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Antimicrobial peptides (AMPs) are typically short length peptides that are important for many 

biological processes and exhibit various functions against different types of organisms. 

Antibiotics have been used as a cornerstone, effectively against bacterial infections. As such the 

overuse of antibiotics against the pathogens made them drive evolution and dissemination of 

microbial resistance mechanisms. This necessitates the innovative strategies to speed up the 

discovery of Antimicrobial Peptides (AMPs) that act as a promising candidate to traditional 

antibiotics. Experimental identification of AMPs is costly and time consuming. Machine 

learning based computational algorithms can be employed to identify the AMP sequences to 

expedite the discovery of AMPs. This research introduces StackEnPred, a stacked ensemble 

learning framework that combines sequence-based feature encoding techniques Amino Acid 

Composition (AAC) and Dipeptide Composition (DPC) to predict AMPs. The model is trained 

on Deep-AmPEP30 dataset consisting of 1,777 sequences after the preprocessing techniques 

are provided as input to the proposed StackEnPred model. StackEnPred, consists of two layers. 

The base learner layer combines Stochastic Gradient Descent (SGD), K-Nearest Neighbors 

(KNN), Random Forest (RF) and Support Vector Machine (SVM). The meta learner layer 

consists of MultiLayer Perceptron (MLP), capable of capturing nonlinear interactions for final 

classification. StackEnPred achieves an accuracy of 83%, AUC-ROC of 0.89, and Matthews 

Correlation Coefficient (MCC) of 0.6484, outperforming standalone models (SVM: 82% 

accuracy; RF: 81%) and deep learning architectures (CNN: 79%).  

Keywords: Antimicrobial Peptides, AAC, DPC, SVM, RF, KNN. 

 

INTRODUCTION 

Humans prioritize their health by taking steps to prevent infectious diseases. Antimicrobial resistance has become a 

global threat and a potential pandemic (Naghavi et al., 2024; Yan et al., 2020). The excessive use of antibiotics and 

other heavy-dose medicines have increased in recent years, leading to a decrease in antimicrobial resistance against 

various infectious diseases in humans. Without effective measures, fatalities are expected to reach 10 million by 

2050 (Naghavi et al., 2024). As a solution to handle this issue, researchers have been paved their research into the 

area of Antimicrobial Peptides (AMPs).  

AMPs, also referred to as Host Defense Peptides (HDPs), are generally short length protein sequences that are 

present in mammals, plants, insects, and microbes (Mookherjee et al., 2020; Yadav & Chauhan, 2024). Natural 

AMPs have essential role in the human immune system by exhibiting broad-spectrum of antimicrobial properties. 

AMP’s potent activity against microbes, fungi, viruses, and even cancer cells has drawn the attention a lot to design 

novel sequences (Bahar & Ren, 2013; Zanetti, 2003). Because of their fast action and minimal potential to cause 

resistance, AMPs are good substitutes for conventional antibiotics. Additionally, AMPs can regulate immunological 

responses, facilitate wound healing, and serve as carriers for therapeutic substances (Patrulea et al., 2020). Due to 

their numerous applications , AMPs are ideal candidates for formulation of medicines (H. Zhang et al., 2025) 
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Machine learning models reduces the time spend in wet laboratory processes such as screening of peptide 

sequences, synthesizing peptide library and evaluating their efficiency. Identification through computational 

methods also entails some challenges. Challenges being underlined include the limited availability of validated 

dataset, complexity in feature selection and representation, the lack of generalizability and interpretability of 

prediction models. Major barrier faced in the computational discovery is scarcity and imbalance of labelled dataset, 

which results in overfitting and biased prediction results.  

Ensemble approach is a machine learning technique that efficiently combines several algorithms, often called as 

base learners to enhance the prediction performance. The core concept of an ensemble learning model is that the 

combined effect of several models produces more accurate and stable prediction results compared to the individual 

prediction of the machine learning algorithms. Bagging, boosting and stacking are the common ensemble learning 

approach techniques. Bagging technique is efficient in variance reduction and prevention of overfitting. Boosting 

technique reduces the biases in the model by building models one after the other. Ensemble based approaches are 

high efficient in managing multidimensional data and noise as such they are commonly used in the antimicrobial 

peptide predictions (Lv et al., 2022; Lertampaiporn, Vorapreeda, Hongsthong, & Thammarongtham, 2021; 

Caprani, Healy, Slattery, & O’Keeffe, 2021; Ahmad, Akbar, Tahir, Hayat, & Ali, 2022).  

