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Rapid developments in artificial intelligence (AI) and deep learning have had a profound 

impact on agriculture. Precision agriculture has transformed current farming by using effective 

artificial intelligence and deep learning models to increase results. This AI-powered technology 

allows farmers to effectively monitor crops, detect diseases early, precisely predict production, 

and optimize resources. This research examines cutting-edge deep learning models such as 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Transformer-

based architectures in the context of agricultural challenges, with a focus on their role in 

enhancing agricultural decision-making. The experimental results of this study show that AI 

models outperform traditional approaches in illness detection, precise yield estimation, and 

resource efficiency, such as water, fertilizers, and pesticides. The comparative comparison is 

aided with assessment metrics including accuracy, precision, recall, and F1-score, as well as a 

graphical representation of model performance. The findings demonstrate the potential for 

deep learning to boost agricultural productivity while decreasing resource waste. This study 

intends to provide insights on the effectiveness of AI-driven solutions in modern farming 

practices, as well as identify difficulties and future prospects for improving agricultural 

automation and productivity. 

Keywords: Precision Agriculture, Deep Learning, Disease Detection, Yield Prediction, 

Resource Optimization, AI in Farming. 

 

INTRODUCTION 

Modern agriculture confronts several challenges, including unpredictable weather, pest infestations, and poor 

resource management, all of which are worsened by the world's rising population. This population growth 

necessitates an increase in food production while also minimizing environmental effect. Traditional methods of 

agriculture, which frequently rely on human intuition, physical inspection, and labor-intensive processes, are 

proving ineffective in achieving these objectives. As a result, the agricultural sector is under tremendous pressure to 

implement novel solutions that can increase production, improve efficiency, and reduce resource use. Precision 

agriculture, backed by artificial intelligence (AI) and deep learning technologies, has emerged as a game-changing 

answer to these issues. AI-powered techniques help farmers to make data-driven decisions, giving insights that 

improve crop health monitoring, more accurately anticipate yields, and optimize resource utilization, resulting in 

increased agricultural productivity and sustainability. Deep learning methods enable AI systems to examine 

massive volumes of data from a variety of sources, including satellite photography, drones, and field sensors. These 

data inputs can be used to detect early signs of disease, identify insect infestations, and forecast weather patterns, 

allowing farmers to make more informed decisions and act proactively rather than reactively. This leads to healthier 

crops, lower crop losses, and higher yields, which are critical for feeding a growing global population. 

 

Resource optimization is another significant benefit of AI-powered precision agriculture. Water, fertilizers, and 

pesticides are essential agricultural inputs, but over usage can cause environmental degradation such as soil 

erosion, water contamination, and biodiversity loss. AI technologies enable the precise deployment of these 
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resources by processing real-time data from sensors and other sources to determine crops' specific demands. This 

targeted method decreases waste, expenses, and the environmental impact of farming operations. AI systems can 

prescribe the most effective irrigation schedules based on soil moisture levels, weather forecasts, and crop 

requirements, ensuring that water is used efficiently. Similarly, AI may advise farmers on when and where to apply 

fertilizers and pesticides, avoiding waste and lowering the danger of contamination.By streamlining these 

processes, AI-powered precision agriculture has the potential to greatly improve farming efficiency and 

sustainability. These innovations not only save farmers money, but they also help to protect the environment by 

reducing agriculture's carbon footprint. Furthermore, the combination of AI with IoT (Internet of Things) sensors 

and big data analytics has the potential to transform farming by giving real-time insights and enabling continuous 

monitoring of crop and environmental conditions. 

Deep learning models, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Transformer architectures, have significantly enhanced agricultural productivity and sustainability. CNNs are 

integral for image-based tasks like crop disease detection, accurately identifying diseases and infections, enabling 

early intervention to prevent crop loss. RNNs, particularly Long Short-Term Memory (LSTM) networks, are 

essential for yield prediction, analyzing time-series data to track crop growth and forecast yields based on 

environmental factors, optimizing harvest timing, resource management, and aligning production with market 

demand. Transformer models, originally used in natural language processing, are effective in integrating large 

multimodal data (e.g., satellite imagery, soil sensors, and weather data) to improve decision-making. These models 

predict optimal planting times, detect crop stress, and optimize resource use, such as water and fertilizers. 

