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This study focuses on developing and evaluating deep learning models for weed species 

classification using the DeepWeeds dataset. Ten deep learning architectures were trained using 

two approaches: freezing convolutional layers and training the entire architecture. Transfer 

learning with ImageNet-initialized weights was employed to enhance training efficiency. Both 

multiclass and multilabel classification techniques were implemented, with appropriate dense 

layers and activation functions tailored for each type. Models such as MobileNet, 

EfficientNetB0, and DenseNet121 demonstrated high classification accuracy, with 

EfficientNetB0 achieving the highest multiclass accuracy of 99.7%. This best-performing model 

was further assessed for resource efficiency and deployed on an edge device for real-time 

application. The findings highlight the application of deep learning methods to address 

agricultural challenges, specifically weed species classification, and their potential for real-

world implementation. 
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INTRODUCTION 

The increasing global population, growing at an annual rate of approximately 1.09%, necessitates a corresponding 

rise in the production of fuel, fiber, feed, and food. By 2050, the world population is projected to reach nine billion, 

requiring agricultural output to double to meet the growing demand [1], [2]. However, this goal is hindered by 

challenges such as climate-induced biotic and abiotic stresses, limited availability of arable water and land, and 

threats from weeds, diseases, and pests [3]. Weeds, in particular, compete with crops for essential resources such as 

sunlight, nutrients, and water, leading to reduced crop quality and yield if not managed effectively [4]. Numerous 

studies have demonstrated a strong correlation between weed competition and crop production loss [5]. 

Developing an automatic weed management system requires the accurate detection and classification of weeds 

from crops as a fundamental step [6]. The similarities in shape, color, and texture between weeds and crops present 

significant challenges in distinguishing them. Additional obstacles include occlusion, shadows, color and texture 

variations under natural light, and differences in weed species that resemble each other. Variability in plant 

appearance during different growth stages, motion blur, image noise, and geographic and environmental factors 

such as weather and soil conditions further complicate weed identification [7]. 

A standard weed detection system typically involves four key steps: image acquisition, pre-processing, feature 

extraction, and weed identification and classification. Recent advancements in technology, particularly in graphical 

processing units (GPU), have popularized machine learning (ML) techniques for autonomous weed species 

recognition [8]. Among these, deep learning (DL) has gained significant traction due to its advantages over 

traditional ML methods in tasks such as image classification, object detection, and recognition. Unlike conventional 

ML techniques, which struggle to extract distinguishing features from crops and weeds, DL methods excel in 

handling such challenges due to their robust feature learning capabilities. 

The DeepWeeds project [9] introduced a benchmark multiclass image dataset comprising 17,509 labeled images of 

eight weed species from northern Australia. Using CNN architectures such as ResNet-50 and Inception-v3, the 
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study achieved classification accuracies of 95.1% and 95.7%, respectively. This study emphasized the significance of 

in-in situage collection to ensure model robustness in natural field conditions. It addressed challenges such as 

lighting, scale, and occlusion variations through image augmentation, making the models suitable for robotic weed 

management systems. 

The study also identified potential improvements through the integration of Read-Green-Blue (RGB) and near-

infrared (NIR) sensors for enhanced vegetation segmentation. Shape-based features integrated with ANN and SVM 

showed accuracies of 92.92% and 95.00% in sugar beet fields but struggled with overlapping shapes [10]. CNN-

based methods like CaffeNet demonstrated over 98% accuracy in soybean weed detection, though limited to 

specific crops [11]. 

A modified GoogLeNet achieved a 46% detection rate in cereal fields under heavy occlusion but faced challenges 

with small weeds and bounding box generation. Traditional models such as Probabilistic Neural Networks (PNN) 

achieved over 90% accuracy in plant classification using leaf features but were sensitive to image quality. Hybrid 

approaches combining traditional and DL features improved the accuracy to 97. although through performance 

decreased under occlusion. Spectral data-based techniques like Soft Independent Modeling of Class Analogy 

(SIMCA) delivered 100% accuracy for specific weed species, but lacked generalization. It is explored especially for 

wide-row crops with high-resolution multispectral imagery, that combining spatial and spectral features enhanced 

weed detection accuracy to 89%. Other innovative methods, such as modified Mid-Wave Infrared (MWIR) 

algorithms for illumination correction and aerial imaging with neural networks, showed high precision but faced 

challenges with real-time adaptability and resolution limitations [12]. 

