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Pneumonia presents considerable challenges to healthcare systems worldwide, necessitating 

swift and accurate diagnostic methods. This study introduces an integrated artificial intelligence 

approach combining a convolutional neural network classification with infection region 

segmentation to improve pneumonia diagnosis and assess severity. Our dual-function model was 

crafted using the QaTa-COVID-19 and COVID-19 Radiography datasets, enabling strong 

differentiation between COVID-19 pneumonia, non-COVID pneumonia, and standard chest X-

rays. The proposed framework combines VGG16 convolutional features with DenseNet 

connectivity patterns, achieving a classification accuracy of 98.71% while using only about 8 

million parameters, significantly surpassing traditional models like VGG16, ResNet50, and 

DenseNet121. We incorporated a UNet-based segmentation component to assess disease severity 

by effectively outlining infection regions. Gradient-weighted Class Activation Mapping (Grad-

CAM) visualizations improve  interpretability of model, providing clinicians with insights into 

decision-making. Our results indicate that this hybrid method enhances diagnostic precision, 

infection quantification, and algorithmic transparency. Future research will explore multimodal 

data fusion and investigate transformer architectures to boost pneumonia detection capabilities. 

This study contributes to developing an automated, explainable diagnostic framework that 

effectively aids clinical decision-making in pneumonia management. 

Keywords: Deep Learning, Computer-Aided Diagnosis, Pneumonia Detection, Chest X-ray 

Analysis, Explainable AI 

 

INTRODUCTION 

COVID-19 epidemic has drawn focus to critical requirement for accurate medical imaging diagnostic techniques. 

Medical image analysis has been completely transformed by DL(deep learning), particularly CNNs (Convolutional 

Neural Networks), which automatically extract features from raw images and handle high-resolution datasets like 

"ChestX-ray8" with efficiency [1]. Although transformers' self-attention processes have made them popular in 

medical imaging, their use is limited by their high processing costs and reliance on sizable datasets, particularly in 

clinical contexts where data access is restricted by privacy concerns [2]. CNNs, conversely, demonstrate superior 

performance with smaller datasets and greater computational efficiency. 

Transfer learning improves CNNs by utilizing pre-trained models, lowering processing requirements, and facilitating 

quick task adaptation with minimum training data—all of which are essential benefits for identification of pneumonia 

[3]. Additionally, CNNs offer strong frameworks for medical imaging segmentation and classification that are 

remarkably flexible to different imaging scenarios and pathological presentations [4]. This versatility facilitates their 

integration into clinical workflows, where accurate infection localization is essential for treatment planning and 
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prognosis. CNN-based approaches thus represent practical solutions for enhancing diagnostic capabilities in “chest 

X-ray analysis of COVID-19 as well as” other respiratory conditions. 

Multiple studies validate CNNs' efficacy in pneumonia detection, with models like CheXImageNet achieving 100% 

accuracy in classifying respiratory diseases from chest X-rays [5][6]. For infection segmentation, hybrid approaches 

combining GANs with CNNs have demonstrated high accuracy in distinguishing complex infection boundaries [7], 

while recurrent convolutional architectures enhance precision for subtle pathological changes [8]. Transfer learning 

further optimizes CNN performance even with limited labeled data, as demonstrated in studies of brain and lung 

disease classification [3] [9]. 

Hybrid models have shown remarkable versatility across medical imaging tasks. The LSTM-SNN approach addresses 

zero-shot learning challenges [10], while methodological frameworks from other domains emphasize architecture 

selection tailored to specific data types [11]. CNN-based hybrid models integrating architectures like InceptionV3 

and VGG16 have proven effective in diverse applications from content moderation to pneumonia diagnosis [12][13], 

outperforming standard architectures in comparative studies. 

Despite transformers' potential, CNNs maintain advantages in scenarios with constrained resources [14][15]. CNNs' 

cutting-edge accuracy in COVID-19 infection segmentation and pneumonia identification is demonstrated by models 

like as CheXNet and Inf-Net [16][17], with slice-level classification models further showcasing robust segmentation 

capabilities crucial for infection mapping [18]. While transformers offer promise for large, complex datasets, CNNs 

and transfer learning provide an efficient alternative, particularly for applications requiring precise segmentation 

and classification in medical imaging [2]. 

1.2 Contributions 

This study offers a number of significant advancements “in medical image analysis for identification of pneumonia 

and COVID-19: 

• We developed dual-purpose CNN models, one for infection segmentation and another for pneumonia 

classification. Segmentation model” had been trained to accurately localize infection regions in chest X-rays, 

and its encoder was later fine-tuned to improve classification performance by focusing on infection zones. 