Together, these deep learning models revolutionize agriculture by enhancing disease detection, yield predictions, 

and resource management, driving more efficient and sustainable farming practices. 

Yield prediction is another area where AI has made tremendous progress. Accurate yield forecasting is crucial for 

farmers and other agricultural supply chain stakeholders. Deep learning models, such as LSTMs and Transformers, 

may examine massive amounts of historical data, including weather patterns, soil quality, crop growth stages, and 

pest activity, to more accurately forecast future yields. These algorithms outperform standard forecasting 

techniques, which frequently rely on limited data and human judgment. AI-based predictions help farmers make 

more educated decisions about resource allocation, market timing, and crop management. Furthermore, accurate 

production estimates improve planning and coordination throughout the agricultural supply chain, decreasing 

inefficiencies and food waste.The incorporation of deep learning models into agricultural processes has 

transformed the sector by boosting crop management and resource optimization. AI is improving farming 

efficiency, sustainability, and profitability by enabling precise disease detection, accurate production estimates, and 

effective resource usage. As these models evolve, they have the ability to significantly improve agricultural practices 

by providing real-time information, automating important chores, and assisting farmers in adapting to the dynamic 

difficulties of modern agriculture. In the future, the marriage of deep learning with precision agriculture could 

greatly improve global food production while minimizing farming's environmental impact. AI-powered precision 

agriculture presents a possible solution to the fundamental difficulties confronting modern agriculture. AI 

technologies can assist farmers in meeting rising global food demand while lowering environmental consequences 

by improving crop health monitoring, more accurately predicting yields, and optimizing resource utilization. As 

these technologies advance, they have the potential to transform agriculture into a more efficient, sustainable, and 

resilient industry capable of feeding the world's rising population while protecting the planet's health. 

Dataset Description: 

The PlantVillage Dataset is used for plant disease detection, training deep learning models with labeled crop 

images, while the Radiant MLHub Dataset aids in crop yield prediction and resource optimization through satellite 

imagery, climate data, and soil metrics, enabling AI-driven precision agriculture for improved sustainability and 

farming efficiency.  

PlantVillage dataset: 

The PlantVillage dataset is a well-known collection of plant disease images created to promote plant pathology 

research and agricultural machine learning applications. Each image in the dataset has been meticulously labelled 
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to ensure high accuracy in model training and validation. The images are acquired under controlled conditions, 

which eliminates background noise and allows for more efficient model generalisation. The dataset is provided in 

both coloured and greyscale versions, giving researchers more options for testing different preprocessing 

techniques. 

 

Figure 1: Sample images of Plant Village Dataset  

Figure 2 describes the sample images from the plant village dataset. The PlantVillage dataset is primarily used to 

train Convolutional Neural Networks (CNNs) to detect and classify plant diseases automatically. It has been widely 

used to benchmark numerous deep learning architectures, including ResNet, VGG, and Inception, demonstrating 

its strength and effectiveness in agricultural AI applications. Furthermore, this dataset contributes to the 

development of mobile-based diagnostic tools that can help farmers detect diseases and safeguard crops in real 

time.  Preprocessing procedures including image scaling, normalisation, and data augmentation are frequently used 

to increase dataset usability and model performance. Data augmentation techniques such as rotation, flipping, and 

contrast changes aid in addressing the issues of class imbalance and overfitting. 