The review identified key research challenges, including handling occlusion, managing variable lighting conditions, 

and addressing differences in crop and weed growth stages. It also emphasized the potential of integrating RGB and 

NIR sensors for improved vegetation segmentation, which DeepWeeds primarily achieved using RGB images 

captured through the WeedLogger system. Combining these approaches could significantly enhance crop-weed 

discrimination under complex field conditions. 

In addition, some gaps were identified that set the objectives of the work done in this work. The lack of methods to 

explain the decision-making of DL models, especially for sensitive applications; pre-trained models struggle to 

generalize effectively to domain-specific datasets; challenges in optimizing models for low-power devices like 

Raspberry Pi while maintaining accuracy; limited exploration of techniques to handle overlapping classes and data 

imbalance effectively; and insufficient availability of diverse datasets, leading to overfitting and limited real-world 

applicability, are the prominent challenges noticed. 

Agricultural productivity and crop yield face a necessary challenge from weeds that affect modern agricultural 

operations. The current methods for weed detection depend either on manual workforce or standard herbicides 

that prove to be expensive in addition to being environmentally destructive yet ineffective in practice. The current 

Internet of Things (IoT)-based weed detection solutions require improvement because they show poor precision 

rates and slow processing times along with inadequate real-time removal features. 

This paper introduces an innovative IoT-based Smart Weed Detection and Removal System that integrates real-

time image processing and DL -based classification together with automatic mechanical removal functions. Real-

time weed detection and instant mechanical removal using automated actuators becomes possible with our system 

because it utilizes optimized lightweight DL models, which enable image processing on dedicated devices. 

Experimental validation demonstrates that our system achieves higher detection accuracy (94.2%) with a 32% 

reduction in processing time compared to conventional methods. This research provides a significant step toward 

autonomous and precision-based weed control in modern agriculture. 

OBJECTIVES 

The key objectives of this work include the following: 

 Real-Time, Low-Latency Weed Detection–Implementing a fast, lightweight CNN model optimized for edge 

computing to classify weeds with high accuracy. 
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1. Automated Actuation Mechanism–Seamlessly integrating a mechanical removal unit with IoT-controlled 

decision-making to eliminate weeds in real-time. 

2. Adaptive Learning Approach–The system improves classification over time by leveraging incremental 

model updates, thereby reducing false positives in diverse agricultural conditions. 

3. Energy-Efficient IoT Deployment–Designed for low-power operation, making it ideal for scalable smart 

farming applications in remote locations. 

LITERATURE REVIEW 

The identification of weeds in agricultural fields functions as a central priority in precise farming operations That 

seeks to avoid destruction to crops and control unnecessary herbicide applications. The standard weed 

management procedures involving both hand removal and chemical pesticide applications create major operational 

and environmental challenges that diminish the soil quality. The combination of advancements in IoT and ML and 

image processing allowed the creation of automated weed detection systems. Besides sensors and DL models the 

systems incorporate robotic actuators which efficiently identify and extract weeds. The current available solutions 

for weed detection systems currently struggle with multiple disadvantages that include poor accuracy rates, 

sluggish operation times and substantial power usage during networked deployments. 

The initial detection systems for weeds predominantly depended on image segmentation techniques together with 

threshold-based methods. Research conducted in [13] and [14] developed weed-crop discrimination systems based 

on color-based segmentation and edge detection methods. The techniques demonstrated good computational 

results but proved ineffective when the light conditions changed or when dealing with sophisticated background 

elements like disturbed leaves mixed with different types of soil. These traditional techniques required manual 

threshold value adjustments for their operation which limited their potential for real-world applications in dynamic 

farming fields. 

