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ARTICLE INFO ABSTRACT

Received: 24 Dec 2024 Rapid developments in artificial intelligence (AI) and deep learning have had a profound

Revised: 12 Feb 2025 impact on agriculture. Precision agriculture has transformed current farming by using effective
artificial intelligence and deep learning models to increase results. This AI-powered technology
allows farmers to effectively monitor crops, detect diseases early, precisely predict production,
and optimize resources. This research examines cutting-edge deep learning models such as
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Transformer-
based architectures in the context of agricultural challenges, with a focus on their role in
enhancing agricultural decision-making. The experimental results of this study show that Al
models outperform traditional approaches in illness detection, precise yield estimation, and
resource efficiency, such as water, fertilizers, and pesticides. The comparative comparison is
aided with assessment metrics including accuracy, precision, recall, and Fi-score, as well as a
graphical representation of model performance. The findings demonstrate the potential for
deep learning to boost agricultural productivity while decreasing resource waste. This study
intends to provide insights on the effectiveness of Al-driven solutions in modern farming
practices, as well as identify difficulties and future prospects for improving agricultural
automation and productivity.
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INTRODUCTION

Modern agriculture confronts several challenges, including unpredictable weather, pest infestations, and poor
resource management, all of which are worsened by the world's rising population. This population growth
necessitates an increase in food production while also minimizing environmental effect. Traditional methods of
agriculture, which frequently rely on human intuition, physical inspection, and labor-intensive processes, are
proving ineffective in achieving these objectives. As a result, the agricultural sector is under tremendous pressure to
implement novel solutions that can increase production, improve efficiency, and reduce resource use. Precision
agriculture, backed by artificial intelligence (AI) and deep learning technologies, has emerged as a game-changing
answer to these issues. Al-powered techniques help farmers to make data-driven decisions, giving insights that
improve crop health monitoring, more accurately anticipate yields, and optimize resource utilization, resulting in
increased agricultural productivity and sustainability. Deep learning methods enable AI systems to examine
massive volumes of data from a variety of sources, including satellite photography, drones, and field sensors. These
data inputs can be used to detect early signs of disease, identify insect infestations, and forecast weather patterns,
allowing farmers to make more informed decisions and act proactively rather than reactively. This leads to healthier
crops, lower crop losses, and higher yields, which are critical for feeding a growing global population.

Resource optimization is another significant benefit of Al-powered precision agriculture. Water, fertilizers, and
pesticides are essential agricultural inputs, but over usage can cause environmental degradation such as soil
erosion, water contamination, and biodiversity loss. AI technologies enable the precise deployment of these
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resources by processing real-time data from sensors and other sources to determine crops' specific demands. This
targeted method decreases waste, expenses, and the environmental impact of farming operations. Al systems can
prescribe the most effective irrigation schedules based on soil moisture levels, weather forecasts, and crop
requirements, ensuring that water is used efficiently. Similarly, Al may advise farmers on when and where to apply
fertilizers and pesticides, avoiding waste and lowering the danger of contamination.By streamlining these
processes, Al-powered precision agriculture has the potential to greatly improve farming efficiency and
sustainability. These innovations not only save farmers money, but they also help to protect the environment by
reducing agriculture's carbon footprint. Furthermore, the combination of AI with IoT (Internet of Things) sensors
and big data analytics has the potential to transform farming by giving real-time insights and enabling continuous
monitoring of crop and environmental conditions.

Deep learning models, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformer architectures, have significantly enhanced agricultural productivity and sustainability. CNNs are
integral for image-based tasks like crop disease detection, accurately identifying diseases and infections, enabling
early intervention to prevent crop loss. RNNs, particularly Long Short-Term Memory (LSTM) networks, are
essential for yield prediction, analyzing time-series data to track crop growth and forecast yields based on
environmental factors, optimizing harvest timing, resource management, and aligning production with market
demand. Transformer models, originally used in natural language processing, are effective in integrating large
multimodal data (e.g., satellite imagery, soil sensors, and weather data) to improve decision-making. These models
predict optimal planting times, detect crop stress, and optimize resource use, such as water and fertilizers.
Together, these deep learning models revolutionize agriculture by enhancing disease detection, yield predictions,
and resource management, driving more efficient and sustainable farming practices.

