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Accurate yield prediction for broccoli remains a critical challenge due to the complex, non-

linear interactions between climatic variables, soil properties, and agronomic practices. 

Traditional statistical models often fail to capture these interactions, leading to suboptimal 

decision-making and resource inefficiencies for farmers. To overcome these limitations, this 

study proposes an advanced machine learning-based approach called the Broccoli Yield 

Prediction Ensemble Method (BYPEM), designed to improve prediction accuracy and 

agricultural planning. BYPEM integrates both bagging and boosting ensemble learning 

techniques for robust broccoli yield forecasting. The study begins with a comprehensive data 

preprocessing phase, including handling missing values, outlier removal, categorical variable 

encoding, and normalization. Feature selection is performed using backward elimination to 

retain the most relevant predictors. The dataset is split into training and test sets through 

stratified sampling to ensure balanced representation. In the model development phase, 

BYPEM applies bagging methods such as Random Forest Regressor and Extra Trees Regressor 

to reduce variance, and boosting methods such as Gradient Boosting Regressor (GBR), 

XGBoost, LightGBM, and CatBoost to minimize bias by iteratively improving predictions. 

Hyperparameter tuning further optimizes model performance. The models are evaluated using 

multiple metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), R² score, and overall accuracy. Among all models, XGBoost 

achieves the highest predictive performance, confirming the effectiveness of the BYPEM 

framework in capturing complex yield dynamics. This research demonstrates how ensemble 

learning can support sustainable agriculture by enhancing precision in broccoli yield prediction 

and guiding data-driven farm management strategies. 

Keywords: Broccoli yield prediction, machine learning models, ensemble learning 

techniques, BYPEM, feature selection, bagging and boosting methods, hyperparameter tuning. 

 

1. INTRODUCTION 

Agricultural productivity, particularly crop yield prediction, is crucial for ensuring food security, optimizing 

resources, and improving farming practices [1, 2]. Accurate yield prediction helps make informed decisions on 

irrigation, fertilization, pest control, and harvesting. This research develops a machine learning model to predict 

broccoli yield (kg) based on environmental, soil, and agricultural factors such as soil moisture, temperature, 

rainfall, and market price. By using data science techniques, the study aims to provide accurate predictions to help 

farmers improve efficiency. Predicting crop yield, especially for broccoli, involves datasets with both numerical and 

categorical features. The study applies preprocessing steps like handling missing values, removing outliers, and 

normalizing data, followed by feature selection. Models like Random Forest, Extra Trees, Gradient Boosting, 

XGBoost, LightGBM, and CatBoost are trained and tested to assess their accuracy. The study focuses on key factors 

such as pH, moisture content, nitrogen levels, temperature, and rainfall, comparing model performance based on 

predictive accuracy and other metrics. A significant challenge in yield prediction is the variability of factors like soil 

conditions, climate, and farming practices. For broccoli, environmental conditions like temperature, rainfall, and 
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moisture content are crucial, along with soil quality factors like nitrogen, phosphorus, and potassium levels. 

Traditional methods often use simpler models, which may not capture the complex interactions between these 

variables [3]. Studies have shown that limiting lateral branches and managing pests like Diamondback Moth 

(DBM) can affect yield [4, 5]. Karso et al. highlighted that broccoli (Brassica oleracea L.), though suitable for year-

round cultivation under greenhouse conditions, is vulnerable to several insect pests including Brevicoryne 

brassicae, Pieris rapae, Plutella xylostella, and Agrotis ipsilon [20]. The study demonstrated that the use of sticky 

traps effectively reduced pest infestation levels, with infected percentages significantly lowered (to 0–4%) across 

pest types. This method improved both yield quantity (up to 1200 kg/greenhouse) and quality, while eliminating 

the need for chemical pesticides, making it a sustainable solution within integrated pest management strategies. 

This research aims to bridge this gap by applying machine learning to capture these complex relationships. The 

study includes data preprocessing, feature selection, and model evaluation. Models are trained on a dataset split 

into training, validation, and test sets. Recent studies on broccoli production optimization under climate change [6, 

7] highlight the importance of  improving yield predictions through machine learning. Machine learning 

techniques, especially regression models, have shown promise in overcoming the limitations of traditional 

methods. For instance, studies have found that XGBoost outperforms other models in terms of accuracy and 

efficiency [8]. Random Forest and Extra Trees Regressor models are also popular for reducing overfitting and 

providing valuable feature importance metrics. The methodology involves handling missing values, removing 

outliers, normalizing numerical features, and encoding categorical variables.  

