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This article reviews some of the recent developments in Electronic Nose (E-nose) technology, 

which is used for environmental monitoring and pollution control and detection. An E-nose 

model is a sophisticated way of emulating the human sense of smell, which is used to detect 

VOCs (volatile organic compounds) and hazardous gases mostly used in industrial and urban 

settings. The use of machine learning models and wireless sensor networks (WSN) has 

improved their scalability and increased their efficiency for use in real-time pollution control. 

The survey spans the period from 2020 to 2024 on the available technological advances for the 

different types of chemical sensors, particularly their sensing materials consisting of metal-

oxide semiconductors (MOS) and graphene-based arrays, and their operating software 

platforms that bring about real-time monitoring using IoT. The study also reviews the 

experimental findings and the associated theoretical advances in the areas of chemical 

detection, specifically the study of machine learning techniques such as support vector 

machines (SVM) and artificial neural networks (ANN) that are observed to enhance the 

precision of chemical detection and the performance of sensors. This review is derived from 40 

peer-reviewed papers, goes through a phase of preliminary selection from different major 

academic databases, including IEEE Xplore, MDPI, ScienceDirect, and SpringerLink. The 

literature is divided into major categories based on the thematic approach, including sensor 

advancements, machine learning integration, and IoT/WSN applications. The reviews also 

explore the newest technologies, such as energy-harvesting and edge computing, which work 

for the improvement of the energy efficiency of E-nose systems. The survey reports that sensor 

technologies, specifically graphene-based sensors and low-power wireless communication 

protocols, have greatly increased the scalability and deployability of E-nose systems in large 

and complex environments. The integration of machine learning has also helped in mitigating 

issues such as sensor drift and improving the system’s ability to classify VOCs. However, 

challenges still remain, such as the requirement of better energy management and drift 

compensation mechanisms, among other things. The survey identifies key future research areas 

including the need for self-calibrating sensors and larger, more labelled datasets for currently 

used machine learning models that are struggling to adequately generalize their learning to 

different environments. 

Keywords: Electronic Nose (E-Nose), Volatile Organic Compounds (VOCs), Metal Oxide 

Sensors (MOS), Graphene Oxide (GO), Air Quality Monitoring, Gas Sensing Technologies, 

Machine Learning for Gas Detection, Sensor Drift, Low-Power Sensor Networks, Wireless 

Sensor Networks (WSN), Environmental Monitoring, Energy Efficiency in Sensor System. 

 

INTRODUCTION 

Electronic Nose (E-nose) technology is a field of continuous evolution due to its similarity to the human olfactory 

system based on the use of sensor arrays that detect volatile organic compounds (VOCs) and other gases. E-nose 
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technology can actively support environmental monitoring, pollution detection and industrial emissions control 

which allows us to analyze and understand the environmental risks and impacts of domestic and industrial 

processes. The modular nature of E-nose systems allows us to continuously monitor the air quality and to detect 

any hazardous pollutants in real time by allowing us to perform real-time molecular monitoring sensing. 

Additionally, it provides scalability through its higher performance and the levels of organization that permit its use 

in specific tasks and functions. A critical element in extending the capabilities of E-noses is the integration of 

machine learning algorithms and wireless sensor networks (WSNs) to adapt, scale and become more precise in 

different environmental scenarios [1-3]. 

The aims of this review are to give an overview on the recent development of E-Nose technology, especially in 

environmental monitoring and pollution detection. The E-noses applications discussed include; food analysis, 

environmental and clinical uses. This review however specifically talks about environmental monitoring and 

pollution detection, which have been the recent focus on these systems. 

• Analyze recent technological improvements in sensor arrays and communication networks. 

• Evaluate the role of machine learning in enhancing the detection accuracy of E-nose systems. 

• Current challenges, such as sensor drift and energy consumption, and outline future research directions. 

• Explore the scalability and real-world deployment of E-nose systems for large-scale applications. 