Yield prediction is another area where AI has made tremendous progress. Accurate yield forecasting is crucial for
farmers and other agricultural supply chain stakeholders. Deep learning models, such as LSTMs and Transformers,
may examine massive amounts of historical data, including weather patterns, soil quality, crop growth stages, and
pest activity, to more accurately forecast future yields. These algorithms outperform standard forecasting
techniques, which frequently rely on limited data and human judgment. Al-based predictions help farmers make
more educated decisions about resource allocation, market timing, and crop management. Furthermore, accurate
production estimates improve planning and coordination throughout the agricultural supply chain, decreasing
inefficiencies and food waste.The incorporation of deep learning models into agricultural processes has
transformed the sector by boosting crop management and resource optimization. Al is improving farming
efficiency, sustainability, and profitability by enabling precise disease detection, accurate production estimates, and
effective resource usage. As these models evolve, they have the ability to significantly improve agricultural practices
by providing real-time information, automating important chores, and assisting farmers in adapting to the dynamic
difficulties of modern agriculture. In the future, the marriage of deep learning with precision agriculture could
greatly improve global food production while minimizing farming's environmental impact. Al-powered precision
agriculture presents a possible solution to the fundamental difficulties confronting modern agriculture. Al
technologies can assist farmers in meeting rising global food demand while lowering environmental consequences
by improving crop health monitoring, more accurately predicting yields, and optimizing resource utilization. As
these technologies advance, they have the potential to transform agriculture into a more efficient, sustainable, and
resilient industry capable of feeding the world's rising population while protecting the planet's health.

Dataset Description:

The PlantVillage Dataset is used for plant disease detection, training deep learning models with labeled crop
images, while the Radiant MLHub Dataset aids in crop yield prediction and resource optimization through satellite
imagery, climate data, and soil metrics, enabling AI-driven precision agriculture for improved sustainability and
farming efficiency.

PlantVillage dataset:

The PlantVillage dataset is a well-known collection of plant disease images created to promote plant pathology
research and agricultural machine learning applications. Each image in the dataset has been meticulously labelled
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to ensure high accuracy in model training and validation. The images are acquired under controlled conditions,
which eliminates background noise and allows for more efficient model generalisation. The dataset is provided in
both coloured and greyscale versions, giving researchers more options for testing different preprocessing
techniques.

Figure 1: Sample images of Plant Village Dataset

Figure 2 describes the sample images from the plant village dataset. The PlantVillage dataset is primarily used to
train Convolutional Neural Networks (CNNs) to detect and classify plant diseases automatically. It has been widely
used to benchmark numerous deep learning architectures, including ResNet, VGG, and Inception, demonstrating
its strength and effectiveness in agricultural AI applications. Furthermore, this dataset contributes to the
development of mobile-based diagnostic tools that can help farmers detect diseases and safeguard crops in real
time. Preprocessing procedures including image scaling, normalisation, and data augmentation are frequently used
to increase dataset usability and model performance. Data augmentation techniques such as rotation, flipping, and
contrast changes aid in addressing the issues of class imbalance and overfitting.

Table 1: Plant Village Dataset Description

Attribute Description

Dataset Name PlantVillage Dataset

Total Images 54,000+

Number of Classes 38 (including healthy and diseased classes)

Crop Species Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato,
Raspberry, Soybean, Squash, Strawberry, Tomato

Image Type Colored and Grayscale

Image Format JPEG

Common Uses Deep learning-based plant disease detection, classification, mobile
applications

Preprocessing Techniques Image resizing, normalization, data augmentation

Table 1 describes the Plant Village Dataset is a widely used dataset in agricultural Al research, containing over
54,000 images categorized into 38 classes, including both healthy and diseased plant leaves. It covers 14 crop
species such as apple, blueberry, cherry, corn, grape, orange, peach, pepper, potato, raspberry, soybean, squash,
strawberry, and tomato. The images are available in colored and grayscale formats and stored in JPEG format for
compatibility. This dataset is primarily used for deep learning-based plant disease detection and classification,
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enabling the development of mobile applications for real-time disease identification. To enhance model
performance, preprocessing techniques like image resizing, normalization, and data augmentation (including
rotation, flipping, and contrast adjustments) are applied. The PlantVillage Dataset serves as a crucial resource for
training Convolutional Neural Networks (CNNs) and benchmarking deep learning architectures, contributing
significantly to advancements in smart agriculture and automated plant pathology.