• We added dense blocks to the U-Net encoder's VGG16 convolution blocks. We combined DenseNet's efficient 

feature reuse capabilities with VGG16's robust feature extraction to improve COVID-19 and pneumonia 

classification accuracy. 

• We employed transfer learning to modify CNN models that had already been trained to manage lack of 

medical imaging data. This showed CNNs' versatility in low-data settings and improved performance while 

lowering reliance on sizable, annotated datasets. 

• We started by training only top layers and then gradually unfreezing pre-trained VGG16 layers as part of a 

gradual fine-tuning approach. This approach enabled efficient learning while mitigating overfitting and 

improving generalization with limited data. 

• We enhanced model interpretability through Grad-CAM visualizations, providing greater transparency in 

the prediction process to support clinical decision-making. 

FOUNDATIONAL DEEP LEARNING ARCHITECTURES FOR MEDICAL IMAGING 

Field of medical imaging has benefited notably from DL applications, with numerous studies demonstrating effective 

pneumonia and COVID-19 diagnosis utilizing chest radiographs. Wang et al. [1] have pioneered DL models for 

COVID-19 identification utilizing chest CT images and X-ray, while semantic segmentation methods exemplified by 

U-Net architecture  [19] have been widely implemented for identifying abnormalities in lung imaging [3][20] . 

Enhancing interpretability through attention mechanisms and Grad-CAM visualization  [16][21], has been crucial in 

helping clinicians understand AI-driven diagnostic outcomes, with validation frameworks like COVID-Net [1] and 

ChestX-ray8 [22] providing benchmarks for performance assessment. 
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Several CNN architectures have proven particularly effective in medical imaging applications. The VGG family of 

networks, including VGG-19 and VGG-16 developed by Zisserman and Simonyan [5][23][24], feature uniform 

architectures utilizing max-pooling layers after tiny 3x3 convolutional filters to allow for hierarchical feature learning 

from input photos. While computationally intensive, these architectures serve as foundational models influencing 

subsequent network designs. The InceptionV3 model by Szegedy et al. [24][25] employs "inception modules" 

performing parallel convolutions at different spatial scales, capturing diverse features at multiple abstraction levels 

while incorporating batch normalization and aggressive regularization to reduce overfitting. 

ResNet-50 model presented by He et al. [26] addresses vanishing gradients through skip connections or "residual 

blocks" that enable training deeper networks without performance degradation. This 50-layer architecture allows 

gradients to flow directly through the network, facilitating complex feature learning while maintaining computational 

efficiency. CheXNet, discovered by Rajpurkar et al. [16], specifically targets pneumonia detection using a 121-layer 

DenseNet CNN that has shown precision surpassing radiologists when identifying thoracic pathologies from chest X-

rays. 

U-Net architecture [19] represents a fundamental component of medical image segmentation, with a “symmetric 

expanding path that allows for accurate localization” and a contracting path that records context. This method has 

shown remarkable effectiveness in lung tissue segmentation and pathology diagnosis with minimum training data, 

which makes it primarily useful in medical applications where annotated images are hard to come by. Multiple studies 

have extended this architecture [8][20]Implementing changes to improve efficiency and flexibility in response to 

novel medical imaging issues, especially for COVID-19 and pneumonia detection jobs. 

METHODOLOGY 

Methodology involved in this research is two-phase approach, as illustrated in Figure 1, for creating and utilizing DL 

models for analysis of lung infection. Employing transfer learning approaches, these phases concentrate on gradually 

training two interconnected models. 

 

Figure 1: Two-Phase Training Approach for Pneumonia Diagnosis. 

• Phase 1: Infection Segmentation Model Training - Using a VGG16 convolutional network as its encoder, we first 

trained “an infection segmentation model based on U-Net architecture” (Figure 2). To take advantage of pre-

trained weights, VGG16 blocks were first frozen. They were then gradually unfrozen, beginning with deeper 
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layers and working backwards. This method enabled model to more accurately refine its feature extraction skills, 

adjusting to nuances of lung infection images. 

 

Figure 2: U-Net for Infection Segmentation. 

• Phase “2: Pneumonia Classification Model Development - Using trained segmentation model's first four encoder 

blocks, then a dense block modeled like DenseNet121 (CheXNet), we created a classification model to divide X-

ray images into three categories: Normal, COVID-19, and Non-COVID” (Figure 3). By adding more dense blocks 

and fully linked layers to pre-trained encoder, this model improved its capacity to discriminate between specified 

categories. Like the segmentation model, this classification model gradually unfrozen its layers and optimized 

performance by phased fine-tuning. 

 

Figure 3: Pneumonia Classification Model. 