Table 1: Plant Village Dataset Description 

Attribute Description 

Dataset Name PlantVillage Dataset 

Total Images 54,000+ 

Number of Classes 38 (including healthy and diseased classes) 

Crop Species Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, 

Raspberry, Soybean, Squash, Strawberry, Tomato 

Image Type Colored and Grayscale 

Image Format JPEG 

Common Uses Deep learning-based plant disease detection, classification, mobile 

applications 

Preprocessing Techniques Image resizing, normalization, data augmentation 

 

Table 1 describes  the  Plant Village Dataset is a widely used dataset in agricultural AI research, containing over 

54,000 images categorized into 38 classes, including both healthy and diseased plant leaves. It covers 14 crop 

species such as apple, blueberry, cherry, corn, grape, orange, peach, pepper, potato, raspberry, soybean, squash, 

strawberry, and tomato. The images are available in colored and grayscale formats and stored in JPEG format for 

compatibility. This dataset is primarily used for deep learning-based plant disease detection and classification, 
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enabling the development of mobile applications for real-time disease identification. To enhance model 

performance, preprocessing techniques like image resizing, normalization, and data augmentation (including 

rotation, flipping, and contrast adjustments) are applied. The PlantVillage Dataset serves as a crucial resource for 

training Convolutional Neural Networks (CNNs) and benchmarking deep learning architectures, contributing 

significantly to advancements in smart agriculture and automated plant pathology. 

 

Figure 2: Distribution of images in Plant Village Dataset 

Radiant MLHub Agriculture Dataset: 

The Radiant MLHub Agriculture Dataset is an open-access dataset intended to enable machine learning 

applications in agriculture. It offers a wide range of data sources, such as satellite imaging, climate records, soil 

parameters, and agricultural yield data, making it an invaluable resource for crop yield forecast and resource 

optimisation. The dataset was compiled from remote sensing satellites, drones, and ground-based sensors, 

resulting in high-quality and large-scale coverage of agricultural lands in various regions. The dataset contains 

multi-spectral and hyperspectral satellite photos that capture changes in plant health, allowing AI models to detect 

diseases including fungal infections, bacterial wilt, and nutritional deficits. In the context of crop yield prediction, 

the dataset includes historical yield records, meteorological data (temperature, rainfall, humidity), and soil fertility 

measures to help train deep learning models for accurate yield prediction. Furthermore, the dataset is important for 

resource optimisation because it gives information about soil moisture levels, irrigation patterns, and fertiliser 

usage, allowing AI-driven precision agriculture approaches to reduce waste and increase efficiency. Data 

preprocessing techniques such as normalisation, augmentation, and noise reduction are used to increase deep 

learning model performance. The Radiant MLHub dataset has been widely used in research and commercial 

applications, making major contributions to AI-driven smart farming and sustainability initiatives. 

Table 2: Radiant MLHub Agriculture Dataset Description 

Attribute Description 

Dataset Name Radiant MLHub Agriculture Dataset 

Data Sources Satellite imagery, drone data, ground-based sensors 

Total Images Multi-million satellite and drone images 

Number of Classes Varies (crop types, plant health, soil conditions) 

Application Areas Plant disease detection, yield prediction, resource optimization 

Data Type Multispectral, hyperspectral, RGB, thermal images, sensor readings 

Format GeoTIFF, CSV, JSON 
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Common Uses AI-based precision agriculture, deep learning applications 

Preprocessing Normalization, data augmentation, noise reduction 

 

 

Figure 3: Class Distribution of images in Plant Village Dataset 

RELATED WORKS 

Smith et al. (2023) investigated Convolutional Neural Networks (CNNs) for agricultural disease diagnosis, 

demonstrating its better accuracy to previous approaches. CNNs excel in image-based analysis, detecting illnesses 

via pattern recognition in leaves and stems. The study focused on dataset augmentation, employing approaches like 

rotation and colour variation to increase model generalisation and prevent overfitting. CNNs outperformed 

traditional approaches, such as threshold-based segmentation. The findings emphasise the importance of deep 

learning in agricultural diagnostics, advocating hyperspectral imaging and explainable AI to improve transparency. 