Distribution of Images in the PlantVillage Dataset
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Figure 2: Distribution of images in Plant Village Dataset
Radiant MLHub Agriculture Dataset:

The Radiant MLHub Agriculture Dataset is an open-access dataset intended to enable machine learning
applications in agriculture. It offers a wide range of data sources, such as satellite imaging, climate records, soil
parameters, and agricultural yield data, making it an invaluable resource for crop yield forecast and resource
optimisation. The dataset was compiled from remote sensing satellites, drones, and ground-based sensors,
resulting in high-quality and large-scale coverage of agricultural lands in various regions. The dataset contains
multi-spectral and hyperspectral satellite photos that capture changes in plant health, allowing ATl models to detect
diseases including fungal infections, bacterial wilt, and nutritional deficits. In the context of crop yield prediction,
the dataset includes historical yield records, meteorological data (temperature, rainfall, humidity), and soil fertility
measures to help train deep learning models for accurate yield prediction. Furthermore, the dataset is important for
resource optimisation because it gives information about soil moisture levels, irrigation patterns, and fertiliser
usage, allowing Al-driven precision agriculture approaches to reduce waste and increase efficiency. Data
preprocessing techniques such as normalisation, augmentation, and noise reduction are used to increase deep
learning model performance. The Radiant MLHub dataset has been widely used in research and commercial
applications, making major contributions to Al-driven smart farming and sustainability initiatives.

Table 2: Radiant MLHub Agriculture Dataset Description

Attribute Description
Dataset Name Radiant MLHub Agriculture Dataset
Data Sources Satellite imagery, drone data, ground-based sensors
Total Images Multi-million satellite and drone images
Number of Classes Varies (crop types, plant health, soil conditions)
Application Areas Plant disease detection, yield prediction, resource optimization
Data Type Multispectral, hyperspectral, RGB, thermal images, sensor readings
Format GeoTIFF, CSV, JSON
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Common Uses Al-based precision agriculture, deep learning applications
Preprocessing Normalization, data augmentation, noise reduction

Class Distribution in Radiant MLHub Agriculture Dataset
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Figure 3: Class Distribution of images in Plant Village Dataset
RELATED WORKS

Smith et al. (2023) investigated Convolutional Neural Networks (CNNs) for agricultural disease diagnosis,
demonstrating its better accuracy to previous approaches. CNNs excel in image-based analysis, detecting illnesses
via pattern recognition in leaves and stems. The study focused on dataset augmentation, employing approaches like
rotation and colour variation to increase model generalisation and prevent overfitting. CNNs outperformed
traditional approaches, such as threshold-based segmentation. The findings emphasise the importance of deep
learning in agricultural diagnostics, advocating hyperspectral imaging and explainable AI to improve transparency.

Wang and Li (2022) proposed a hybrid deep learning framework that combines Recurrent Neural Networks
(RNNs) and attention mechanisms to forecast agricultural productivity. Their approach successfully analysed time-
series agricultural data, attributing dynamic relevance to important environmental variables. The results indicated
that forecasting accuracy was higher than with statistical models. RNNs enabled long-term memory retention, but
attention mechanisms reduced vanishing gradients. The paper emphasises the need of Al-driven predictive
analytics in agriculture, arguing that real-time data sources will improve precision and decision-making.

Jones et al. (2024) suggested a Transformer-based model for optimising agricultural resources by combining
multimodal data such as satellite photos and sensor readings. The model allocated water, fertilisers, and pesticides
efficiently by discovering variable correlations using self-attention mechanisms. The results revealed less resource
usage and higher farm productivity. The study recommends combining AI-driven optimisation with precision
farming for sustainability. Future study may look into combining Transformers with reinforcement learning for
adaptive resource management in response to environmental changes.