Stacking, or stacked generalization (S, 2025; Kanwal, Arif, Ahmed, & Kabir, 2024b), is a powerful machine learning 

methodology that enhances the efficacy and robustness in AMP prediction tasks. This approach utilizes the strength 

of each base learner involved, which compensate for their individual weaknesses. The meta-learner involved 

increases the generalizability of the model by combining the base learning models involved in a systematic way. The 

key concept of the stacked ensemble learning algorithm is to predictions of different machine learning algorithms 

from the preceding layer as input features for the subsequent layer (Pavlyshenko, 2018). One of the most significant 

benefits of using stacking algorithm is that it improves both generalizability and performance of the model (Lu et 

al., 2023). Traditional machine deep learning algorithmic models have been utilized for AMP prediction; however, 

ensemble-based approaches remain limited.  

SCOPE AND OBJECTIVES 

The research scope is to efficiently identify and evaluate the prediction accuracy of AMPs using sequence based 

generated features. This objective is attained by extracting dipeptide composition (DPC) and amino acid 

composition (AAC) from experimentally validated datasets of sequences and then modeling a stack based ensemble 

learning framework. Enhancement of the accuracy of the prediction models is the main focus of this research. The 

objectives include: 

-Designing of a stacking ensemble architecture that integrates both the dipeptide composition and amino acid 

composition based feature encoding techniques in an efficient and effective manner. 

- Assessing and comparing the evaluation metrics of the prediction algorithmic models using the combined and 

individual effect of AAC and DPC feature extraction techniques. 

- Highlighting the better performance and efficiency of the proposed model.  

RELATED WORKS 

In the real world problems, Machine learning applications of AMPs poses great importance in the field of 

therapeutics. Computational techniques developed for the identification of AMPs substantially reduces the effort, 

time and cost for the experimental discovery of AMPs (Lande et al., 2007). Several computational algorithms have 

been modeled for the design and identification of AMPs such as AVPpred (Thakur et al., 2012; ), BIPEP (Atanaki et 

al., 2020), AmPEP (Bhadra et al., 2018), ClassAMP (Joseph et al., 2012), DBAASP (Vishnepolsky et al., 2018). in 

(Zarayeneh & Hanifeloo, 2020), an ensemble algorithm was proposed for predicting antimicrobial peptides using 

selected features from physiochemical, evolutionary, and structural features. Conventional machine learning 

algorithmic structures are used to train the algorithm, and prediction is performed using an ensemble model. A 

multi-tiered stacked ensemble algorithm uses amino acid composition (AAC) and dipeptide composition (DPC) 

individually for prediction (Suha & Khan, 2024). The stacked ensemble classifier, StackAMP (Karim et al., 2024), 

achieved high accuracy in prediction using five distinct sequence based feature extraction methods, namely amino 
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acid composition, dipeptide composition, Moran autocorrelation, Geary autocorrelation, and pseudo amino acid 

composition. TriStack ensemble model (Han et al., 2024) accurately identified both antimicrobial peptides (AMPs) 

and anti-inflammatory peptides (AIPs) using a multilayer residual network. Another stack based ensemble learning 

framework for Antimicrobial Peptides (STAMP) prediction model (Kanwal et al., 2024) was developed, which 

accurately identified using 84 baseline models, 12 feature encodings, and 7 machine learning algorithms. 

StackDPPred, a stacked ensemble learning prediction algorithm (Arif et al., 2024) used optimized features for the 

prediction of properties of defensin peptides (DPs). Another stacked ensemble model predictor, StaBle-ABPpred 

(Singh et al., 2021) was proposed for the classification of antibacterial peptides. The model used deep learning 

techniques biLSTM with attention mechanism as the base and ensemble of gradient boosting, logistic regression 

and random forest at the meta-level.  