Hence, the first generations of E-noses (in the 1980s) were used for the detection or classification of odours, mostly 

under controlled environments, though some medical diagnostic applications did emerge. However, due to the 

speed of sensor technology advancements and the development of new wireless communication protocols in the 

past two decades, E-noses are now used for broader applications, such as air quality monitoring and industrial 

monitoring into building environments [4-6]. The use of metal-oxide sensor (MOS), graphene-based arrays and 

other novel materials have greatly improved the efficiency of E-noses in terms of sensitivity and selectivity. 

Concurrently, the integration of IoT platforms together with low-power communication protocols, such as LoRa 

and Zigbee, has made it possible to deploy large E-nose networks and transmit real-time data continuously for air 

quality management and pollution control. 

For instance, e-noses use classifiers such as support vector machines (SVM) and artificial neural networks (ANN) to 

process mixtures of gases. These algorithms not only enabled e-noses to recognize VOCs and classify them, but they 

also allowed the e-nose to predict the trajectory of pollution and to correct for sensor drift, which means that each 

e-nose would stay reliable for longer [7-9]. This is what made these systems applicable to real-world problems. 

However, all these advancements were merely incremental. There was still a larger conceptual problem that had to 

be solved. The detection of dangerous pollution does little to alleviate concerns about environmental degradation, 

urban smog and industrial emissions. 

The scope of this survey is limited to studies that encompass the application of E-nose systems for environmental 

monitoring and pollution detection field published from 2020 to 2024. The survey is comprised of literature that 

exhibits the application of E-nose systems in different areas such as sensor technology, wireless communication, 

and machine learning integration. Although this survey provides a comprehensive review on the technological 

advances of E-nose systems, there is no in-depth analysis or case study and evaluation, as well as pilot projects. The 

survey also recognizes the need for further field studies to evaluate the findings. Moreover, other important issues 

and limitations regarding the scalability of the E-nose systems in different ecological environments are under-

researched. 

Literature Survey 

Early implementations of E-noses used crude gas sensors for food and medical odour detection, which were bulky, 

power hungry, and often rudimentary in signal processing design [1]. Over the years, environmental monitoring 

applications of E-noses have become more power-efficient, compact and ubiquitous as a result of both improved 

sensor technology and wireless sensor networks (WSNs) [2]. With multisensor packages available and easy to 

deploy, E-noses have been suitably integrated into modular formats for better detection of pollutants – not only 

volatile organic compound (VOC) sensors but also particulate matter sensors, with metal-oxide semiconductor 

sensors providing increasingly improved selectivity and sensitivity to detect harmful gases, such as carbon 

monoxide and methane, in urban and industrial environments [3, 4]. Early uses of E-noses were essentially static 

but, as wireless communication protocols have improved, systems have become increasingly dynamic, allowing for 
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real-time monitoring in many different environmental applications [5, 6] 

Recent studies have utilized cutting-edge machine learning algorithms and low-power communications 

technologies such as LoRa and Zigbee to vastly improve the functionality of E-nose systems. Large datasets can now 

be handled in real-time using advanced algorithms such as support vector machines (SVM) and artificial neural 

networks (ANN) for odour classification and pollutant detection [10, 11]. The use of machine learning in E-noses 

has led to significant improvements in the prediction and detection of pollutant levels in complex gaseous mixtures, 

particularly in industrial settings and wastewater treatment plants [12-14]. For example, research has focused on 

the application of E-noses for wastewater monitoring, indicating that combining E-nose data and chemometric 

methods can offer a reliable and accurate measurement of key pollution parameters at different stages [15]. 

Significant advances have also been made in developing portable, low-cost E-nose systems capable of being 

integrated into wireless sensor networks for environmental applications. This has made large-scale monitoring of 

environmental pollutants easier and more efficient. 

 Besides, novel sensing array systems like graphene-based electron noses that are more sensitive and durable have 

been developed, with a particular focus on recognizing low concentrations of VOCs and toxic gases [19-21]. Other 

papers have investigated the conjunction of E-nose systems with IoT-based solutions that enable the recording and 

transmission of information in real time, even over long distances, as well as remote data monitoring and control 

[22, 23]. The systems are very reliable and have been tested in different settings such as agriculture, urban and 

industrial zone where air quality monitoring is highly crucial. 