Patel et al. (2025) investigated AI and IoT integration in precision farming and showed how real-time sensor data
improves decision-making. AI models analysed soil moisture, temperature, and nutrient levels to improve
irrigation, fertilisation, and pest control. The study discovered that integrating AI and IoT increased crop health
monitoring and production efficiency, but it also identified problems with scalability, data security, and
infrastructure expenses. Future advances in edge computing and federated learning may improve privacy and
efficiency by enabling local data processing.

Chen et al. (2024) created a deep learning-based weed detection system that employs object detection frameworks
such as YOLOvs. Their software accurately differentiates between crops and weeds in real time, minimising the
need for chemical herbicides. The study used large field picture datasets and transfer learning to improve detection
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accuracy. The results indicated a considerable improvement in precision and recall when compared to typical
thresholding methods.

Nguyen et al. (2025) developed an Al-powered pest monitoring system that combines drone-based images, CNNs,
and generative adversarial networks. Their method improves pest detection accuracy by creating synthetic images
to supplement training data. The study found that Al-powered surveillance might considerably cut crop losses and
chemical misuse, contributing to more sustainable pest management practices.

Kumar et al. (2024) suggested a GNN-based model for predicting soil health. Their system uses geographical and
sensor data to reliably measure soil fertility and predict nutrient deficits. Experimental validation demonstrated
higher prediction accuracy than standard soil testing methods, allowing farmers to optimise fertiliser application
for increased yield.

Rodriguez et al. (2023) looked into the impact of generative Al on synthetic agricultural data generation. Their
findings showed that diffusion models may generate high-fidelity crop health images, which improves the training
of machine learning models used in disease diagnosis. This method addresses the constraints of limited labelled
datasets, hence improving AT model robustness.

Ahmed et al. (2025) investigated the role of federated learning in collaborative smart farming. Their decentralised
artificial intelligence architecture allows several farms to train deep learning models on localised data while
maintaining privacy. The study found that federated learning increases prediction accuracy for crop forecasting and
illness detection while protecting sensitive agricultural data.

PROBLEM STATEMENT

Artificial intelligence (AI) and deep learning are transforming agriculture by automating disease detection,
accurately predicting yields, and optimising resources. These improvements help farmers increase output, reduce
losses, and promote sustainability. The use of deep learning models such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Transformer-based architectures has greatly enhanced precision
agriculture decision-making. CNNs are very useful for plant disease identification because they extract complicated
data from photos and categorise sick crops. RNNs, particularly Long Short-Term Memory (LSTM) networks, use
sequential agricultural data to estimate crop yields with great accuracy. Transformer-based models, which are well-
known for their effectiveness in natural language processing, are also being used in resource optimisation,
combining satellite imaging, soil moisture, and weather data to make intelligent decisions.

The increased availability of large-scale agricultural datasets has accelerated the adoption of AI-powered
techniques. The PlantVillage Dataset, which includes labelled photos of healthy and damaged crops, is frequently
used to train CNN-based plant disease classification algorithms. Meanwhile, the Radiant MLHub Agriculture
Dataset, which includes satellite imagery, climate data, and soil parameters, is critical for production prediction and
resource optimisation. This work investigates cutting-edge deep learning architectures in several domains, analyses
their performance, and compares them to previous models, highlighting improvements in accuracy, efficiency, and
generalisation. This research aims to develop smart agriculture and sustainable farming solutions by utilising AI-
driven approaches.

Plant Disease Detection:

Deep learning has transformed the field of plant disease diagnosis, allowing for very accurate and automated image
classification. Convolutional Neural Networks (CNNs), particularly deep designs such as ResNet-50, have emerged
as effective tools for handling large image collections. CNNs are made up of several layers, including convolutional
layers that extract key spatial characteristics, pooling layers that reduce computational complexity, and fully
connected layers that make classification choices. CNNs' main advantage is their capacity to automatically learn
hierarchical features, which eliminates the need for manual feature engineering. In this study, we use ResNet-50, a
deep CNN model known for its residual learning architecture, which allows for rapid deep network training while
resolving vanishing gradient concerns. Transfer learning plays an important part in this process since it uses pre-
trained weights from big datasets like ImageNet, decreasing the need for substantial labelled data while enhancing
model convergence and generalisation. The fine-tuning procedure entails replacing the original fully connected
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layers with customised layers designed for plant disease classification, then optimising the model using
backpropagation and gradient descent techniques. By utilising this approach, the system not only enhances
classification accuracy but also allows for real-time identification of plant illnesses, which is critical for precision
agriculture and early intervention tactics.
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Figure 4: Architecture diagram of ResNet-50