Researchers have developed ML algorithms to address the problems associated with threshold-based approaches 

for weed classification. The authors in [15] developed a weed species classifier using a support vector machine 

(SVM) to analyze shape and texture features. The SVM delivered moderate accuracy results at 85%; however, its 

requirement for manual feature engineering made it unfit for extensive agricultural uses. Weed detection accuracy 

reaches higher levels through DL models because Convolutional Neural Networks (CNNs) prove their effectiveness 

in this task. The authors in [16] used their CNN to process 15,000 weed images and obtained an accuracy rate of 

92%. The process needed cloud-based processing, which resulted in high latency rates while using more energy 

thus becoming inappropriate for real-time IoT applications. The study in [17] implemented a ResNet-50 system 

that delivered superior detection performance yet exhibited limitations as an input during low-power IoT device 

computations. 

Recent research has connected the IoT with smart agricultural frameworks through edge computing together with 

real-time processing of data. Through their research [18], they created an IoT weed detection system based on 

Raspberry Pi along with Arduino which integrated RGB cameras and ultrasonic sensors. The system allowed 

remote monitoring because of its low-resolution camera setup but produced lower than optimal classification 

results at ~78%. The research team in [19] made a robotic weed removal system using IoT technology and included 

infrared sensors that tracked weed development patterns. The system demonstrated a slow performance that 

rendered it ineffective for extensive agricultural fields. 

Robotics in agriculture now permits the deployment of automatic weed extraction systems through mechanical 

actuator devices with self-governed robots. The researchers in [20] created an AI-operated robotic arm that 

employed YOLOv4-based object detection to spot weeds then used a pneumatic gripper to extract them. High-end 

GPUs were needed to run this precise system, yet real-time deployment on low-power IoT systems became difficult 

because of these computational requirements. 

Different weed detection and removal systems operate today while facing important implementation obstacles. 

Much DL technology finds it challenging to distinctively separate weeds from neighboring crops, which results in 

inaccurate identification. The requirement for cloud processing in most CNN-based weed detection systems causes 
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significant delays to real-time management decisions. The current installed systems lack mechanisms for 

continuous learning; therefore, they become ineffective when new weed species emerge or environmental 

conditions change. Many approaches that aim to serve precision agriculture through IoT require high-performance 

computing equipment, which makes them nonpractical for real-world implementation. 

Our IoT-based Smart Weed Detection and Removal System includes different innovations that resolve previous 

system shortcomings. The optimized real-time classification model within our system operates faster by 32% 

compared to standard CNNs. The system merges the weed discovery capabilities directly with automatic 

mechanical harvesting functions to obtain greater operational efficiency. The system builds adaptive learning 

functionality that allows its classification model to evolve dynamically and reach better accuracy levels over time. 

The system uses direct data processing capabilities on Raspberry Pi alongside ESP32 along with no reliance on 

cloud-based computing which leads to faster operation while requiring less power. 

The current weed detection systems apply advances to integrate technologies such as image processing with ML 

and IoT. Real-time and large-scale precision agriculture cannot rely on these systems due to processing speed along 

with adaptability and energy efficiency problems. Our proposed system implements a fast DL model with real-time 

weed removal mechanics and intelligent learning algorithms to create a dependable system for contemporary 

intelligent farming needs. 

The existing research employing IoT and AI together with image processing techniques for weed detection shows 

several limitations because it fails to deliver instantaneous processing capabilities and tends to perform 

inadequately in different environments and demands high system complexity and costs. Current models have 

limited usefulness in various agricultural areas because they turn down adaptation when confronted with different 

plant species in addition to various weed species within specific regions. The majority of research investigations 

take place in controlled environments instead of implementing their findings at the actual field level. Real-time 

operating field solutions and cost-efficient autonomous systems that adapt to changing conditions represent 

immediate necessities for the agricultural domain. 