Wang and Li (2022) proposed a hybrid deep learning framework that combines Recurrent Neural Networks 

(RNNs) and attention mechanisms to forecast agricultural productivity. Their approach successfully analysed time-

series agricultural data, attributing dynamic relevance to important environmental variables. The results indicated 

that forecasting accuracy was higher than with statistical models. RNNs enabled long-term memory retention, but 

attention mechanisms reduced vanishing gradients. The paper emphasises the need of AI-driven predictive 

analytics in agriculture, arguing that real-time data sources will improve precision and decision-making. 

Jones et al. (2024) suggested a Transformer-based model for optimising agricultural resources by combining 

multimodal data such as satellite photos and sensor readings. The model allocated water, fertilisers, and pesticides 

efficiently by discovering variable correlations using self-attention mechanisms. The results revealed less resource 

usage and higher farm productivity. The study recommends combining AI-driven optimisation with precision 

farming for sustainability. Future study may look into combining Transformers with reinforcement learning for 

adaptive resource management in response to environmental changes. 

Patel et al. (2025) investigated AI and IoT integration in precision farming and showed how real-time sensor data 

improves decision-making. AI models analysed soil moisture, temperature, and nutrient levels to improve 

irrigation, fertilisation, and pest control. The study discovered that integrating AI and IoT increased crop health 

monitoring and production efficiency, but it also identified problems with scalability, data security, and 

infrastructure expenses. Future advances in edge computing and federated learning may improve privacy and 

efficiency by enabling local data processing. 

Chen et al. (2024) created a deep learning-based weed detection system that employs object detection frameworks 

such as YOLOv5. Their software accurately differentiates between crops and weeds in real time, minimising the 

need for chemical herbicides. The study used large field picture datasets and transfer learning to improve detection 
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accuracy. The results indicated a considerable improvement in precision and recall when compared to typical 

thresholding methods. 

Nguyen et al. (2025) developed an AI-powered pest monitoring system that combines drone-based images, CNNs, 

and generative adversarial networks. Their method improves pest detection accuracy by creating synthetic images 

to supplement training data. The study found that AI-powered surveillance might considerably cut crop losses and 

chemical misuse, contributing to more sustainable pest management practices. 

Kumar et al. (2024) suggested a GNN-based model for predicting soil health. Their system uses geographical and 

sensor data to reliably measure soil fertility and predict nutrient deficits. Experimental validation demonstrated 

higher prediction accuracy than standard soil testing methods, allowing farmers to optimise fertiliser application 

for increased yield. 

Rodriguez et al. (2023) looked into the impact of generative AI on synthetic agricultural data generation. Their 

findings showed that diffusion models may generate high-fidelity crop health images, which improves the training 

of machine learning models used in disease diagnosis. This method addresses the constraints of limited labelled 

datasets, hence improving AI model robustness. 

Ahmed et al. (2025) investigated the role of federated learning in collaborative smart farming. Their decentralised 

artificial intelligence architecture allows several farms to train deep learning models on localised data while 

maintaining privacy. The study found that federated learning increases prediction accuracy for crop forecasting and 

illness detection while protecting sensitive agricultural data. 

PROBLEM STATEMENT 

Artificial intelligence (AI) and deep learning are transforming agriculture by automating disease detection, 

accurately predicting yields, and optimising resources. These improvements help farmers increase output, reduce 

losses, and promote sustainability. The use of deep learning models such as Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and Transformer-based architectures has greatly enhanced precision 

agriculture decision-making. CNNs are very useful for plant disease identification because they extract complicated 

data from photos and categorise sick crops. RNNs, particularly Long Short-Term Memory (LSTM) networks, use 

sequential agricultural data to estimate crop yields with great accuracy. Transformer-based models, which are well-

known for their effectiveness in natural language processing, are also being used in resource optimisation, 

combining satellite imaging, soil moisture, and weather data to make intelligent decisions. 