ResNet-50's efficiency in plant disease classification stems from its residual connections, which allow for the
training of deeper networks without performance loss. These connections aid in the learning of identity mappings,
allowing the network to retain key properties across successive layers. The PlantVillage dataset, a large collection of
crop photos, is an excellent standard for developing deep learning models in plant pathology. To improve the
model's performance, data augmentation techniques including rotation, flipping, and contrast tweaks are used to
increase dataset variability while preventing overfitting. The transfer learning strategy comprises freezing ResNet-
50's earliest layers to maintain broad picture features and fine-tuning the latter layers for domain-specific feature
extraction. Additionally, batch normalisation and dropout techniques are used to improve generalisation and
reduce overfitting. The model's usefulness in diagnosing various plant diseases is evaluated using performance
metrics such as accuracy, precision, recall, and Fi-score. Experimental results show that ResNet-50, with fine-
tuning and transfer learning, outperforms classic machine learning approaches and even shallower CNN
architectures in terms of accuracy and robustness. This approach provides a scalable solution for real-world
agricultural applications, allowing farmers and agronomists to quickly diagnose plant diseases, reduce crop losses,
and improve food security. Future developments could involve combining hyperspectral imaging and attention
mechanisms to improve disease classification algorithms and make them more flexible to different agricultural
situations.

Algorithm 1 Fine-Tuning ResNet-50 for Plant Disease Classification
1: Input: Pre-trained ResNet-50 model M, PlantVillage dataset D, learning
rate «, number of epochs F.

- Output: Fine-tuned model M* for plant disease classification.

=W

: Initialize ResNet-50 model M with ImageNet weights.
. Freeze initial convolutional layers to retain general features.
- Replace the fully connected layers with new layers:

[~

y = softmax(Ws - ReLU (W -z + by) + b9) (1)

: Apply data augmentation to training samples:

=1

1’ = Augment(x) (2)
8: Define loss function (cross-entropy):

N

L= y;log(ii) (3)
i=1
9: Optimize model using Adam optimizer:
st =0 — aV L(0) (4)
10: Train the model for E epochs with mini-batch gradient descent.
11: Evaluate performance using accuracy, precision, recall, and Fl-score.

12: Save the fine-tuned model M*.
13: Return M*.

This algorithm 1 outlines the fine-tuning process of ResNet-50 for plant disease classification, incorporating
transfer learning, data augmentation, optimization techniques, and loss function formulation to achieve high
classification accuracy.
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Table 3: Compared to traditional Machine Learning (ML) models

Model Architecture Depth Accuracy on Computational
PlantVillage Efficiency
Dataset
SVM Feature Extraction + 85% Low
Classification
Random Feature-Based Classification 82% Medium
Forest
AlexNet 8 Layers 89% High
VGG-16 16 Layers 90% High
ResNet-50 50 Layers (Residual 96% Optimized for
(Proposed) | Learning) Large Datasets

In table 3 the CNNs outperform classic machine learning (ML) models such as Support Vector Machines (SVMs)
and Random Forests in terms of accuracy and generalisation. Previous deep learning models, such as AlexNet and
VGG-16, were also employed to detect plant diseases, but they had limitations in terms of computing efficiency and
parameter optimisation. The table below compares various models.