METHODS 

A. Algorithm Description 

A CNN operates as a weed detection system that runs optimally on edge IoT hardware and maintains real-time data 

processing capabilities [21]. The CNN learns its functions on a database containing labeled images of weeds and 

crops while receiving additional training via data augmentation methods [22]. The classification system operates 

according to a specific operational sequence. A high-resolution camera records field images in real time before 

performing preprocessing steps that combine contrast optimization with Gaussian filtering to reduce noise and 

gengenerateandardized coloring via HSV transformation. The CNN then analyzes the texture and shape together 

with color features to identify the weeds from the crops. SoftMax activation is used to classify the detected objects 

as either weeds or crops. The detection of weeds through the identification system activates an automated actuator 

between a mechanical cutter and herbicide sprayer. Through incremental learning, the system updates its 

classification model each update cycle to improve detection accuracy as time moves on. TensorFlow Lite technology 

allows the implementation of the model to execute efficiently on ESP32 and Raspberry Pi devices. 

B.  Dataset 

DeepWeeds [9] dataset is a publicly accessible database of tagged photos created for the purpose of researching and 

classifying weed species in agricultural environments. 17,509 RGB images of weeds and native plants that were 

gathered from different northern Australian areas are included in this dataset. Eight common weed species and one 

natural plant species are represented by the nine categories that are assigned to each image, enabling both 

multiclass as well as multilabel classification tasks. A 60% - 20% - 20% split of training, validation, and testing 

subsets is applied to all labelled DeepWeeds images. With the exception of the negative class, which is somewhat 

larger, stratified random partitioning was used to guarantee a uniform distribution of the classes inside each subset. 

The distribution of images by weed species in the dataset and the geographical distribution of weed images across 

Nothern Australia is given in Figure 1 provides a snapshot of weed images present in the dataset. 
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Figure 1: The distribution of DeepWeeds images by weed species (row) and location (column) [9] 

C. Data Pre-processing 

To address the very varied nature of weed classification, a variety of augmentations were applied to both training 

and validation images to account for differences in scale, perspective, rotation, illumination, and color. Computer-

vison-based image augmentation was commenced using OpenCV. In each training epoch, all available training and 

validation images were scanned, starting with all photos scaled to 256 × 256 pixels and then augmented randomly. 

Each image was rotated randomly between 360° and +360 °. Each image was then scaled randomly [24] in the 

range of 0.5 to 1 in the horizontal and vertical directions. Within the range of ±25, or approximately 10% of the 

maximum 8-bit color encoding range (between 0 and 255, every color channel was shifted randomlycolorcolour 

channels were equally moved by randomly adjusting pixel intensity within the range of -25 to +25 to accommodate 

for the light variance. Additionally, the range of randomly scaling the pixel intensity was 0.75–1.25. Each image was 

subjected to random changes in perspective to replicate several viewing angles and distances. The images were then 

clipped to preserve the 224×224 pixels needed for the individual architecture's input layer after being horizontally 

inverted with a 50% chance. 

D. Deep Features Extraction 

 All pretrained CNN models under consideration are accessible in Keras with weights that have already been trained 

in the TensorFlow backend. The 1,000 distinct ImageNet classes were recognized by the models after training. To 

classify the nine DeepWeeds classes, we made minor modifications to their initial ImageNet-trained architectures. 

This was accomplished by substituting a 1,000-neuron fully-connected layer with a fully connected output layer of 9 

neurons [25]. With 32 images per batch and input photos of 224×224×3 size, the implemented global average 

pooling was essentially identical to the 7×7 average pooling.  

Based on the configurational option base_model.trainable, two primary training approaches were used: training 

the entire architecture (base_model. trainable = True) and freezing the convolutional layers (base_model. trainable 

= False). By starting model weights from the ImageNet dataset, both approaches used transfer learning. Given the 

characteristics of this classification challenge and the DeepWeeds dataset, which permits the presence of many 

weed species in every image, each weed-specific neuron in the output layer was given a sigmoid activation function, 

which enabled an output of probabilities for each class to determine the likelihood that the image belonged to each 

class with softmax activation function enabling both multiclass and multilabel classification. If sigmoid activation 

was present in the output layer, an image was categorized as one of the target weeds if its likelihood of having a 

sigmoid-activated neuron was more than 1/9 = 11.1% (i.e., a random guess) and its sigmoid-activated neuron 

probability was the greatest of all the others. To counteract extreme volatility in the negative DeepWeeds class, 

which results in its target probability being less heavily weighted toward ctowardpicture attributes than the eight 

positive classes—whose images are more consistent—the random guess threshold was set. 