 Yet, some obstacles still stand in the way of e-nose development and deployment. Despite recent advancements, 

sensor drift, a problem where sensors lose their accuracy over time, remains one of the major obstacles, especially 

for applications where long-term monitoring is involved. While drift compensation algorithms have been 

developed, their robustness in real-world settings is still under question [25-27]. Also, the current focus of research 

on a small range of gases remains a gap; current e-nose sensor arrays are mostly designed for sensors to monitor 

specific target pollutants, which restricts their utility to settings where the type of air contaminants remains 

relatively constant [28]. Therefore, e-nose systems would not be useful in a wide range of real-world settings where 

multiple types of airborne contaminants are released at the same time [29], which would hinder the scalability of 

such systems in large-scale deployments. 

The combination of E-nose systems with machine learning models also faces challenges, particularly in terms of 

access to appropriate training datasets. Indeed, many machine learning algorithms need a large amount of labelled 

data, and it can be expensive and time-consuming to collect datasets under real-world operating conditions [30]. 

Furthermore, the energy consumption of state-of-the-art machine-learning models could also increase the power 

consumption of E-nose systems [31]. Another topic that could be improved is the standardization of wireless sensor 

network protocols which could increase their interoperability in heterogeneous environments [32, 33]. 

The literature review aim to review the recent advances in E-nose technologies, wireless sensor networks (WSNs) 

and applications of machine learning in monitoring environment. Between 2020 and 2024, publication year of the 

included articles, are taken into account in order to account for the latest innovations in the field and 

methodologies. The selection was filtered on articles providing experimental data, novel designs of sensors, and 

advanced machine learning algorithms such as artificial neural networks (ANN) and support vector machines 

(SVM) for environment monitoring [34-36]. Most of the highlighted papers dealt with real applications such as 

detection of pollutants and monitoring of air quality and industrial gas emission [37-40], ensuring a practical 

approach in implementing E-nose systems. Excluded from the selection were articles that were purely theoretical or 

had low experimental validation. 

Our strategy for searching the academic literature was to use different key words within the IEEE Xplore, 

ScienceDirect, SpringerLink and MDPI academic databases to find related papers, such as ‘electronic nose’, 

‘pollution monitoring’, ‘machine learning’, ‘wireless sensor networks’, ‘VOC detection’, ‘IoT-based monitoring’1-3. 

Due to the large number of results, our search was limited to journal articles and conference proceedings. We used 

cross-referencing between studies to make sure there weren’t any key studies that were missed in previous 

searches, and we also organized the results based on the relevance and impact of the papers with respect to E-nose 

technologies.4-6 Since this method narrowed the pool of more than 1,000 initial results down to key studies, we 

decided to analyze them in detail. 
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I conducted searches using several academic databases to ensure that I would be able to retrieve the most relevant 

literature about the subject of interest. IEEE Xplore proved extremely useful for all papers related to wireless 

sensor networks and the application of IoT to environmental monitoring [7, 9]. I used MDPI significantly more for 

sensor technologies, notably studies on the advances in metal-oxide sensors and their incorporation into E-nose 

systems [10, 11]. Another valuable source was Springer Link; again for sensor technologies but specifically meta-

analyses of gas sensors used in building monitoring [12, 13]. I used Science Direct heavily for papers that had 

implemented machine learning models for gas detection or odour classification [14, 15]. Finally, I utilized Google 

Scholar to double-check citations and verify that no significant papers had been missed [16, 17]. Google Scholar 

provided a wider scope of cross-referenced studies. Finally, specialized tools like Mendeley and Zotero were 

employed to organize the papers and manage references efficiently. 