Feature extraction plays a critical step in the machine learning prediction framework. Yan et al. categorizes 

encodings into peptide-level features and amino acid-level features. Peptide-level features are again categorized 

into sequence and structure based features (Yan et al., 2022). Sequence based features represent features based on 

the amino acid composition or the amino acid groups. Common sequence based features include one hot encoding 

(Li, Pu, Tang, Zou, & Guo, 2020), general and pseudo amino acid composition (Chou, 2001), reduced amino acid 

composition (Weathers, Paulaitis, Woolf, & Hoh, 2004) etc. Structural based features include the structural 

features of the amino acid residues (Chang, Lin, Shih, & Wang, 2015 ;Y. Wang et al., 2012; Sander et al., 2007). 

Peptide level features are again divided into word and contextual embedding (Veltri, Kamath, & Shehu, 2018). 

Peptide level feature considers the actual amino acid sequence similar to a word in a sentence (Vaswani et al., 2017; 

Dallago et al., 2021; Y. Zhang, Lin, Zhao, Zeng, & Liu, 2021). Amino acid composition and dipeptide composition 

are the most common feature encoding techniques that are identified in literature for effective prediction of AMPs. 

In research, AMPs are predicted using the combined effect of compositional based features, structural based, 

physiochemical properties and pseudo amino acid composition techniques. Support Vector Machine (SVM) 

algorithm is employed to identify the AMP (Meher et al., 2017). This approach identifies antifungal peptides using 

residue composition, terminal residue and binary profile. SVM algorithm with the compositional based feature 

encoding technique achieved better performance (Agrawal et al., 2018). This model identifies anticancer peptides 

based on sequence based features and physiochemical properties. SVM along with RF algorithm models are used in 

this prediction (Manavalan et al., 2017 ). This model uses SVM algorithmic model and AAC and binary profile as 

the feature vectors for the identification of anticancer peptides (Tyagi et al., 2013). In another AMP prediction 

model, sequence data is efficiently represented using weighted K-nearest neighbor algorithm and predicted using 

Logistic Regression (Wang et al., 2017). 

METHODOLOGY 

The steps followed in the methodology of this research are depicted in Figure 1. The first step involves the dataset 

preparation, then data preprocessing is performed on the dataset, after the preprocessing stage essential features 

are extracted using feature extraction techniques. In this research sequence based features are used namely amino 

acid composition (AAC) and dipeptide composition (DPC). Then the model is developed using the stacking 

ensemble approach and finally the performance is evaluated based on the performance metrics such as accuracy, 

precision, f1 score and MCC. Also to highlight the robustness of the model, the proposed model is compared with 

ten other machine learning algorithms. The proposed model is compared against the neural network algorithms 

such as Deep Neural Networks (DNN), Convolutional Neural Network (CNN) and MultiLayer Perceptron(MLP), 

traditional machine learning algorithms such as Decision Tree (DT), Logistic Regression (LR), Stochastic Gradient 

Descent (SGD), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Random Forest (RF), an ensemble 

model obtained by the combination of SGD, SVM, KNN and RF. The comparison of the proposed model with the 

other models is done in two concepts. Firstly, the combination of both features AAC and DPC are calculated and 

compared. In the second concept, either of the feature encoding techniques (either AAC or DPC) are considered and 

compared.  
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Figure 1. Illustrates the Methodological Flow 

Dataset  

Deep-AmPEP30 is an openly accessible dataset, which comprises short length (30 amino acids) antimicrobial 

peptide sequences. This dataset contains an equal number of positive and negative sequences (1529 positive AMPs 

and 1529 negative sequences). Short length antimicrobial peptide sequences exhibit greater stability, less toxicity 

and more power in killing microbes (Yan et al., 2020). 

Preprocessing 

Preprocessing step increases the applicability of the model under diverse conditions. The Deep-AmPEP dataset was 

preprocessed in order to remove similar and redundant sequences. Levenshtein distance method was applied to 

identify the similar peptides (Berger et al., 2020). Sequences with similarity measure more than 70% were excluded 

from the dataset to reduce the redundancy factor. After the exclusion, 1777 peptide sequences were obtained (837 

positive AMPs and 940 negative AMPs). Dataset is then randomly partitioned into training and testing data in 

80:20 ratios. 

Feature Generation 

Feature generation is the next important step. AAC and DPC are two important sequence based features extracted 

from the AMP sequences in this research. AAC represents the frequency count of each standard amino acids. AAC 

provides 20 features. DPC takes the frequency of the adjacent amino acids. It provides 400 features (Zulfiqar et al., 

2023). 