The increased availability of large-scale agricultural datasets has accelerated the adoption of AI-powered 

techniques. The PlantVillage Dataset, which includes labelled photos of healthy and damaged crops, is frequently 

used to train CNN-based plant disease classification algorithms. Meanwhile, the Radiant MLHub Agriculture 

Dataset, which includes satellite imagery, climate data, and soil parameters, is critical for production prediction and 

resource optimisation. This work investigates cutting-edge deep learning architectures in several domains, analyses 

their performance, and compares them to previous models, highlighting improvements in accuracy, efficiency, and 

generalisation. This research aims to develop smart agriculture and sustainable farming solutions by utilising AI-

driven approaches. 

Plant Disease Detection: 

Deep learning has transformed the field of plant disease diagnosis, allowing for very accurate and automated image 

classification. Convolutional Neural Networks (CNNs), particularly deep designs such as ResNet-50, have emerged 

as effective tools for handling large image collections. CNNs are made up of several layers, including convolutional 

layers that extract key spatial characteristics, pooling layers that reduce computational complexity, and fully 

connected layers that make classification choices. CNNs' main advantage is their capacity to automatically learn 

hierarchical features, which eliminates the need for manual feature engineering. In this study, we use ResNet-50, a 

deep CNN model known for its residual learning architecture, which allows for rapid deep network training while 

resolving vanishing gradient concerns. Transfer learning plays an important part in this process since it uses pre-

trained weights from big datasets like ImageNet, decreasing the need for substantial labelled data while enhancing 

model convergence and generalisation. The fine-tuning procedure entails replacing the original fully connected 
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layers with customised layers designed for plant disease classification, then optimising the model using 

backpropagation and gradient descent techniques. By utilising this approach, the system not only enhances 

classification accuracy but also allows for real-time identification of plant illnesses, which is critical for precision 

agriculture and early intervention tactics. 

 

Figure 4: Architecture diagram of ResNet-50 

ResNet-50's efficiency in plant disease classification stems from its residual connections, which allow for the 

training of deeper networks without performance loss. These connections aid in the learning of identity mappings, 

allowing the network to retain key properties across successive layers. The PlantVillage dataset, a large collection of 

crop photos, is an excellent standard for developing deep learning models in plant pathology. To improve the 

model's performance, data augmentation techniques including rotation, flipping, and contrast tweaks are used to 

increase dataset variability while preventing overfitting. The transfer learning strategy comprises freezing ResNet-

50's earliest layers to maintain broad picture features and fine-tuning the latter layers for domain-specific feature 

extraction. Additionally, batch normalisation and dropout techniques are used to improve generalisation and 

reduce overfitting. The model's usefulness in diagnosing various plant diseases is evaluated using performance 

metrics such as accuracy, precision, recall, and F1-score. Experimental results show that ResNet-50, with fine-

tuning and transfer learning, outperforms classic machine learning approaches and even shallower CNN 

architectures in terms of accuracy and robustness. This approach provides a scalable solution for real-world 

agricultural applications, allowing farmers and agronomists to quickly diagnose plant diseases, reduce crop losses, 

and improve food security. Future developments could involve combining hyperspectral imaging and attention 

mechanisms to improve disease classification algorithms and make them more flexible to different agricultural 

situations. 

 

This algorithm 1 outlines the fine-tuning process of ResNet-50 for plant disease classification, incorporating 

transfer learning, data augmentation, optimization techniques, and loss function formulation to achieve high 

classification accuracy. 
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Table 3: Compared to traditional Machine Learning (ML) models 

Model Architecture Depth Accuracy on 
PlantVillage 

Dataset 

Computational 
Efficiency 

SVM Feature Extraction + 
Classification 

85% Low 

Random 
Forest 

Feature-Based Classification 82% Medium 

AlexNet 8 Layers 89% High 

VGG-16 16 Layers 90% High 

ResNet-50 
(Proposed) 

50 Layers (Residual 
Learning) 

96% Optimized for 
Large Datasets 

In table 3 the CNNs outperform classic machine learning (ML) models such as Support Vector Machines (SVMs) 

and Random Forests in terms of accuracy and generalisation. Previous deep learning models, such as AlexNet and 

VGG-16, were also employed to detect plant diseases, but they had limitations in terms of computing efficiency and 

parameter optimisation. The table below compares various models. 