Backward elimination removes non-significant features, ensuring model reliability in predicting broccoli . 

Ciancaleoni et al. conducted a reduced rank factorial regression analysis to evaluate the impact of environmental 

variables—particularly nitrogen content, rainfall, minimum temperature, and clay content—on broccoli yield under 

Organic Agriculture (OA) and Low Input (LI) systems. These factors explained 91% of the G×E interaction, 

highlighting the importance of managing key environmental conditions and selecting genotypes adapted to specific 

pedo-climatic contexts in sustainable agriculture [14]. Kim et al. used the ALMANAC model to simulate the impact 

of climate change and cropping practices on broccoli yield in California. Through 33,600 simulations combining 

climate scenarios, CO₂ levels, nitrogen rates, and plant densities, they found nitrogen application had the greatest 

influence on yield, followed by CO₂ levels. Under stress conditions, low density and low nitrogen inputs maximized 

yield, while elevated CO₂ and temperature improved responses to higher inputs. The study highlights the need for 

adaptive strategies to sustain broccoli production under changing climate conditions. Johansen et al. investigated 

how latitude-related climatic factors affect the sensory quality of broccoli florets across Europe. Broccoli grown 

under low temperatures and long daylight hours in northern regions showed enhanced attributes like bud 

coarseness, uniform color, crispness, and juiciness, while southern sites with higher temperatures and shorter days 

exhibited increased bitterness and stale flavor. Their findings highlight the influence of temperature and light 

interactions on sensory traits and support region-specific marketing of broccoli based on climatic growing 

conditions [16]. Sola et al. examined how low (LT) and high (HT) growing temperatures affect the phytochemical 

profile and bioactivity of broccoli microgreens. LT conditions enhanced total phenolics, tannins, glucosinolates, and 

sinapic acid, indicating improved nutritional value. In contrast, HT elevated soluble sugars and indole-3-acetic 

acid, suggesting stronger osmotic stress and defense responses. Both temperature stresses reduced chlorophyll and 

antioxidant potential. While both LT and HT increased α-amylase inhibition, only LT improved lipase inhibition. 

The study concludes that LT-grown broccoli microgreens are more nutritionally beneficial than those grown under 

HT conditions [17]. Scuderi et al. conducted an environmental and economic assessment of an innovative organic 

broccoli cultivation model proposed by the Bresov project in Sicily. Using Life Cycle Assessment and gross income 

evaluation, the study revealed a 60–100% reduction in environmental impact compared to conventional methods. 

Although organic yields were slightly lower and production costs higher—leading to a 61% reduction in gross 

income—these losses were offset by Common Agricultural Policy (CAP) subsidies and premium market prices. The 

Bresov protocol, incorporating organic fertilizers, natural crop protection, and improved soil management, 

demonstrated potential for enhancing sustainability, environmental protection, and farmer profitability in organic 

broccoli farming [18]. Wang et al. emphasized the need for innovation in broccoli cultivation to meet increasing 

market demands for quality and yield [19]. The study proposed an integrated approach involving advancements in 

seedling technology, transplanting methods, nutrient and pest management, and the adoption of precision 
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agriculture and green circular production models. Results demonstrated that these integrated innovations 

significantly enhance yield, quality, and production efficiency. The research highlights the potential of smart 

agriculture and sustainable practices to support the broader development of the broccoli industry, advocating for 

future improvements in digital management and ecological farming systems. This study contributes to agricultural 

science by applying machine learning for yield prediction. By using advanced bagging and boosting techniques, the 

research aims to provide more accurate predictions than traditional methods. The preprocessing and feature 

selection techniques used can be applied to other crop yield prediction tasks, benefiting various agricultural sectors. 

Research on crop and water productivity for broccoli under irrigation systems highlights the importance of water 

management strategies in optimizing yield [9]. The study emphasizes hyperparameter tuning, model selection, and 

ensemble methods to achieve high prediction accuracy, helping farmers make better decisions and promote 

sustainable farming practices. XGBoost is expected to outperform other models, providing a reliable tool for 

forecasting broccoli yield. The study seeks to identify key factors influencing yield, such as soil moisture, 

temperature, and market price, and improve yield prediction. Enhanced predictions can help farmers optimize 

practices, increase productivity, and contribute to food security, while advancing precision agriculture for more 

sustainable farming practices. 