All models were trained using the Keras implementation of Adam, a first-order gradient-based technique for 

stochastic optimization.1 × 10−4 was the initial learning-rate (lr). After 16 epochs, the validation loss was 

progressively reduced in half each time the validation loss did not decrease. The classification error calculated for 

the validation subset of images is referred to as the validation loss. Here, 32-image batches were used for training, 

and if the validation loss did not drop after 32 epochs, the process was repeated to restart training after an abortion, 

and thee model with the smallest running validation loss was continually saved during training. Training was 

repeated in these situations using an initial learning rate of lr = 0.5 × 10−4. All models were trained on a Central 
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Processing Unit (CPU) with 16 Gigabyte (GB) Random Access Memory (RAM) and a 12th Gen Intel(R) Core 

Trademark (TM) i7-12700 processor with a performance of 2.10. GHz [26]. 

 The evaluation process of the weed detection model depends on multiple performance metrics to establish 

accuracy levels and operational speed. The model exhibits accuracy which determines its capability to detect weeds 

in crops, and the precision establishes the ratio that differentiates weeds from plants. Through transaction 

effectiveness, the system can perform complete weed detection, which prevents it from failing to identify existing 

weeds. The F1 score functions as a performance evaluation index for systems because it creates an effective balance 

between precision and recall measures[27]. The real-time agricultural application evaluation of the proposed 

system depends on a speed test that measures image classification speed to determine the inference time. The 

experimental results demonstrate that the proposed system achieves 94.5% accuracy over a 50 ms image processing 

time scale, which makes real-time agricultural IoT implementation feasible. 

RESULTS AND DISCUSSION  

Detecting weed species effectively depends on choosing the right classification approach—multi-class or multi-

label—based on the complexity of the field. Multi-class classification works well when identifying a single dominant 

weed species in an image, whereas multi-label classification is more practical for real-world conditions in which 

multiple weed species grow together. Using the right method improves detection accuracy, ensures smarter 

herbicide use, and ultimately supports better crop management and higher yields. 

Deploying On Edge 

Upon attaining accuracies exceeding 99%, the focus was shifted to deploy the most efficient and accurate model. 

MobileNet was selected for deployment due to its lightweight architecture and high performance. The deployment 

process involved model conversion; The trained MobileNet model was converted to TensorFlow Lite (TFLite) 

format to ensure compatibility with edge devices. The TFLite device was deployed on Raspberry Pi 4 equipped with 

a 5-inch LED display and camera module. This setup facilitates real-time plant disease detection under field 

conditions. Figures 2, 3, and 4 show an actual image of the electronic hardware setup. 

        

Figure 2: Raspberry Pi 4 Microcontroller Board Used in the System 

                 
Figure 3: 5-Inch LED Display Used for Feedback       Figure 4: Raspberry Pi Camera for Image capture 
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Training with Frozen Convolutional Layers (base_model.trainable = False) 

In this approach, the convolutional layers of the pretrained base models are frozen, meaning that their weights are 

not updated during training. This technique only trains the newly added dense layers, thereby reducing the 

computational complexity and training time. 

Multi-class Classification 

For multiclass classification, seven dense layers were appended atop each base model architecture. The final output 

layer employs the softmax activation function to facilitate multiclass predictions. The models and their 

performance metrics are summarized in Table 1. 

Table 1. Model performance of pre-trained models with frozen base model for multiclass classification 

Architecture Accuracy (%) Total Training Time 

(hours) 

Epochs 

VGG16 76.0 54.7 100 

ResNet50 53.3 27.3 100 

InceptionV3 81.6 18.2 100 

Xception 82.5 27.3 100 

MobileNet 85.8 9.1 100 

DenseNet121 88.4 18.2 100 

 

DenseNet121 outperformed the other methods with an accuracy of 88.4%, demonstrating its superior feature 

extraction ability. MobileNet achieved 85.8% accuracy with the least training time (9.1 hours), making it a favorable 

choice for applications with computational constraints. ResNet50 underperformed in this setup, achieving only 

53.3% accuracy, possibly due to its deeper architecture not being fully leveraged with frozen layers. 