Proposed StackEnPred Model 

The proposed model is a stacking based ensemble, StackEnPred framework. StackEnPred consist, at the base level, 

four distinct machine learning algorithms and at the meta level, deep learning based neural network. Stochastic 

Gradient Descent (SGD), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Random Forest (RF) 

(Suha & Khan, 2024) machine learning classifiers are used at the base learner layer. These algorithms are known 

for their computational efficiency and are effective in handling high dimensional data to learn complex or hidden 

patterns (Potdukhe, 2025; Sharma et al., 2021; Gull et al., 2019; Tripathi & Tripathi, 2019; Xu et al., 2021). 

Applying an ensemble approach to these powerful machine learning algorithms reduces the limitations of 

individual learning models and enhances the overall predictive capability. 

At the meta-level, a deep neural network algorithm based Multilayer Perceptron (MLP) model is employed. This 

model recognizes complex relationships among the outputs of the base learners, and improves the accuracy and 
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robustness of the final predictions. MLP is tuned with 400 hidden layers, 300 iterations, RELU activation and 

adam solver. 

Model effectiveness is analysed using the metrics precision, recall, f1 score, and accuracy. MCC values are calculated 

inorder to get a balanced assessment of the model’s efficacy. The architecture of the StackEnPred model is shown in 

Figure 2. 

 

Figure 2. Demonstration of the StackEnPred framework 

The efficacy of this machine learning model is measured using six different metrics, such as accuracy (ACC), 

precision, F1 score, recall, and Mathew’s correlation coefficient (MCC). AUROC (Area Under the Receiver 

Operating Characteristic curve) is an important evaluation metric in machine learning algorithms. High AUC values 

indicate the best performance. 

ACC  = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
        (1) 

Precision = 
TP

TP + FN
        (2) 

Recall = 
TN

FP + TN
                   (3) 

MCC = 
(TP x TN)−(FP x FN)

√(TP + FP) x (TP + FN) x (FP + TN) x  (TN + FN) 
     (4) 

F1 score =2 x 
Precision x Recall

Precision + Recall
       (5) 

TP and TN denote the true positives and true negatives. Similarly, FP and FN denote the false positives and false 

negatives. Precision and Recall denote the model’s correctly predicted true positives and true negatives. ACC 

denotes how correctly the model can predict true positives and true negatives. MCC represents a correlation 

between the actual and predicted value of the model. It takes a value between   -1 and 1. If the MCC value is near 1, 

then the model's accuracy has better performance. F1 score represents a balance between precision and recall. 

The proposed model, StackEnPred, achieved 83% accuracy, 84% precision value, 77% recall and 80% F1 score. 

Moreover, the AUC-ROC curve for the stacked ensemble model is shown in Figure 4. The AUC value obtained is 

0.89, which is of better model performance and reveals that the model can effectively identify both positive and 

negative antimicrobial sequences. Figure 4 plots the AUC curve of the proposed StackEnPred model. 
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Figure 4. AUC curve of StackEnPred Model 

Performance Comparison of StackEnPred with Baseline Machine Learning Models Using AAC and 

DPC Feature Encodings 

The ten various machine learning models such as Logistic Regression (LR) (Uddin et al., 2019), Decision Tree (DT) 

(A. Karim et al., 2019), Stochastic Gradient Descent (SGD) (Newton et al., 2018), Support Vector Machine (SVM) 

(Zulfiqar et al., 2022), Random Forest (RF) (Liu & Zhao, 2017),  K-Nearest Neighbor (KNN) (Zhang et al., 2017), 

and deep neural network algorithms such as deep neural network (DNN)  (Yi et al., 2016), convolutional neural 

networks (CNN) (Niu et al., 2021; (Y. Zhang et al., 2020;  Bukhari et al., 2020; Patel, 2025, (Peram, 2025) and 

Multi-layer Perceptron (MLP) (Popescu et al., 2009) and an ensemble approach (ensembled using SGD, SVM, RF 

and KNN models) are trained individually, and the performances are compared based on the accuracy, precision, F1 

score and recall. 