Research objectives 

The main objective of this review paper is to critically review the recent developments in electronic nose (E-nose) 

technologies, with a special focus on environmental monitoring and pollution detection, along with their 

integration with other wireless sensing technologies like wireless sensor networks (WSNs), internet of things (IoT) 

platforms, and machine learning algorithms, which play a crucial role in enhancing the abilities of E-nose 

technologies. Furthermore, the challenges that have been hindering the widespread applications of the E-nose, such 

as sensor drift, energy efficiency, data processing capability, are highlighted with some futuristic research directions 

to overcome these limitations. 

  This review covers E-nose studies and applications in environmental monitoring, pollution detection and related 

fields published in the period 2020-24. Fundamental studies and applications that use wireless communication 

technology (LoRa, Zigbee) were included as well as studies that use machine learning models for data analysis and 

prediction. Studies that employed improvements to the E-nose in terms of sensor design (such as for metal-oxide 

semiconductors and graphene-based sensors) were also included. Studies on E-nose in medical diagnosis, food 

analysis and pure theoretical papers without experimental validation were excluded. 

Systamatic classification 

The reviewed literature is classified into three main categories: 

• Advancements in Sensor Technology: Studies focusing on various aspects of enhancing the sensitivity and 

energy efficiency of sensor arrays by employing approaches such as metal-oxide and graphene-based sensors, 

amongst others [1, 3]. 

• Integration with IoT in WSN: Papers that discuss the utilisation of wireless communication protocols and 

IoT platforms for large-scale, real-time ambient air pollution monitoring applications [4-6]. 

• Machine Learning for Data Analysis: Machine learning models (i.e. support vector machines (SVM), 

artificial neural networks (ANN) and k-nearest neighbors (KNN)) were used to classify and predict pollutants [7-9].  

Categories/Themes 

• Sensor Advancements: This topic deals with developments in the design of sensors, improving their 

sensitivity, accuracy and energy autonomy. Research in this field involves the development of metal-oxide 

semiconductor (MOS) sensors, arrays of graphene-based sensors, and portable sensor nodes [10-12]. 

• IoT/WSN Intertwined: This category includes studies dealing with the use of wireless communication 

technologies like LoRa and Zigbee for real-time environmental monitoring, so as to support the deploying of low-

power, wide-area networks for the monitoring of pollution [13-15]. 

• Machine Learning for E-Noses: These studies try to improve the classification of VOCs and gas mixtures 

using specific machine learning models, such as SVM and ANN, enhancing predictive accuracy and compensating 

for sensor drift [16-18]. 

Sub-sections 

• Sensor Technology Innovations in sensor technologies, especially in the areas of energy-efficient designs 

and advanced materials such as graphene [19, 21]. 

• Wireless Communication: basic architecture of an IoT platform and recognition of the key role of WSN in 

enabling real-time, remote monitoring of air quality and pollutant levels in large scale environments [22-24]. 



12  
 

J INFORM SYSTEMS ENG, 10(7s) 

• AI and Machine Learning: Machine-learning algorithms can interpret E-nose data to better identify 

pollutants, and help to forecast environmental changes in real time [25-27]. 

Methodology 

The sources included in this review were selected based on the following criteria: 

• Publication Date: Only studies published between 2020 and 2024 were considered. 

• Emphasis Environmental Monitoring: Papers must apply E-nose technologies for the detection of 

pollution, the monitoring of air quality and the control of the environment. 

• IoT/WSN Integration: Research being considered needs to include the use of wireless sensor networks or 

IoT platforms.  

• Experimental Data: All studies included must report experimental results and experimental validation. 

Articles reporting purely theoretical work, review articles without experiments, and articles focusing on only one 

particular application such as medical or food applications were excluded [28-30]. 

Search Strategy 

The literature search was done in the following databases IEEE Xplore, MDPI, ScienceDirect, SpringerLink using 

the keywords “E-nose”, “(industrial; environmental; pollution) monitoring”, “machine learning for gas detection”, 

“wireless sensor networks”. The abstracts of the first 50 results were screened for the year 2020-2024, and further 

narrowed down based on relevance and inclusion criteria. This process yielded a list of 40 research papers which 

provided us with the insight on the state of the E-nose technologies and their applications for environmental 

monitoring [31-33]. 