Prediction Workflow Using Trained Models 

Prediction workflow implements our trained deep learning models in a sequential diagnostic process, as illustrated 

in Figure 4. Pneumonia classification model first processes “X-ray image and classifies it as Normal, COVID-19, or 

non-COVID. The process ends if it is categorized as Normal because no infection was discovered. 
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For images classified as non-COVID or COVID-19, workflow continues to the infection segmentation model, which 

generates a detailed mask highlighting infected lung regions. In order to precisely superimpose infected areas onto 

the lung regions, this mask is applied to original X-ray along with a lung segmentation mask. System then determines 

infection's proportion of lung area, which is a crucial indicator for determining its severity. 

Final output provides clinicians with a comprehensive evaluation package: classification result, visual representation 

of infection superimposed on original X-ray, and quantified infection percentage”. This integrated approach enables 

both qualitative and quantitative assessment of pneumonia cases, supporting more informed clinical decision-

making. 

 

Figure 4: Workflow for making predictions using the trained models. 

EXPERIMENTAL SETUP 

Our experimental evaluation employed comprehensive metrics to assess the segmentation and classification models. 

To classify pneumonia, we used F1-Score “(harmonic mean of Precision and Recall), Accuracy (ratio of correct 

predictions to total observations), Precision (positive predictive value), and Recall (sensitivity). Additionally, 

segmentation model was examined employing Dice Coefficient and Intersection over Union (IoU), which measure 

spatial overlap between ground truth annotations and projected infection masks and are essential for clinical 

relevance. 

We trained our models on two complementary datasets: the QaTa-COV19 dataset [27] containing 119,316 chest X-

ray images with 2,951 COVID-19 samples annotated with infection segmentation masks, and the COVID-19 

Radiography Database [28] comprising 3,616 COVID-19 cases, 10,192 normal photos, and 7,357 other pneumonia 

cases. All images underwent preprocessing, including resizing to 256×256 pixels, normalization to zero mean and 

unit standard deviation, and augmentation through random rotations, zoom, and horizontal flipping to enhance 

model generalization. 

The computational environment consisted of an AMD Ryzen 7 5800X CPU, 64GB RAM, and an NVIDIA RTX ” 3090 

GPU with 24GB VRAM, operating on a Linux platform. This high-performance setup enabled efficient training of our 

deep learning models while accommodating the substantial computational demands of processing medical imaging 

data. The implementation framework facilitated model development and subsequent clinical deployment through 

the sequential prediction workflow illustrated in Figure 4. 

RESULTS AND DISCUSSION 

Our deep learning models demonstrated significant efficacy in infection segmentation and pneumonia classification 

tasks. Using “QaTa-COV19 dataset and a U-Net architecture with a VGG16 encoder,” infection segmentation model 
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demonstrated exceptional consistency in performance measures across 120 training epochs. Effective learning 

patterns and excellent generalization abilities have been demonstrated by model's gradual decline in loss values while 

maintaining constant accuracy and IoU scores, as demonstrated in Figure 5. 

Visual assessment of model's segmentation performance is illustrated in Figure 6. It compares original X-ray images 

from test set with model's predictions and corresponding ground truth masks. These comparisons reveal model's 

precision in identifying and delineating infected regions within the lungs, with predicted infection boundaries closely 

aligning with expert annotations. This visual confirmation complements the quantitative metrics, demonstrating the 

model's practical utility for clinical infection assessment. 

 

Figure 5: Training performance of the infection segmentation model. 

Classification model for pneumonia performed exceptionally well in differentiating between normal, COVID-19, and 

non-COVID patients, with comprehensive results presented through confusion matrices and class-specific metrics. 

Notably, its interpretability through Grad-CAM visualizations enhances model's effectiveness, highlighting specific 

regions influencing classification decisions. This transparency feature provides clinicians valuable insights into 

model's reasoning process, facilitating greater trust and adoption in clinical settings. The combined workflow of both 

models enables accurate diagnosis and quantitative severity assessment through infection percentage calculation, 

representing a significant advancement in AI-assisted pneumonia management. 

Pneumonia Classification Performance Analysis 

During “pneumonia classification phase, several CNNs were assessed to determine which model would best categorize 

chest X-rays into Normal, COVID-19, and non-COVID categories. We conducted a comprehensive analysis using 

accuracy, F1-score, and” parameter count as key performance indicators, with results summarized in Table 1. Our 

proposed hybrid model, combining VGG16 convolutional blocks with DenseNet-inspired dense connections, 

demonstrated superior performance with exceptional accuracy while maintaining significantly lower parameter 

counts than standard architectures. Our model is especially well-suited for clinical deployment in resource-

constrained situations, where processing speed and memory restrictions are crucial factors, because of its ideal 

balance among high diagnostic accuracy and computational efficiency. 
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Figure 6: Lung Segmentation Accuracy Comparison. 