Heat map of the proposed model (when considering both AAC and DPC features) against various machine learning 

algorithms is depicted below in table 1. From the comparison results, the StackEnPred Model is identified as the 

top-performing model, showing more effective balance in Precision, Recall, F1 Score, Accuracy, and MCC across all 

comparisons. The proposed model shows highest Precision at 84, surpassing Support Vector Machine (SVM) at 83 

and Random Forest (RF) at 81. In terms of Recall, the Ensemble model (SGD, SVM, KNN, RF) leads with 82, 

followed by Stochastic Gradient Descent (SGD) at 78, and SVM, K-Nearest Neighbors (KNN), and Multi-Layer 

Perceptron (MLP) attain the value 77. Notably, the StackEnPred Model maintains a Recall of 77 as well. The Model 

attains the highest F1 score value of 80, closely followed by SVM and the Ensemble model at 79. When considering 

Accuracy, the StackEnPred Model again takes the highest value with 83, followed by SVM at 82 and RF at 81. The 

Matthews Correlation Coefficient (MCC) is highest for the Stacked Ensemble Model at 0.6484, with SVM at 0.6368 

and RF at 0.6082.  

 

Table 1. Represents the Heatmap to assess the model performances. 



Journal of Information Systems Engineering and Management 
2025, 10(42s) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 359 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Performance Comparison of StackEnPred using AAC Feature Encoding only 

The figure 5 below helps to analyze the performance values of accuracy, precision, recall, F1 score and MCC among 

other machine learning models. The proposed model, StackEnPred shows high accuracy when compared with other 

machine learning models when considering only the amino acid composition feature encoding technique only. The 

model achieved 82% accuracy higher than all the models compared (DNN, CNN, LR, DT, SGD, SVM, KNN, RF, 

Ensemble model (SGD, SVM, KNN, RF)) with MCC value 0.64. The high accuracy value suggests that the model is a 

robust and well balanced predictive model. The models CNN, SVM and RF attained 81% of accuracy with MCC 

values 0.63, 0.63 and 0.51 respectively. The DT model shows a poor accuracy value of 69% among other models. 

The high precision value demonstrates the capability of the model to predict the correct values. The proposed 

StackEnPred model achieved a high precision value of 84%, followed by RF and SVM models with 83%. The 

Decision Tree (DT) model shows the lowest precision value. The ensemble model (SGD, SVM, KNN, RF) 

demonstrates the highest recall value of 81%, which indicates the model’s ability to capture true values with less 

false values. DT exhibits the lowest recall value of 63%. The StackEnPred model exhibits the highest F1 score value 

79%. Lowest F1 score of 65% is shown by the DT model. Conversely, the Decision Tree (DT) consistently exhibits 

the lowest scores, signaling potential limitations in its capacity to generalize from the training data, possibly due to 

overfitting or instability with high-dimensional data.  

 

Figure 5. Performance metrics for AAC feature 

Performance Comparison of StackEnPred using DPC Feature Encoding only 

Figure 6 below shows the comparative analysis of the proposed model, StackEnPred (when considering DPC 

features only) against ten other machine learning models. This results shows that the proposed model, 

StackEnPred, the ensemble model (combination of SGD, SVM, RF and KNN models), RF and SVM models achieved 

the highest accuracy of 80%. All the four models show the same MCC value of 0.60. This value highlights the 

model’s robustness in handling the imbalanced datasets. The StackEnPred, stacked ensemble learning model 

consistently achieved highest performance values signifying a robust and efficient predictive modeling. Decision 

Tree (DT) algorithm depicts lowest accuracy and precision value due to its lack of capability in handling complex 

data. Using DPC feature encoding, Logistic Regression (LR) achieved a high precision value of 83%, while 80% of 

precision value was achieved by the StackEnPred model. KNN model achieved the highest recall value of 79%, 

closely followed by Both RF and SVM models (78%). Logistic Regression (LR) model shows the lowest recall value 

of 56%. CNN and the Ensemble Model (SGD, SVM, KNN, RF) demonstrate the highest F1-scores, both achieving 
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78%, showing a good balance between precision and recall. Decision Tree has the lowest F1-score (61%), reflecting 

its poorer performance in both precision and recall. 

