the field of Library and Information Science. It underscores the need for integrating KM principles into LIS curricula, thereby enriching the academic discourse on the relationship between KM and library practices. The findings reveal significant correlations between gender and various KM practices, suggesting that future research should explore how gender influences knowledge acquisition, sharing, and application. This could lead to a more nuanced understanding of KM in educational contexts. The study establishes a foundation for future research on KM practices, suggesting that subsequent studies could further explore the ethical dimensions of KM and the impact of digital literacy on knowledge preservation.

Practical Implications

The results indicate a need for library schools to enhance their curricula by incorporating specialized courses focused on knowledge preservation and transfer, as well as ethical knowledge management practices. This will prepare students for real-world challenges in the profession. Institutions should organize workshops and training sessions aimed at improving students' skills in knowledge storage and retrieval, fostering a more robust understanding of KM tools and techniques. Given the high engagement in knowledge-sharing practices, universities should promote collaborative projects and peer-to-peer learning environments, empowering students to leverage collective knowledge effectively.

LIMITATIONS

The outcome of the current study identified the following limitations. The reliance on self-reported practices may introduce bias, as students may overestimate their engagement and confidence in KM practices. Future studies should consider incorporating observational methods or peer assessments for a more objective evaluation. The study focused on selected library schools in Southwest Nigeria, which may limit the generalizability of the findings to other regions or countries with different educational contexts or cultural dynamics. The cross-sectional nature of the study captures a snapshot in time, making it difficult to assess changes in KM practices over time. Longitudinal studies are recommended to track developments in students' KM skills throughout their academic journey.

FUTURE DIRECTIONS

The conclusion drawn from the study point to the following areas for future investigations. Future research should adopt a longitudinal approach to assess how KM practices evolve as students' progress through their academic programs and enter the workforce. There is a need for further investigation into ethical knowledge management practices among LIS students. Research could focus on developing frameworks that integrate ethical considerations into KM education. Future studies could explore the role of emerging technologies (such as AI and machine learning) in enhancing KM practices within library and information science, examining how these tools can better support knowledge sharing and preservation. Expanding the research to include a more diverse sample of LIS students across different regions and institutions would provide a more comprehensive view of KM practices within the field.

CONFLICT OF INTEREST

The authors declares no potential conflict of interest

REFERENCES

[1] Abbas, J., Zhang, Q., Hussain, I., Akram, S., Afaq, A., & Shad, M. A. (2020). Sustainable innovation in small