Table 1: Comparison of CNN architectures for pneumonia classification. 

“Model Accuracy (%) F1-Score (%) No. of 

Parameters 

(in millions) 
Training Validation Difference Training Validation Difference” 

ResNet50 97.74 91.39 6.35 97.72 91.10 6.62 ~292 

InceptionV3 99.78 97.95 1.83 99.78 97.86 1.92 ~172 

VGG16 99.66 97.95 1.71 99.67 97.98 1.69 ~165 

VGG19 99.32 97.89 1.43 99.31 97.85 1.46 ~171 

ChesXNet 99.68 98.22 1.46 99.68 98.21 1.47 ~141 

Proposed 99.46 98.71 0.75 99.46 98.71 0.75 ~8 

System Operation and Final Output 

The integrated lung infection detection system leverages our models that are trained to comprehensively analyze 

chest X-rays, offering both qualitative visualization and quantitative assessment of infection severity. As 

demonstrated in Figure 7, the system generates detailed outputs that include lung boundary delineation (green 
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contours), infection region identification (red highlights), and precise infection percentage calculations. The visual 

results clearly distinguish between COVID-19 cases (top row), non-COVID pneumonia cases (middle row), and 

normal cases (bottom row), with infection percentages ranging from 0% in healthy lungs to over 87% in severe cases. 

 

Figure 7: Pneumonia Severity Assessment with Infection Quantification. 

This output format provides clinicians with an intuitive, at-a-glance assessment tool that enhances diagnostic 

capabilities in three critical ways: accurate classification of the pneumonia type, precise localization of affected lung 

regions, and quantitative severity metrics through infection percentage calculations. Notably, the system 

demonstrates high specificity by correctly identifying normal cases without generating false infection masks, while 

maintaining sensitivity in detecting varying degrees of infection across both COVID-19 and non-COVID pneumonia 

categories. This comprehensive visualization approach supports more informed clinical decision-making, potentially 

expediting treatment planning and improving patient results through early and correct diagnosis. 

Model Explainability 

A key component of our strategy is guaranteeing model interpretability and transparency, which is particularly 

essential in medical applications where clinical adoption of AI-driven decisions depends on a comprehension of 

reasons behind them. Figure 8 demonstrates how we utilized Grad-CAM to give visual justifications for classification 

choices made by our model. This technique generates heatmap visualizations highlighting regions of chest X-rays 

that most significantly influence model's diagnostic predictions. 

Comparison between infection-highlighted X-rays (top row) and their corresponding Grad-CAM heatmaps (bottom 

row) demonstrates strong alignment among model's attention areas and clinically relevant pathological features. For 

COVID-19 cases, the heatmaps show intense activation over regions exhibiting characteristic COVID-19 opacities, 

while for non-COVID pneumonia, the model appropriately focuses on areas showing distinct non-COVID infection 

patterns. This visualization confirms that our model bases its classifications on medically relevant features rather 

than incidental image characteristics or artefacts. 
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Figure 8: Model Interpretability through Grad-CAM Visualizations. 

These explainability features address a common concern in medical AI applications by providing clinicians with 

insight into decision-making process of model. By demonstrating that the model attends to pathologically significant 

regions, we enhance trust in the system's outputs and provide an additional validation mechanism for clinical users. 

This transparency component represents an important step toward responsible AI deployment in healthcare settings, 

where interpretability is as critical as raw performance metrics in determining a system's practical utility. 

CONCLUSION AND FUTURE WORK 

In our study, we have shown potential of DL techniques for pneumonia diagnosis and severity assessment using “chest 

X-rays, with particular emphasis on COVID-19 related cases. Our approach achieved high diagnostic accuracy and 

effective localization of affected regions by integrating CNNs for classification and U-Net-based architectures for 

infection segmentation”. The combined framework facilitates timely and informed clinical decisions by offering 

categorical predictions and visual insights into infection severity. These results validate the utility of DL in medical 

imaging and highlight its promise in improving diagnostic workflows and enhancing patient care results. 

Several future research directions can further enhance this work. Integrating multimodal clinical data—for instance, 

patient history, lab results, and demographics—with imaging could yield more comprehensive diagnostic models. 

Transfer learning may reduce training data requirements, while federated learning can ensure data privacy across 

institutions. Developing real-time diagnostic systems and embedding them into telemedicine platforms will improve 

accessibility, particularly in resource-constrained settings. Finally, ongoing model refinement and validation with 

new clinical data will be essential to maintain performance and adaptability to evolving healthcare demands. 
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