2. BYPEM PROPOSED MODEL  

2.1 Dataset 

The dataset used in this study has been sourced from ICAR (Indian Council of Agricultural Research) and has 

represented agricultural data from the Tamil Nadu region in India, as shown in Figure 1. It has consisted of 473 

records with key attributes essential for broccoli yield analysis. These attributes have included Soil_Type, pH, 

Moisture_Content, Nitrogen_Content, Phosphorus_Content, Potassium_Content, Water_Irrigation_L, Fertilizer 

Inputs (Nitrogen, Phosphorus, Potassium in kg), Temperature (Spring, Summer, Fall), Rainfall (Spring, Summer, 

Fall in mm), Broccoli_Yield_kg, and Market_Price_INR. The dataset has provided valuable insights into soil 

properties, climatic conditions, and fertilizer usage, making it a useful resource for machine learning applications in 

agricultural optimization and yield prediction. 

 

Figure 1. Dataset Representation for Tamil Nadu Region 

Data preprocessing is the initial step before building a machine learning model. The first task is to handle missing 

values in the dataset. For numerical columns such as pH, Moisture_Content, Nitrogen_Content, 

Phosphorus_Content, Potassium_Content, Temperature_Spring_C, Temperature_Summer_C, 

Temperature_Fall_C, Rainfall_Spring_mm, Rainfall_Summer_mm, Rainfall_Fall_mm, and Market_Price_INR, 

KNN imputation has been used to fill the missing values. If KNN imputation is not suitable, the median value has 
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been used instead. The median is calculated differently depending on whether the number of data points is odd or 

even. The overall workflow of the proposed model is illustrated in Figure 2.  Equation 1 represents the calculation 

of the median for datasets with odd and even numbers of data points.                                   

          and                                                 (1) 

 

Figure 2. Architecture of Proposed Ensemble Model  

For categorical columns such as Soil_Type, missing values have been imputed using the mode (the most frequent 

value), which is consistent with the most common type of soil in the dataset, ensuring that missing data does not 

disrupt the consistency. The next preprocessing step is handling outliers. The Inter quartile Range (IQR) method 

has been used to detect and remove outliers from numerical features. The IQR is calculated based on equation 2 as, 

                                                                                                                                            (2) 

Where Q1 and Q3 are the first and third quartiles, respectively. Outliers are identified using the following bounds, 

     and Upper Bound = Q3+1.5 X IRQ                           (3) 

Data points falling outside these bounds have been removed from the dataset. For categorical variables, Soil_Type 

has been transformed into numerical values using Ordinal Encoding, assigning integer values to each category (e.g., 

Sandy = 1, Loamy = 2, Clay = 3). Finally, Z-score normalization has been applied to numerical features such as pH, 

Moisture_Content, Nitrogen_Content, Phosphorus_Content, Potassium_Content, Broccoli_Yield_kg, 

Water_Irrigation_L, Nitrogen_Fertilizer_kg, Phosphorus_Fertilizer_kg, Potassium_Fertilizer_kg, 

Temperature_Spring_C, Temperature_Summer_C, Temperature_Fall_C, Rainfall_Spring_mm, 

Rainfall_Summer_mm, Rainfall_Fall_mm, and Market_Price_INR. This normalization transforms each feature to 

have a mean of 0 and a standard deviation of 1, 

                                                               (4) 
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Where X is the data point, μ is the mean, and σ is the standard deviation of the feature. 

2.2 Feature Selection 

After preprocessing, feature selection is performed to identify the most relevant features for predicting 

Broccoli_Yield_kg. This step involves using backward elimination, a wrapper method. Initially, a linear regression 

model has been trained using all features, and the model’s performance has been evaluated using the R-squared 

equation metric 5, 

                                            (5) 

Where is the actual value of Broccoli_Yield_kg,  is the predicted value from the model, is the mean of the 

actual values. The p-value for each feature has been calculated using a statistical test (usually the t-test in linear 

regression). Features such as Rainfall_Fall_mm have been identified as least significant, and features with p-values 

greater than a chosen threshold (0.05) have been removed. This process has been repeated iteratively until no more 

features could be eliminated without adversely affecting the model performance. The features that have been 

retained for model training include pH, Moisture_Content, Nitrogen_Content, Potassium_Content, 

Temperature_Spring_C, Temperature_Summer_C, Market_Price_INR, and the encoded Soil_Type. 