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- medium enterprises: the impact of knowledge management on organizational innovation through a mediation analysis by using SEM approach. *Sustainability*, *12*(6), 2407.
- [2] Alajmi, B., Marouf, L., & Chaudhry, A. S. (2015). Knowledge management (KM) practices-a study of KM adoption among doctors in Kuwait. *Int J Soc Behav Educ Econ Manag Eng*, 9(1), 128-134.
- [3] Awogbami, P. A., Opele, J. K., & Chibueze, E. U. (2020). Lecturers' Use of Multimedia Resources for Knowledge Transfer: A Study of Adeleke University, Ede, Osun State. *Information Impact, Journal of Information and Knowledge Management*, 11(2), 35-50
- [4] Awogbami, P., Opele, J. K., & Adeoye, R. (2021). Staff Development Program and Service Delivery in Academic Library: Implication for Knowledge Management in The University of Lagos, Nigeria. *Global Journal of Applied, Management and Social Sciences (GOJAMSS)*, 21(January), 273–279. https://www.researchgate.net/publication/351972057
- [5] Awoyemi, R. A., & Okojie, V. (2024). Strategies and best practices of knowledge management in Academic Libraries in Nigeria. *Ghana Library Journal*, 29(1), 30–42. https://doi.org/10.4314/glj.v29i1.3
- [6] Ayanbode, O. F., & Nwagwu, W. E. (2021). Collaborative technologies and knowledge management in psychiatric hospitals in South West Nigeria. *Information Development*, 37(1), 136–157. https://doi.org/10.1177/0266666919895563
- [7] B, J. I., Laelasari, E., Anwar, A., & Sariadji, K. (2023). Proceedings of the 1st International Conference for Health Research BRIN (ICHR 2022). In *Proceedings of the 1st International Conference for Health Research BRIN (ICHR 2022)* (Vol. 1). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-112-8
- [8] Baghdadabad, A. H. (2008). The implications of knowledge management for library and information science education: a mixed-method investigation. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Afsaneh Hazeri Baghdadabad School of Business. March.
- [9] Davenport, T., & Prusak, L. (2000). Working knowledge: Managing what your organization knows. *Harvard Business School Press*.
- [10] David-West, T. B. (2021). Knowledge Management and Information Professionals in 21st Century Academic Libraries in Nigeria. *Library Progress (International)*, 41(1), 72–78. https://doi.org/10.5958/2320-317x.2021.00007.6
- [11] Eftekharzadeh, R. (2008). Knowledge management implementation in developing countries: An experimental study. *Review of Business*, *28*(3), 44.
- [12] Nnabuife, E. K., Onwuka, E. M., & Ojukwu, H. S. (2015). Knowledge management and organizational performance in selected commercial banks in Awka, Anambra State, Nigeria. *IOSR Journal of Business and Management*, 17(8), 25-32.
- [13] Frias-Navarro, R., & Montoya-Restrepo, L. A. (2020). Understanding knowledge creation processes among rural communities in post-conflict settings in Colombia. *Knowledge Management and E-Learning*, 12(2), 231–255. https://doi.org/10.34105/j.kmel.2020.12.012
- [14] Inkinen, H. (2016). Review of empirical research on knowledge management practices and firm performance. *Journal of Knowledge Management*, 20(2), 230–257. https://doi.org/10.1108/JKM-09-2015-0336
- [15] Kang, T. C., Hung, S. Y., Chen, C., & Ractham, P. (2024). Determinants of successful knowledge transfer: Unveiling social exchange theory insights on knowledge velocity and viscosity in enterprises. *Knowledge Management and E-Learning*, 16(3), 565–590. https://doi.org/10.34105/j.kmel.2024.16.026
- [16] Kommey, R. E., & Fombad, M. C. (2024). Knowledge sharing technologies for rice farmers: A perspective from the Eastern Region of Ghana. *Knowledge Management and E-Learning*, 16(2), 355–378. https://doi.org/10.34105/j.kmel.2024.16.017
- [17] Kumar, M., Mamgain, P., Pasumarti, S. S., & Singh, P. K. (2024). Organizational IT support and knowledge sharing behaviour affecting service innovation performance: empirical evidence from the hospitality industry. *VINE Journal of Information and Knowledge Management Systems*, 54(2), 256-279.
- [18] Kumar, S. A. (2010). Knowledge management and new generation of libraries information services: A concepts. *International Journal of Library and Information Science*, 1(2), 24–30. http://www.academicjournals.org/jjlis
- [19] Lwoga, E. T., Ngulube, P., & Stilwell, C. (2010). Managing indigenous knowledge for sustainable agricultural development in developing countries: Knowledge management approaches in the social context. *International Information & Library Review*, 42(3), 174–185. https://doi.org/10.1080/10572317.2010.10762862