Yield Prediction:

Crop yield prediction is a critical component of modern agriculture, allowing farmers and policymakers to make
more informed decisions about resource allocation, supply chain management, and food safety. With rising
environmental uncertainties caused by climate change, precisely estimating crop yield has grown more difficult.
Traditional statistical methods, including linear regression and autoregressive integrated moving average (ARIMA),
frequently fail to represent the complex connections found in sequential agricultural data. In contrast, deep
learning systems, particularly Recurrent Neural Networks (RNNs) and their advanced form, Long Short-Term
Memory (LSTM) networks, have shown exceptional success in dealing with temporal dependencies. LSTMs are
specifically created to overcome the vanishing gradient problem by retaining long-term dependencies within past
climate patterns, soil conditions, and crop growth data. Their ability to learn from previous sequences makes them
ideal for agricultural applications where productivity is affected by a variety of temporally distributed elements
such as precipitation, temperature changes, soil nutrients, and farming techniques. Using LSTMs, agricultural
scientists and farmers may create powerful predictive models that improve decision-making, reduce uncertainty,
and increase overall output.
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Figure 5: Framework of LSTM

The Radiant MLHub Agriculture Dataset is an excellent repository for training LSTM-based models, including a
large collection of historical crop yield data, meteorological parameters (such as temperature, rainfall, and

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 189

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(42s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

humidity), and soil quality metrics. Effective preprocessing approaches, such as data normalisation, feature scaling,
and handling missing values, are critical for increasing model accuracy. By standardising input features, we ensure
that the LSTM network learns the underlying patterns effectively and without bias towards certain variables. To
avoid overfitting, the model is trained with hyperparameters such as the ideal number of LSTM layers, hidden
units, and dropout rates. Model performance is assessed using evaluation measures like Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). When compared to standard regression-based models, LSTM networks
frequently outperform them, making them an invaluable tool for agricultural forecasting and decision support.

Table 4: Compared analysis of different models for yield prediction

Model Data Utilization Accuracy Limitations
Linear Regression | Basic Climate Data 65% Limited Feature Representation
Random Forest Soil & Climate Data 73% Poor Handling of Time-Series Data
ANN (Basic) Yield + Climate Data 81% Requires Large Data for Training
RNN (Simple) Sequential Yield Data 80% May Struggle with Long-Term
Dependencies
LSTM Multi-Year Crop Data 94% Optimized for Sequential Learning
(Proposed)

The algorithm 2 preprocesses crop yield data by normalizing features and handling missing values. It trains an
LSTM model with multiple layers, updating weights using the Adam optimizer. Predictions are made using learned
hidden states. Model performance is evaluated using RMSE and MAE, ensuring accurate yield forecasting for
agricultural decision-making.

Algorithm 2 Crop Yield Prediction Using LSTM

Reqguire: Historical climate data X = {x;.®s, ..., o7 }. Soil conditions 5. Crop
wield records ¥ ~

Ensure: Predicted crop wield ¥

: Data Preprocessing:

MModel Architecture:

: Define LSTM network with L layers. H hidden units per layer
: Add dropout layers to prevent overfitting

Training Phase:

2: Normalize features: X* = \—:{—‘ 5% = '“_:_'"'

3: Handle missing values using interpolation or imputation

1: Split dataset into training and testing sets: { Xerqin: Yiraind: (N iests Yo )
(52

®

o for each epoch ¢ = 1 to F do
Lok Compute hidden states h, using:
By = o (Wit + Woxs + by) (1)
11: Compute cell state o
o = face_1 + iy (2)
12: Compute ontput o, and prediction ¥
Y = Wohy + by, (3)
13: Update weights using Adam optimizer
Ld: Compute loss using Mean Squared Error:
N
L - -2 FAY
L——_E(‘r,fi,j (4)
N
i—1
15: Backpropagate and update parameters

16: end for
17: Evaluation FPhase:
18: Compute RMSE:

"
- LI P,
RMSE _\T ilx},—‘:,.u—’ (D)

19: Compute MAE:
R ;
J!,LE—TE ¥, — ¥ (6)

20: Return predicted crop yield ¥

Resource Optimization :

Agricultural sustainability has become a major worldwide issue as a result of rising food demand, climate change,
and resource depletion. Traditional farming methods frequently result in excessive water consumption, fertiliser
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abuse, and pesticide misapplication, which can harm soil health and contribute to environmental contamination.
Modern precision agriculture uses powerful computer models and remote sensing technology to optimize resource
use while maintaining high crop yields. Traditional machine learning methods, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), struggle to successfully integrate multimodal agricultural
data. CNNs are primarily intended for spatial feature extraction, hence they are less useful for sequential climate
and soil data. RNNs, while useful for time-series research, suffer with long-range dependencies and processing
efficiency when dealing with huge datasets.