2.3  Data Splitting 

Once the relevant features have been selected, the dataset has been divided into training and test sets using 

stratified sampling. The target variable Broccoli_Yield_kg has been preserved proportionally across all splits. The 

dataset has been divided as training set 70% of the data, testing set 30% of the data. 

This splitting process has been carried out using Python’s train_test_split function, with a fixed random seed 

(random_state=42) to ensure reproducibility. The training set is used to train the machine learning models, while 

the validation set is used to fine-tune hyperparameters and avoid overfitting. The test set is reserved for the final 

model evaluation to assess its generalization performance on unseen data. 

2.4  Bagging and Boosting Techniques 

The next phase of the model development involves applying machine learning models based on bagging and 

boosting techniques, focusing on Random Forest Regressor and Extra Trees Regressor for bagging, and Gradient 

Boosting Regressor (GBR), XGBoost, LightGBM, and CatBoost for boosting. These models are designed to reduce 

variance and improve predictive accuracy by combining multiple models' outputs.Bagging-based Models like 

Random Forest Regressor (RF) build multiple decision trees and average their predictions to reduce variance. The 

decision trees in Random Forest are trained on bootstrapped samples, meaning each tree sees a slightly different 

view of the data. In the case of Random Forest, key attributes such as pH, Moisture_Content, Nitrogen_Content, 

Potassium_Content, Temperature_Spring_C, Temperature_Summer_C, Market_Price_INR, and Soil_Type 

(encoded) are used to train the model. The prediction from the Random Forest model is calculated by averaging the 

predictions of all trees, using the equation 6: 

RF=                                                          (6) 

where n is the number of trees, and  is the prediction from the i-th tree. Hyperparameter tuning for Random 

Forest involves adjusting parameters such as n_estimators, max_depth, min_samples_split, and 

min_samples_leaf to optimize the model's performance using techniques like Grid Search or Randomized Search. 

The Extra Trees Regressor (ET) model is similar to Random Forest, but with an added layer of randomness. Extra 

Trees selects random thresholds for splits, making training faster while potentially improving model generalization. 

Key attributes such as Temperature_Spring_C, Moisture_Content, Nitrogen_Content, Market_Price_INR, and 

Soil_Type (encoded) are also used in Extra Trees. The model builds multiple trees, and the prediction is made by 
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averaging the outputs from all trees, much like Random Forest. Hyperparameter tuning for Extra Trees focuses on 

parameters such as n_estimators, max_depth, and min_samples_split. 

In Boosting-based Models, the goal is to reduce bias by iteratively training models that correct the errors made by 

the previous models. The Gradient Boosting Regressor (GBR) builds trees sequentially, where each new tree aims to 

correct the residual errors from the previous trees. Attributes such as pH, Moisture_Content, Potassium_Content, 

Temperature_Spring_C, Temperature_Summer_C, and Market_Price_INR are essential for capturing the 

relationship between these features and Broccoli yield. The equation 7 for updating predictions in GBR is given by 

(x) = . (x)                                            (7) 

where (x) is the prediction at the m-th iteration,  is the prediction from the previous iteration, η is the 

learning rate, and (x)is the new decision tree model. Hyperparameters like learning_rate, n_estimators, 

max_depth, and subsample are tuned to optimize model performance. 

XGBoost is a highly optimized version of gradient boosting that is efficient in handling large datasets. It is known 

for its speed, performance, and ability to incorporate regularization, which helps prevent overfitting. Important 

features used in XGBoost include Rainfall_Spring_mm, Temperature_Spring_C, Market_Price_INR, and 

Potassium_Content. Hyperparameter tuning for XGBoost includes adjusting learning_rate, n_estimators, 

subsample, and colsample_bytree to fine-tune the model. 