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [20] Martin, B., Hazeri, A., & Sarrafzadeh, M. (2006). Knowledge management and the lis professions: Investigating the implications for practice and for educational provision. *Australian Library Journal*, *55*(1), 12–29. https://doi.org/10.1080/00049670.2006.10721808
- [21] Masadeh, R., Almajali, D. A., Alrowwad, A., & Obeidat, B. (2019). The role of knowledge management infrastructure in enhancing job satisfaction: A developing country perspective. *Interdisciplinary Journal of Information, Knowledge, and Management*, 14(January), 1–25. https://doi.org/10.28945/4169
- [22] Matos, F., Vairinhos, V., Salavisa, I., Edvinsson, L., & Massaro, M. (2020). *Knowledge, people, and digital transformation* (p. 303). Cham: Springer.
- [23] Menkhoff, T., Kan, S. N., Tan, E. K. B., & Foong, S. (2022). Future-proofing students in higher education with unmanned aerial vehicles technology: A knowledge management case study. *Knowledge Management and E-Learning*, 14(2), 223–244. https://doi.org/10.34105/j.kmel.2022.14.013
- [24] Mora, H., Signes-Pont, M. T., Fuster-Guilló, A., & Pertegal-Felices, M. L. (2020). A collaborative working model for enhancing the learning process of science & engineering students. *Computers in Human Behavior*, 103, 140–150. https://doi.org/10.1016/j.chb.2019.09.008
- [25] Mostofa, S. M., & Mezbah-ul-Islam, M. (2015). Challenges and Opportunities of Knowledge Management in University Library: A Case Study of Dhaka University Library in Bangladesh. *Journal of Information Science Theory and Practice*, *3*(4), 49–61. https://doi.org/10.1633/jistap.2015.3.4.4
- [26] Nonaka, I., & Takeuchi, H. (1997). The Knowledge-creating company: How Japanese companies create the dynamics of innovation I. Nonaka & H. Takeuchi, (Oxford University Press, London & New York, 1995), 284 pp., \$25.00, ISBN 0 19 509269 4. *Research Policy*.
- [27] Olu-Owolabi, F. E., Amoo, E., Samuel, O., Oyeyemi, A., & Adejumo, G. (2020). Female-dominated informal labour sector and family (in) stability: The interface between reproduction and production. *Cogent arts & humanities*, 7(1), 1788878.
- [28] Rosaline, O. O., & Kehinde, O. J. (2014). Assessment of knowledge sharing behaviours of postgraduate students in selected Nigerian universities. *Information and Knowledge Management*, 4(11)., 102-107
- [29] Opele, J. K. (2022). Inter-professional collaboration and knowledge management practices among clinical workforce in Federal Tertiary Hospitals in Nigeria. *Knowledge Management and E-Learning*, 14(3), 329–343. https://doi.org/10.34105/j.kmel.2022.14.018
- [30] Pellegrini, M. M., Ciampi, F., Marzi, G., & Orlando, B. (2020). The relationship between knowledge management and leadership: mapping the field and providing future research avenues. *Journal of Knowledge Management*, 24(6), 1445-1492.
- [31] Rouleau, G., Gagnon, M. P., Côté, J., Payne-Gagnon, J., Hudson, E., Dubois, C. A., & Bouix-Picasso, J. (2019). Effects of e-learning in a continuing education context on nursing care: systematic review of systematic qualitative, quantitative, and mixed-studies reviews. *Journal of medical Internet research*, 21(10), e15118.
- [32] Sarrafzadeh, M. (2015). The implications of knowledge management for the library and information professions. The implications of knowledge management for the library and information professions A thesis submitted in fulfilment of the requirements for the degree of Doctor of Phil. January 2008.
- [33] Sarrafzadeh, M., Martin, B., & Hazeri, A. (2010). Knowledge management and its potential applicability for libraries. *Library Management*, 31(3), 198–212. https://doi.org/10.1108/01435121011027363
- [34] Siddique, N., Ur Rehman, S., Ahmad, S., Abbas, A., & Khan, M. A. (2023). Library and information science research in the Arab World: a bibliometric analysis 1951–2021. *Global Knowledge, Memory and Communication*, 72(1–2), 138–159. https://doi.org/10.1108/GKMC-06-2021-0103
- [35] Singh, S. K., Gupta, S., Busso, D., & Kamboj, S. (2021). Top management knowledge value, knowledge sharing practices, open innovation and organizational performance. *Journal of Business Research*, *128*(April 2019), 788–798. https://doi.org/10.1016/j.jbusres.2019.04.040
- [36] Spender, J. C. (1996). Making knowledge the basis of a dynamic theory of the firm. *Strategic management journal*, 17(S2), 45-62.
- [37] Tajpour, M., Hosseini, E., Mohammadi, M., & Bahman-Zangi, B. (2022). The effect of knowledge management on the sustainability of technology-driven businesses in emerging markets: The mediating role of social media. *Sustainability*, 14(14), 8602.
- [38] Torre, E. M. De, Agasisti, T., Perez-esparrells, C., Madrid, D., & Tom, A. F. (2017). The relevance of knowledge

2025, 10(44s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- transfer for universities 'efficiency scores: an empirical approximation on the Spanish public higher education system. 26(June), 211–229. https://doi.org/10.1093/reseval/rvx022
- [39] De La Torre, E. M., Agasisti, T., & Perez-Esparrells, C. (2017). The relevance of knowledge transfer for universities' efficiency scores: an empirical approximation on the Spanish public higher education system. *Research Evaluation*, 26(3), 211-229.
- [40] Umemoto, K. (2009). Knowledge Management Education in Library and Information Science Schools: an Exploratory Study. *Library*, 1997, 27–37.
- [41] Wong, K. Y., & Aspinwall, E. (2005). An empirical study of the important factors for knowledge-management adoption in the SME sector. *Journal of Knowledge Management*, 9(3), 64–82. https://doi.org/10.1108/13673270510602773