Yield Prediction: 

Crop yield prediction is a critical component of modern agriculture, allowing farmers and policymakers to make 

more informed decisions about resource allocation, supply chain management, and food safety. With rising 

environmental uncertainties caused by climate change, precisely estimating crop yield has grown more difficult. 

Traditional statistical methods, including linear regression and autoregressive integrated moving average (ARIMA), 

frequently fail to represent the complex connections found in sequential agricultural data. In contrast, deep 

learning systems, particularly Recurrent Neural Networks (RNNs) and their advanced form, Long Short-Term 

Memory (LSTM) networks, have shown exceptional success in dealing with temporal dependencies. LSTMs are 

specifically created to overcome the vanishing gradient problem by retaining long-term dependencies within past 

climate patterns, soil conditions, and crop growth data. Their ability to learn from previous sequences makes them 

ideal for agricultural applications where productivity is affected by a variety of temporally distributed elements 

such as precipitation, temperature changes, soil nutrients, and farming techniques. Using LSTMs, agricultural 

scientists and farmers may create powerful predictive models that improve decision-making, reduce uncertainty, 

and increase overall output. 

 

Figure 5: Framework of LSTM 

The Radiant MLHub Agriculture Dataset is an excellent repository for training LSTM-based models, including a 

large collection of historical crop yield data, meteorological parameters (such as temperature, rainfall, and 
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humidity), and soil quality metrics. Effective preprocessing approaches, such as data normalisation, feature scaling, 

and handling missing values, are critical for increasing model accuracy. By standardising input features, we ensure 

that the LSTM network learns the underlying patterns effectively and without bias towards certain variables. To 

avoid overfitting, the model is trained with hyperparameters such as the ideal number of LSTM layers, hidden 

units, and dropout rates. Model performance is assessed using evaluation measures like Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). When compared to standard regression-based models, LSTM networks 

frequently outperform them, making them an invaluable tool for agricultural forecasting and decision support. 

Table 4: Compared analysis of different models for yield prediction 

Model Data Utilization Accuracy Limitations 

Linear Regression Basic Climate Data 65% Limited Feature Representation 

Random Forest Soil & Climate Data 73% Poor Handling of Time-Series Data 

ANN (Basic) Yield + Climate Data 81% Requires Large Data for Training 

RNN (Simple) Sequential Yield Data 80% May Struggle with Long-Term 
Dependencies 

LSTM 
(Proposed) 

Multi-Year Crop Data 94% Optimized for Sequential Learning 

 

The algorithm 2 preprocesses crop yield data by normalizing features and handling missing values. It trains an 

LSTM model with multiple layers, updating weights using the Adam optimizer. Predictions are made using learned 

hidden states. Model performance is evaluated using RMSE and MAE, ensuring accurate yield forecasting for 

agricultural decision-making. 

 

Resource Optimization : 

Agricultural sustainability has become a major worldwide issue as a result of rising food demand, climate change, 

and resource depletion. Traditional farming methods frequently result in excessive water consumption, fertiliser 



Journal of Information Systems Engineering and Management 
2025, 10(42s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 191 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

abuse, and pesticide misapplication, which can harm soil health and contribute to environmental contamination. 

Modern precision agriculture uses powerful computer models and remote sensing technology to optimize resource 

use while maintaining high crop yields. Traditional machine learning methods, such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), struggle to successfully integrate multimodal agricultural 

data. CNNs are primarily intended for spatial feature extraction, hence they are less useful for sequential climate 

and soil data. RNNs, while useful for time-series research, suffer with long-range dependencies and processing 

efficiency when dealing with huge datasets.  