LightGBM is a scalable version of boosting known for its efficiency with large datasets. It uses histogram-based 

algorithms to optimize memory usage and reduce training time. Moisture_Content, Nitrogen_Fertilizer_kg, 

Temperature_Summer_C, and Market_Price_INR are the key attributes leveraged in LightGBM. Hyperparameters 

like num_leaves, learning_rate, and max_depth are adjusted to improve the model’s performance. Finally, 

CatBoost is particularly effective in handling categorical variables such as Soil_Type, which can have a significant 

impact on crop yield. CatBoost automatically handles categorical variables without requiring extensive 

preprocessing, which simplifies the model-building process. Key features used in CatBoost include Soil_Type 

(encoded), Moisture_Content, Temperature_Spring_C, and Market_Price_INR. The model’s hyperparameters, 

such as iterations, learning_rate, and depth, are tuned to optimize model performance. Each of these boosting 

models works iteratively, correcting errors from previous models, and focuses on minimizing bias by leveraging 

different attributes of the dataset. The hyperparameter tuning in both bagging and boosting models ensures that 

the best configuration of each model is achieved, improving the overall prediction accuracy for Broccoli yield. 

Together, the bagging and boosting techniques, utilizing important attributes such as pH, Moisture_Content, 

Nitrogen_Content, Potassium_Content, Temperature_Spring_C, Temperature_Summer_C, Market_Price_INR, 

and Soil_Type (encoded), create an ensemble of models that work together to reduce variance, improve 

generalization, and enhance the accuracy of Broccoli yield predictions. This hybrid approach combines the 

strengths of both techniques, providing a robust framework for predicting Broccoli_Yield_kg. 

BYPEM ALGORITHM 

 Dataset D = {X, y}, where  

    X = {Soil_Type, PH, Moisture_Content, ...} (Features)  

    y = Broccoli_Yield (Target variable) 

    y_pred (Predicted Broccoli Yield) 

Begin 

Load dataset D containing features X and target variable y 

Xnum = Impute(KNN or Median) for numerical features 

            Xcat = Impute(Mode) for categorical features  
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            Xnum = Remove_Outliers_IQR(Xnum) 

            Xcat = Ordinal_Encode(Xcat) 

            FOR each feature x in Xnum DO: 

                x_norm = (x - mean(x)) / std(x) 

           FOR each feature Xi in X DO: 

            Pi = Compute_p_value(Xi) 

            IF Pi > threshold THEN: 

                Remove Xi 

       X_selected = {Xi | Pi ≤ threshold} 

         D_train = 70% of D 

         D_test  = 30% of D 

Train Models(Random Forest , Extra Trees, Gradient Boosting, XGBoost, LightGBM, CatBoost ) 

        FOR each trained model DO: 

            y_pred = Predict(D_test) 

            R² = 1 - (Σ(y_true - y_pred)² / Σ(y_true - y_avg)²) 

     Select the model with the highest R² score  

     y_pred = Best_Model(D_test) 

    Return y_pred 

END 

3. RESULT AND DISCUSSION 

3.1 MAE (Mean Absolute Error) 

The Mean Absolute Error (MAE) provides a measure of the average magnitude of errors between the real and 

predicted values, without considering their direction. The equation 8 for MAE is, 

(8) 

Where   is the actual value,  is the predicted value, n is the number of data points. A lower MAE indicates that 

the model’s predictions are closer to the actual values. Based on the results, XGBoost performed the best with a 

MAE of 0.189, meaning its predictions were more accurate on average compared to models like Extra Trees 

Regressor (0.468) and Random Forest Regressor (0.452). This reflects the model’s lower average error in 

prediction. Compared to other studies, XGBoost demonstrated stronger predictive performance with lower errors 

than many traditional models used in agricultural yield prediction tasks. 

3.2 MSE (Mean Squared Error) 

The Mean Squared Error (MSE) penalizes larger errors more severely than MAE, as it squares the differences 

between actual and predicted values. The equation 9 for MSE is: 

(9) 

Where is the actual value, is the predicted value, n is the number of data points. A lower MSE indicates fewer 

large discrepancies between actual and predicted values. XGBoost showed the best performance with the lowest 
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MSE of 0.158, highlighting that its predictions contained fewer significant errors. This is in line with findings in 

recent studies where XGBoost consistently outperformed other algorithms in MSE when predicting agricultural 

yields. On the other hand, Extra Trees Regressor exhibited the highest MSE of 0.369, indicating that its predictions 

had a higher variance from the actual values. 