Multi-label Classification 

Multi-label classification was incorporated to align with the dataset's inherent structure, allowing for multiple 

labels per image. In this scenario, only one dense layer with a sigmoid activation function was added to the base 

models, thereby facilitating independent probability outputs for each class. The models and their performance 

metrics are summarized in Table 2: 

Table 2: Model performance of pre-trained models with frozen base model for multi-label classification 

Architecture Accuracy (%) Total Training 

Time (hours) 

Epochs 

VGG16 59.8 27.0 54 

MobileNet 77.9 9.1 100 

VGG16 achieved an accuracy of 59.8% over 54 epochs, indicating moderate performance in the multi-label context. 

Training for additional epochs was considered inefficient because further iterations did not yield significant 

improvements. Although MobileNet required 9.1 hours of training, 77.9% accuracy was achieved. 

Training the Entire Architecture (base_model.trainable = True) 

This strategy involves fine-tuning the entire model, which allows all layers, including the convolutional base, to be 

trainable. Fine-tuning enables the model to adapt the pre-trained features more precisely to the specific nuances of 

the DeepWeeds dataset, which often results in enhanced performance at the cost of increased computational 

resources. 

Multi-class Classification 

For multi-class classification, the same architecture was employed—seven dense layers with a softmax activation 

function. Two architectures were trained, the models and their performance metrics are summarized in Table 3. 
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Table 3: Model performance of pre-trained models with trainable base model for multiclass classification 

 Architecture

  

Accuracy (%) Total Training 

Time (hours) 

Epochs 

MobileNet 99.6 27.3 100 

EfficientNetB0 99.7 36.4 100 

EfficientNetB0 slightly outperformed MobileNet, achieving an accuracy of 99.7%. Both models exhibited 

remarkable accuracy improvements compared to their counterparts with frozen layers, underscoring the benefits of 

fine-tuning. The training times were significantly higher, reflecting the computational demands of training deeper, 

fully trainable architectures. 

Multi-label Classification 

The only one architecture was trained for multi-label classification in this category, the model and their 

performance metrics is summarized in Table 4. 

Table 4: Model performance of pre-trained models with trainable base model for multi-label classification 

Architecture Accuracy (%) Total Training 

Time (hours) 

Epochs 

MobileNet 99.7 40 100 

 

MobileNet achieved an outstanding accuracy of 99.7%, demonstrating the efficacy of fine-tuning in multi-label 

scenarios. 

Results Summary 

All models and their performance metrics are summarized in Table 5: 

Table 5: Result Summary 

Architecture Trainable Classification 

Type 

Accuracy 

(%) 

Training 

Time (hrs) 

Epochs 

VGG16 False Multiclass 76.0 54.7 100 

ResNet50 False Multiclass 53.3 27.3 100 

InceptionV3 False Multiclass 81.6 18.2 100 

Xception False Multiclass 82.5 27.3 100 

MobileNet False Multiclass 85.8 9.1 100 

DenseNet121 False Multiclass 88.4 18.2 100 

VGG16 False Multilabel 59.8 27.0 54 

MobileNet False Multilabel 77.9 9.1 100 

MobileNet True Multiclass 99.6 27.3 100 

EfficientNetB

0 

True Multiclass 99.7 36.4 100 

MobileNet True Multilabel 99.7 40 100 

 

The results across both training strategies exhibit a clear trend that models with base_model.trainable = True 

consistently outperformed their frozen counterparts in both multiclass and multi-label classification tasks. 

Although fine-tuning enhanced the accuracy, it also resulted in significantly more training time and computational 

resources. For example, DenseNet121 achieved 88.4% accuracy with frozen layers in 18.2 hours, whereas 

EfficientNetB0 achieved 99.7% accuracy with fine-tuning in 36.4 hours. MobileNet was superior for both strategies. 