Transformer-based architectures are a possible approach since they can analyse whole datasets concurrently and
efficiently capture long-range dependencies using self-attention methods. Transformers employ multi-head
attention to analyse multiple agricultural data sources holistically, as opposed to CNNs, which focus on local feature
extraction and RNNs, which suffer from vanishing gradient concerns. In this paper, we provide a Transformer-
based model that uses satellite imagery, sensor-based soil moisture levels, and historical climate records to develop
optimal resource allocation methods. Our model uses the Radiant MLHub Agriculture Dataset to identify
meaningful patterns from multi-modal data, resulting in precise recommendations for water, fertilizer, and
pesticide consumption, decreasing waste and enhancing agricultural sustainability.

The core of our Transformer-based approach lies in the self-attention mechanism, which assigns importance
weights to different features within the dataset. Given an input sequence of agricultural data X = {x1,x2,...,xn}, the
self-attention mechanism computes attention scores using:

T
Attention(Q, K, V) = softmax (Q{g
R

v
Vi)
where Q,K,V represent the query, key, and value matrices derived from the input features, and d is the

dimensionality of the key matrix. The multi-head attention mechanism enhances the model’s ability to capture
complex relationships across different data types:

MultiHead(@), K, V) = Concat (head;, head, .. hcadh)WO

where each attention head learns distinct representations of the agricultural data, ensuring comprehensive
feature extraction.

To optimize resource allocation, we define a cost function that minimizes water, fertilizer, and pesticide
usage while maximizing crop yield:

N

J0) =" [wi- f(W;, F}, P) ~ Y]]

i=1

2

where W;, F;, P; represent water, fertilizer, and pesticide inputs for a given agricultural region iii, w; is a weight
factor based on environmental conditions, and Y; is the expected yield. The model is trained to minimize J(6),
ensuring an optimal balance between resource utilization and productivity. By employing this Transformer-based
framework, our study provides a scalable and adaptive solution for sustainable agriculture, leveraging state-of-the-
art deep learning techniques to enhance decision-making in precision farming.

Result and Discussion:

The implementation of artificial intelligence (AI) and deep learning techniques in agriculture has greatly improved
precision farming, allowing for better disease diagnosis, yield prediction, and resource optimisation. This section
summarises the findings from the evaluation of three major deep learning models: Convolutional Neural Networks
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(CNNs) for plant disease detection, Long Short-Term Memory (LSTM) networks for crop yield prediction, and
Transformer-based architectures for resource optimisation. The findings show that when compared to typical
machine learning methodologies, the results are more accurate, efficient, and robust. This discussion delves into
the performance of each model, its practical ramifications, and potential obstacles in real-world agricultural
applications.

Plant Disease Detection:

The ResNet-50 model, which included transfer learning and fine-tuning approaches, demonstrated high accuracy
in plant disease classification. Using the PlantVillage dataset, the model achieved a classification accuracy of 96%,
beating established machine learning methods like Support Vector Machines (SVM) and Random Forest classifiers.
Data augmentation techniques such as rotation, flipping, and contrast modifications helped to increase the model's
generalisability and robustness. The superior performance of ResNet-50 is attributed to its residual learning
framework, which allows deeper networks to be trained effectively. The model's efficiency in classifying multiple
plant diseases in real-time makes it an essential tool for precision agriculture. Future enhancements could
incorporate hyperspectral imaging and attention mechanisms to further improve disease classification.

Figure 6 : Sample output of Plant Disease Detection
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Figure 7 : Training accuracy and loss
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Figure 8 : Leaf Classification: Ground Truth vs. Model Prediction

Figure 9 displays a grid of leaf images, each labeled with "Truth" (actual class) and "Predicted” (model's
classification). It represents a machine learning model's performance in identifying different types of leaves,
possibly distinguishing between healthy and diseased ones. Matching truth and predicted values indicate correct
classifications, while mismatches highlight errors. The overall visualization helps assess the model's accuracy and
areas needing improvement.