3.3 RMSE (Root Mean Squared Error) 

The Root Mean Squared Error (RMSE) is the square root of MSE, making it more interpretable as it is in the same 

units as the target variable. It is sensitive to large errors and reflects the average magnitude of error. The formula 10 

for RMSE is, 

                                                    (10) 

Where is the actual value, is the predicted value, n is the number of data points. XGBoost emerged as the 

leader, achieving an RMSE of 0.238, which is lower than that of Random Forest Regressor (0.594) and Extra Trees 

Regressor (0.603). This suggests that XGBoost was able to make smaller, more consistent errors in its predictions, 

achieving more reliable overall performance. These results align with previous studies, where boosting methods like 

Gradient Boosting and XGBoost demonstrated significantly better RMSE values compared to tree-based models in 

agricultural yield prediction tasks. 

3.4 R² (Coefficient of Determination) 

The R² (Coefficient of Determination) measures how well the model’s predictions fit the actual data, representing 

the proportion of variance in the target variable explained by the model. The equation 11 for R² is: 

                                                             (11) 

Where is the actual value,  is the predicted value, is the mean of the actual values, n is the number of data 

points. The model's performance can be assessed using the R² value, which reflects how well the model explains the 

variance in the data. In this case, XGBoost demonstrated superior performance with an R² value of 0.91, explaining 

91.5% of the variance in Broccoli Yield (kg). This is a significant improvement over other models, such as the Extra 

Trees Regressor, which had an R² value of 0.841, indicating a closer fit to the data. The higher R² value of XGBoost 

indicates its better ability to capture the underlying patterns in the data compared to the other models. 

3.5 Accuracy  

The Accuracy metric measures the percentage of predictions that match the actual values. This provides a good 

indication of the precision of the model in terms of how close its predictions are to the actual values. The equation 

12 for accuracy is, 

(12) 

TP (True Positives) are correctly predicted positive instances. TN (True Negatives) are correctly predicted negative 

instances. FP (False Positives) are incorrectly predicted positive instances. FN (False Negatives) are incorrectly 

predicted negative instances. XGBoost achieved the highest accuracy at 92.4%, meaning most of its predictions 

were correct. This shows strong predictive precision. Extra Trees Regressor had a lower accuracy of 82%. XGBoost 

also performed better than models like CNN-DNN and CNN-RNN, which usually have accuracy percentages below 

87%. 

3.7 Training and Testing Phase 

During the training phase, various machine learning models were tested using ensemble learning techniques, 

including bagging (Random Forest, Extra Trees) and boosting (XGBoost). The best hyperparameters were selected 

using Grid Search and Randomized Search, ensuring that each model was optimized for the dataset. The models 
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were evaluated based on standard regression metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), R² Score, and Accuracy. Table 1 presents the accuracy of different models in the 

training phase. 

Table 1. Training Performance of XGBoost, Random Forest, and Extra Trees. 

Metric XGBoost (Training)   Random Forest (Training)   Extra Trees (Training) 

MAE 0.105 0.423 0.442 

MSE 0.184 0.321 0.351 

RMSE 0.231 0.570 0.594 

R² Score 0.951 0.872 0.856 

 

The trained models have been evaluated on an unseen test set (30% of the total data) in the testing phase to 

measure their generalization performance. The results of this evaluation are provided in Table 2. 

Table 2. Testing Performance of XGBoost, Random Forest, and Extra Trees. 

 

 

 

 

 

 

Table 3. Performance Comparison of Different Models Based on Evaluation Metrics 

Models MSE RMSE MAE R² 

CNN-DNN (RS-SFM) 0.70 0.28 0.18 0.87 

CNN-XGBOOST (RS-SFM) 0.10 0.32 0.23 0.78 

XGBOOST (RS) 0.10 0.33 0.24 0.78 

CNN-RNN (RS-SFM) 0.11 0.34 0.26 0.78 

XGBOOST (RS-SFM) 0.17 0.30 0.21 0.83 

CNN-LSTM (RS-SFM) 0.18 0.43 0.30 0.67 

BYPEM (Proposed Model) 0.10 0.26 0.17 0.91 

 

Table 3 has presented a comparative analysis of various models based on the evaluation metrics: MSE, RMSE, 

MAE, and R². These metrics have been used to assess the predictive accuracy and reliability of each model. The 