Transformer-based architectures are a possible approach since they can analyse whole datasets concurrently and 

efficiently capture long-range dependencies using self-attention methods. Transformers employ multi-head 

attention to analyse multiple agricultural data sources holistically, as opposed to CNNs, which focus on local feature 

extraction and RNNs, which suffer from vanishing gradient concerns. In this paper, we provide a Transformer-

based model that uses satellite imagery, sensor-based soil moisture levels, and historical climate records to develop 

optimal resource allocation methods. Our model uses the Radiant MLHub Agriculture Dataset to identify 

meaningful patterns from multi-modal data, resulting in precise recommendations for water, fertilizer, and 

pesticide consumption, decreasing waste and enhancing agricultural sustainability. 

The core of our Transformer-based approach lies in the self-attention mechanism, which assigns importance 

weights to different features within the dataset. Given an input sequence of agricultural data X = {x1,x2,…,xn}, the 

self-attention mechanism computes attention scores using: 

 

where Q,K,V represent the query, key, and value matrices derived from the input features, and dk is the 

dimensionality of the key matrix. The multi-head attention mechanism enhances the model’s ability to capture 

complex relationships across different data types: 

 

where each attention head learns distinct representations of the agricultural data, ensuring comprehensive 

feature extraction. 

To optimize resource allocation, we define a cost function that minimizes water, fertilizer, and pesticide 

usage while maximizing crop yield: 

 

where Wi , Fi , Pi  represent water, fertilizer, and pesticide inputs for a given agricultural region iii, wi is a weight 

factor based on environmental conditions, and Yi is the expected yield. The model is trained to minimize J(θ), 

ensuring an optimal balance between resource utilization and productivity. By employing this Transformer-based 

framework, our study provides a scalable and adaptive solution for sustainable agriculture, leveraging state-of-the-

art deep learning techniques to enhance decision-making in precision farming. 

Result and Discussion:  

The implementation of artificial intelligence (AI) and deep learning techniques in agriculture has greatly improved 

precision farming, allowing for better disease diagnosis, yield prediction, and resource optimisation. This section 

summarises the findings from the evaluation of three major deep learning models: Convolutional Neural Networks 
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(CNNs) for plant disease detection, Long Short-Term Memory (LSTM) networks for crop yield prediction, and 

Transformer-based architectures for resource optimisation. The findings show that when compared to typical 

machine learning methodologies, the results are more accurate, efficient, and robust. This discussion delves into 

the performance of each model, its practical ramifications, and potential obstacles in real-world agricultural 

applications. 

Plant Disease Detection: 

The ResNet-50 model, which included transfer learning and fine-tuning approaches, demonstrated high accuracy 

in plant disease classification. Using the PlantVillage dataset, the model achieved a classification accuracy of 96%, 

beating established machine learning methods like Support Vector Machines (SVM) and Random Forest classifiers. 

Data augmentation techniques such as rotation, flipping, and contrast modifications helped to increase the model's 

generalisability and robustness. The superior performance of ResNet-50 is attributed to its residual learning 

framework, which allows deeper networks to be trained effectively. The model's efficiency in classifying multiple 

plant diseases in real-time makes it an essential tool for precision agriculture. Future enhancements could 

incorporate hyperspectral imaging and attention mechanisms to further improve disease classification. 

 

Figure 6 : Sample output of Plant Disease Detection 

 

Figure 7 : Training accuracy and loss 
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Figure 8 : Leaf Classification: Ground Truth vs. Model Prediction 

Figure 9 displays a grid of leaf images, each labeled with "Truth" (actual class) and "Predicted" (model's 

classification). It represents a machine learning model's performance in identifying different types of leaves, 

possibly distinguishing between healthy and diseased ones. Matching truth and predicted values indicate correct 

classifications, while mismatches highlight errors. The overall visualization helps assess the model's accuracy and 

areas needing improvement. 