Yield Prediction:

The LSTM-based model outperformed other models in predicting crop yield by accurately capturing temporal
relationships in agricultural data. Using the Radiant MLHub Agriculture Dataset, the LSTM model attained a 94%
accuracy rate, beating established statistical models like linear regression and Random Forest classifiers. The
findings show that LSTM networks effectively minimise the vanishing gradient problem, allowing for reliable
predictions based on historical weather patterns, soil quality, and crop growth data. The model's capacity to
incorporate many environmental elements leads to more accurate predictions for precision agriculture. Future
study could involve incorporating external variables like satellite imaging and market movements to improve yield

estimates.
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Figure 9 : Crop yield prediction
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Figure 10 : Ground Truth vs. Model Prediction

Figure 10 defines the probability density distributions of the ground truth yield and anticipated yield using the
LSTM model. The figures show that the LSTM model can approach the distributional features of the ground truth

yield.

Resource Optimization:

The Transformer-based model showed great promise in optimising agricultural resources by combining satellite
imaging, soil moisture data, and weather conditions. The self-attention process enables the model to quickly
analyse large-scale datasets, resulting in exact recommendations for water, fertiliser, and pesticide use. The model's
performance was evaluated using an optimisation algorithm that balances yield maximisation with resource
conservation. The model beat CNNs and RNNs by accurately capturing long-term dependencies in agricultural
data, resulting in a 20% reduction in resource waste while retaining optimal crop yields. The findings show that
transformer-based architectures are ideal for precision farming applications because of their capacity to interpret
complex and heterogeneous agricultural data. Future additions could include real-time sensor data and

reinforcement learning techniques to improve resource allocation.
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Figure 11 : Primary nutrition for each crop
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Figure 12 : Sample resource optimization for the crops

Figure 12 is a graphic comparing different crops based on their nitrogen, phosphorus, and potassium
requirements, as well as the temperature conditions in which they grow. Each subplot depicts the distribution of
these characteristics among different crops, which aids in resource allocation by finding crops with similar nutrient
and environmental requirements. The presence of error bars indicates data variability, allowing for more informed
decisions about fertilizer use and climatic compatibility. Farmers and policymakers can use this data to optimize

inputs, reduce resource waste, and increase sustainable agricultural productivity.
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Figure 13 : Distribution of agricultural condition
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CONCLUSION AND FUTURE WORK

This study focuses on the revolutionary impact of Al-powered deep learning models in precision agriculture,
proving their ability to improve efficiency, accuracy, and sustainability. Al addresses important difficulties in
modern farming by utilizing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformer models, such as illness detection, yield prediction, and resource allocation. CNNs can identify plant
illnesses with 96% accuracy by studying leaf patterns and visual signs, allowing for early intervention and lowering
crop losses. RNNs use previous weather, soil, and crop data to make 94% accurate production projections, allowing
farmers to maximize planning and reduce uncertainty. Transformer models improve resource allocation with 94%
accuracy by evaluating large datasets to recommend optimal irrigation, fertilization, and pest control measures,
hence increasing sustainability and reducing waste. The comparison research reveals that AI techniques
outperform traditional methods, which frequently rely on manual inspections and heuristic-based estimations that
are inefficient. Al-powered models deliver quick, precise insights, encouraging data-driven decision-making and
eco-friendly activities. However, obstacles persist, such as data scarcity, processing demands, and model
interpretability. Limited availability to high-quality datasets, the demand for increased computing capacity, and the
complexities of Al decision-making all impede wider adoption. Addressing these difficulties with increased data
collecting, computing efficiency, and explainable AI would strengthen AI's position in agriculture. As these
technologies advance, they will accelerate the adoption of intelligent and self-sufficient farming systems, changing
agriculture and guaranteeing global food security.

Future research should focus on combining AI and edge computing to enable real-time agricultural decision-
making. The creation of hybrid models that combine various deep learning architectures has the potential to
improve forecast accuracy. Furthermore, extending datasets with a variety of environmental variables and
including explainable AT methodologies would increase model transparency and trust. Another interesting path is
to use AI and robotics to automate farming activities, which could transform current agriculture.
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