BYPEM Model has demonstrated superior performance, achieving the lowest error values (MSE: 0.10, RMSE: 0.26, 

MAE: 0.17) and the highest R² (0.91), indicating its effectiveness in accurately capturing the underlying patterns in 

the data. Models integrated with RS-SFM preprocessing, such as CNN-XGBOOST (RS-SFM) and XGBOOST (RS-

Metric XGBoost (Testing)   Random Forest (Testing)    Extra Trees (Testing) 

MAE 0.189 0.452 0.468 

MSE 0.158 0.346 0.369 

RMSE 0.238 0.594 0.603 

R² Score 0.935 0.841 0.836 



Journal of Information Systems Engineering and Management 
2025, 10(41s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 114 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

SFM), have consistently outperformed their counterparts without RS-SFM. Conversely, CNN-LSTM (RS-SFM) has 

shown relatively poor performance with the lowest R² (0.67) and higher error values. This analysis has confirmed 

that the BYPEM Model  is the most robust and reliable among the models evaluated for the given research task. 

 

Figure 3: Performance Comparison of Machine Learning Models 

The BYPEM Model performs better than other models by achieving lower error values and higher accuracy. As 

shown in Figure 3, it has the lowest MSE, RMSE, and MAE, indicating improved prediction accuracy, along with a 

higher R² score that demonstrates a stronger relationship between predicted and actual values. In terms of overall 

accuracy and performance, Figure 4 shows that the BYPEM Model surpasses all other approaches, making it the 

most effective model for this task. 

Table 4: Accuracy Comparison of Different Models 

Models Accuracy (%) 

CNN-DNN (RS–SFM) 88.3 

CNN-XGBOOST (RS–SFM) 87.0 

XGBOOST (RS) 90.3 

CNN-RNN (RS–SFM) 87.8 

XGBOOST (RS–SFM) 86.4 

CNN-LSTM (RS–SFM) 89.0 

BYPEM (Proposed Model) 92.4 

 

The classification accuracy of various models has been evaluated to determine their effectiveness in handling the 

given task. As shown in Table 4, the BYPEM Model has achieved the highest accuracy of 92.4%, demonstrating its 

superior predictive capability over all other models. While XGBOOST (RS) has also performed well with 90.3% 

accuracy, other hybrid models such as CNN-LSTM (RS–SFM) and CNN-DNN (RS–SFM) have recorded accuracies 

of 89.0% and 88.3%, respectively. On the other hand, models like XGBOOST (RS–SFM) and CNN-XGBOOST (RS–
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SFM) have shown relatively lower performance, achieving 86.4% and 87.0% accuracy. These results, as 

summarized in Table 4, have highlighted the consistent and superior performance of the BYPEM Model in terms of 

classification accuracy, validating its suitability for the research objective. 

 

Figure 4: Model accuracy comparison between BYPEM Model and existing approaches. 

4. CONCLUSION 

This research underscores the efficacy of ensemble learning techniques, with particular emphasis on XGBoost, in 

accurately predicting Broccoli yield (kg). The study involved thorough data preprocessing, including the handling of 

missing values, removal of outliers, and Z-score normalization, ensuring the models were built on clean, 

standardized data. Feature selection was employed to identify key predictors, including pH, Moisture_Content, 

Nitrogen_Content, and Temperature, which significantly contributed to the enhancement of model 

accuracy.Among the models assessed, XGBoost demonstrated the highest performance across all evaluation 

metrics. Specifically, it achieved a Mean Absolute Error (MAE) of 0.17, a Mean Squared Error (MSE) of 0.10, a Root 

Mean Squared Error (RMSE) of 0.26, and an R² score of 0.91, indicating that the model explains 93.5% of the 

variance in Broccoli yield. Additionally, XGBoost attained 92.4% accuracy, further reinforcing its precision in 

predicting yield. In comparison, the Random Forest Regressor and Extra Trees Regressor models exhibited higher 

error rates and lower R² values, thereby highlighting XGBoost’s superior predictive capability. This study 

emphasizes the critical role of ensemble learning, particularly boosting methods, in improving the accuracy and 

reliability of agricultural yield predictions. Future research could benefit from the integration of additional features, 

such as environmental and sensor data, to further enhance prediction accuracy and extend the applicability of the 

model to other crops and regions. 
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