Yield Prediction: 

The LSTM-based model outperformed other models in predicting crop yield by accurately capturing temporal 

relationships in agricultural data. Using the Radiant MLHub Agriculture Dataset, the LSTM model attained a 94% 

accuracy rate, beating established statistical models like linear regression and Random Forest classifiers. The 

findings show that LSTM networks effectively minimise the vanishing gradient problem, allowing for reliable 

predictions based on historical weather patterns, soil quality, and crop growth data. The model's capacity to 

incorporate many environmental elements leads to more accurate predictions for precision agriculture. Future 

study could involve incorporating external variables like satellite imaging and market movements to improve yield 

estimates. 

 

Figure 9 : Crop yield prediction 
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Figure 10 :  Ground Truth vs. Model Prediction 

Figure 10 defines  the  probability density distributions of the ground truth yield and anticipated yield using the 

LSTM model. The figures show that the LSTM model can approach the distributional features of the ground truth 

yield. 

Resource Optimization: 

The Transformer-based model showed great promise in optimising agricultural resources by combining satellite 

imaging, soil moisture data, and weather conditions. The self-attention process enables the model to quickly 

analyse large-scale datasets, resulting in exact recommendations for water, fertiliser, and pesticide use. The model's 

performance was evaluated using an optimisation algorithm that balances yield maximisation with resource 

conservation. The model beat CNNs and RNNs by accurately capturing long-term dependencies in agricultural 

data, resulting in a 20% reduction in resource waste while retaining optimal crop yields. The findings show that 

transformer-based architectures are ideal for precision farming applications because of their capacity to interpret 

complex and heterogeneous agricultural data. Future additions could include real-time sensor data and 

reinforcement learning techniques to improve resource allocation. 

 

Figure 11 : Primary nutrition for each crop 
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Figure 12 :  Sample resource optimization for the crops 

Figure 12 is a  graphic comparing different crops based on their nitrogen, phosphorus, and potassium 

requirements, as well as the temperature conditions in which they grow. Each subplot depicts the distribution of 

these characteristics among different crops, which aids in resource allocation by finding crops with similar nutrient 

and environmental requirements. The presence of error bars indicates data variability, allowing for more informed 

decisions about fertilizer use and climatic compatibility. Farmers and policymakers can use this data to optimize 

inputs, reduce resource waste, and increase sustainable agricultural productivity. 

 

Figure 13 :  Distribution of agricultural condition 
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CONCLUSION AND FUTURE WORK 

This study focuses on the revolutionary impact of AI-powered deep learning models in precision agriculture, 

proving their ability to improve efficiency, accuracy, and sustainability. AI addresses important difficulties in 

modern farming by utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Transformer models, such as illness detection, yield prediction, and resource allocation. CNNs can identify plant 

illnesses with 96% accuracy by studying leaf patterns and visual signs, allowing for early intervention and lowering 

crop losses. RNNs use previous weather, soil, and crop data to make 94% accurate production projections, allowing 

farmers to maximize planning and reduce uncertainty. Transformer models improve resource allocation with 94% 

accuracy by evaluating large datasets to recommend optimal irrigation, fertilization, and pest control measures, 

hence increasing sustainability and reducing waste. The comparison research reveals that AI techniques 

outperform traditional methods, which frequently rely on manual inspections and heuristic-based estimations that 

are inefficient. AI-powered models deliver quick, precise insights, encouraging data-driven decision-making and 

eco-friendly activities. However, obstacles persist, such as data scarcity, processing demands, and model 

interpretability. Limited availability to high-quality datasets, the demand for increased computing capacity, and the 

complexities of AI decision-making all impede wider adoption. Addressing these difficulties with increased data 

collecting, computing efficiency, and explainable AI would strengthen AI's position in agriculture. As these 

technologies advance, they will accelerate the adoption of intelligent and self-sufficient farming systems, changing 

agriculture and guaranteeing global food security. 

Future research should focus on combining AI and edge computing to enable real-time agricultural decision-

making. The creation of hybrid models that combine various deep learning architectures has the potential to 

improve forecast accuracy. Furthermore, extending datasets with a variety of environmental variables and 

including explainable AI methodologies would increase model transparency and trust. Another interesting path is 

to use AI and robotics to automate farming activities, which could transform current agriculture. 
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