 

Figure 6. Performance metrics for AAC feature 

RESULT ANALYSIS AND DISCUSSION 

CNN and SVM demonstrate competitive performance in feature-specific comparisons, especially when utilising 

only AAC or DPC features. The Decision Tree model always shows suboptimal performance, highlighting issues 

related to overfitting and generalisation. If Recall is emphasized, the Ensemble model (SGD, SVM, KNN, RF) may 

serve as an appropriate alternative, though it may entail minor reductions in Precision and MCC. The proposed 

StackEnPred model shows the highest effectiveness, providing enhanced generalisation and robustness across 

various feature sets.  

Accuracy of the StackEnPred model when using the combined effect of AAC and DPC feature encoding techniques 

is shown in figure 7. The bar graph shows the accuracies achieved by the proposed model StackEnPred while using 

the AAC and DPC individually and combined. When considering separately, AAC and DPC, the accuracy attained by 

the model is 82% and 80% respectively. Highest accuracy of 83% is obtained when both the sequence based 

features are combined.  

 

Figure 7. Comparison of accuracies 
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CONCLUSION AND FUTURE WORK 

Antimicrobial peptides can be considered as an alternative for antibiotics against antimicrobial resistance. The 

discovery of antimicrobial peptides has gotten great attention around the world. Wet lab discovery of AMPs is time-

consuming. Predicting antimicrobial peptides using machine learning reduces the time in drug discovery. A stacked 

ensemble-based learning model with diverse base learners (SGD, SVM, KNN, RF) and a neural network (MLP) 

based meta-learner with a combined effect of amino acid and dipeptide composition feature encoding techniques 

are proposed. The proposed model achieves greater accuracy value than all other leading models in the field. The 

proposed model, when considering both the AAC and DPC features, achieved 83% of accuracy which is higher than 

other machine learning algorithms. The model also achieved high accuracies of value 82% and 80% when 

considering the features AAC and DPC separately. In any of the cases the model showed high accuracy.  

In the future, antimicrobial peptide (AMP) classification can be achieved through multiple enhancements. 

Expanding the feature set and incorporating hybrid feature representations will enable more comprehensive 

pattern recognition, leading to improved predictive accuracy. Current proposed model incorporates only sequence 

based- AAC and DPC feature encoding techniques. These feature encoding techniques can capture essential 

information from the sequences, but they may not be fully capable of representing the complex structural 

properties of the sequences. Structural features, predicted through computational methods, can also be included to 

capture information about the three-dimensional conformation of the peptide. Features derived from evolutionary 

information, such as position-specific scoring matrices (PSSMs), can trace unknown patterns and motifs within 

AMP families. Integrating diverse feature representations can be able to learn complex patterns between sequence, 

structure and function leading to improved accuracy predictions. 

Additionally, as AMPs exhibit a broad spectrum of biological activities, refining the model to predict their 

multifunctional capabilities will enhance its applicability.  

Deep learning architectures can be integrated to extract more complex sequence patterns, further boosting 

classification performance. CNN and Recurrent Neural Networks (RNN) are two powerful deep learning 

architectures that are capable of extracting complex patterns and relationships from the sequence data. Combined 

use of both neural networks can be used to enhance the strength of both approaches. 

Attention mechanisms can be included in the deep learning architectures to enhance the prediction accuracy and 

also to highlight the most suitable prediction regions in the sequence for the classification. 

Generalizability of the model is another limitation that can be addressed by increasing the diversity and quality of 

datasets. Generalizability ensures the robustness and reliability of various AMP classifications. Data Augmentation 

can be applied for the addition of synthetically generated sequences into the dataset as such data imbalance and 

scarcity problem is tackled. 

An emerging approach, Explainable AI (XAI), that is being used to provide insights about the model predictions can 

be employed to understand key features and patterns that lead to the prediction and activity of AMP. SHapley 

Additive explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) are the two techniques 

involved to attain XAI. 

Inclusion of multi omics data is another research direction to enhance the prediction accuracy. Multi omics data 

such as proteomics, genomics and transcriptomics provide greater insights into the action and their interactions 

with the biological systems. 

By addressing these challenges, researchers can develop more accurate, robust, and interpretable models for AMP 

discovery, directing the process for the development of novel antimicrobial agents to combat antimicrobial 

resistance. 
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