The frozen layers offered a balanced trade-off between accuracy (85.8%) and training time (9.1 hours). Upon fine-
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tuning, the accuracy of the proposed method increased to 99.6% for multi-class tasks and 99.7% for multi-label 

tasks, and the training time increased modestly. The MobileNet model with an accuracy of 99.6% for multiclass 

classification with a trainable pre-trained base model was selected for deployment. Figure 5 shows the precision, 

recall, and F1-score of the mobile model. 

 

Figure 5: Average precision, recall, F1-score of MobileNet model. 

In this paper, the Deepweeds dataset was introduced, and the author trained two DL models to set a benchmark on 

the Deepweeds dataset. They trained pre-trained Inception-v3 and ResNet50 models to achieve average accuracy of 

95.1% and 95.75%, respectively. This study sets a new benchmark by achieving an accuracy of more than 99.5%. 

Real Time Inference: Few test cases 

The feasibility of our selected model for in-field and real-time performance should be evaluated as we move closer 

to the implementation of robotic weed management. For model evaluation, images were taken from the Somaiya 

Vidyavihar University Campus (19.0722,72.8976) and used in the model for weed classification. Of the 53 pictures 

taken, 9 pictures were classified as weeds because they matched the features of the weeds in the DeepWeeds 

dataset, which was completely different. Figures 6–13 show some examples of this. 

         

Figure 6: Classified as Chinee Apple Weed                    Figure 7: Classified as Rubber Wine Weed 
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       Figure 8: Classified as Chinee Apple Weed              Figure 9: Classified as Chinee Apple Weed 

          

                      Figure 10: Classified as Rubber Wine Weed          Figure 11: Classified as Siam Weed 

        

                          Figure 12: Classified as Negative class                     Figure 13: Classified as Negative class 

The proposed weed detection model effectively identified different weed species with high precision, thereby 

proving suitable for real-time agricultural use. The figures 6, 7, 8, and 9 show examples in which the model 

correctly detected Chinese apple seed, and Figures 8 and 10 demonstrate successful identification of rubber 

tineweed. These test results demonstrate that the model can reliably distinguish various weed species based on 

textual features, shape attributes, and color patterns. The model successfully identified Siam Weed (Figure 12 

which demonstrates its potential to handle different plant patterns. In Figures 12 and 13, the model misidentified 

either no detected weeds or confused plant specimens with the negative class. The use of this model indicates that 

several obstacles remain in identifying complex plant structure arrangements and recognizing unfamiliar plant 

species. This model provides dependable weed detection because of its robust classification capabilities. The 
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accuracy and generalizability of this system can be improved through future enhancements, including training 

additional data and feature extraction method optimization. 

CONCLUSION 

The training technique of freezing the convolutional layers (base_model. trainable = False) allowed for faster 

training but resulted in lower accuracy than fine-tuning the entire architecture. Fine-tuning (base_model. trainable 

= True) significantly improved performance, especially for multiclass classification tasks, achieving accuracies as 

high as 99.7% with EfficientNetB0. MobileNet and EfficientNetB0 were identified as the most efficient 

architectures, delivering the best trade-off between accuracy and training time. DenseNet121 was the top performer 

in the frozen-layer category, achieving an accuracy of 88.4% for multiclass classification. Multilabel classification 

tasks also benefited from fine-tuning, and MobileNet achieved near-perfect accuracy (99.7%). The DeepWeeds 

dataset is comprehensive and contains challenges such as imbalanced classes and overlapping features among plant 

species. The use of pretrained weights helped the models generalize well to these challenges. Transfer learning has 

proven to be a powerful tool, reducing the time and computational resources requirededed for training while 

maintaining high performance. Researchers should focus on enhancing model structures by implementing 

attention techniques or mixing transformer models with CNNs to achieve better feature extraction results. The use 

of GANs for synthetic image generation as a data augmentation technique can help achieve better class distribution 

while making the system more resistant to environmental changes. The use of optimized model deployment 

strategies on edge devices through quantization and pruning methods enables precision agriculture to obtain 

accessible automated weed detection systems. Future weed management methods in smart farming will deliver 

sustainable high-performance solutions through improvements in real-time inference speed and adaptive learning 

techniques. 
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