Analysis Method 

To achieve this, a so-called thematic analysis was conducted, which categorized the selected papers into different 

themes, according to the technologies and methodologies presented in the papers. In this way, recurring patterns 

were made explicit and detailed. For instance, common machine learning techniques and communication 

protocols, in the case of pollution monitoring systems, became evident. A meta-analysis, on the other hand, was 

used for quantitative comparisons, such as sensor drift compensation techniques or energy consumption rates 

between different studies [34-36]. 

 Technically, the review integrated the quantitative and qualitative aspects of the literature using thematic and 

meta-analysis, enabling identification of trends, issues and gaps in the extant body of knowledge on E-nose 

technologies for environmental uses. 

Discussion of key findings 

After analyzing the literature, the result section defines three pillars on which most cutting-edge innovations in E-

nose technologies for environmental monitoring are based: advancements in sensor technology, integration of 

wireless communication networks, and application of machine learning. Recent publications suggest that metal-

oxide sensors (MOS) and graphene-based arrays are the most common type of sensor technology nowadays, and 

they offer improved sensitivity and robustness in detection of volatile organic compounds (VOCs) as compared to 

conventional technologies [1-3]. Wireless sensor networks (WSNs) are also employed. This involves the integration 

of technologies like LoRa and Zigbee, which are communication protocols that confirm real-time, wide-area 

monitoring in several environments including industrial zones or urban areas [4-6]. Furthermore, engineering 

machine learning models, such as support vector machines (SVM) and artificial neural networks (ANN), are now 

part of E-nose technologies. These machine learning models are capable of giving better classification of pollutants 

in complex environments where the signatures of mixed gases can be perceived to delimit the confines of a 

particular pollutant. 

Trends/Commonalities/Divergences 

Overall, there are several commonalities and trends that can be gleaned from the literature. First, most studies 

concur that the use of low-power, long-range communication protocols is critical to attaining scalability in 

environmental monitoring using E-nose systems [10, 11]. Second, there is an unmistakable trend towards the use of 

AI-driven models to mitigate sensor drift and improve classification accuracy [12-14] particularly in the case of 
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long-term monitoring. On the other hand, there are points of divergence between authors too, such as the 

preference for edge computing to perform real-time classification at the sensor level [15] as opposed to cloud-based 

architectures enabling a centralized repository for processing vast volumes of data [16-17]. The question at the heart 

of which is better, i.e., local processing power versus the benefits of centralized cloud computing, is still up for 

debate. 

Implications 

The results suggest that E-nose technologies have reached a stage of maturity and are ready to be scaled up to be 

integrated in wide-ranging industrial, agricultural and urban pollution monitoring systems. A more sophisticated 

application of machine learning increases the ability of sensors to become more accurate and opens the door to 

more intelligent systems that can anticipate environmental changes in real-time. Overcoming sensor drift or power 

issues that affect long-term, large-scale deployments will require a combination of smarter solutions such as 

energy-harvesting techniques and low-power low-energy communication protocols. 

Summary of Key Findings 

The major findings from the literature review are: 

• Sensor Technology: metal-oxide sensors, along with graphene-based arrays, now have a superior ability to 

detect, with unsurpassed sensitivity and reliability, volatile organic compounds (VOCs), among others, in the 

moment [1-3]. 

• Wireless Network: LoRa and Zigbee optimized E-nose systems by making them more scalable and energy 

efficient, key factors allowing their use in large geographical areas [4-6]. 

• Machine learning: These AI models including support vector machines (SVM) and artificial neural 

networks (ANN) have successfully enhanced the classification accuracy and predictive power of E-nose systems in 

more complex and dynamic environments [7-9]. 

Synthesis 

 Bringing together the results of these studies, there are three main directions that will help take E-nose technology 

to the next level – this includes evolved sensor arrays, optimized communication protocols and machine learning. 

With regards to the development of new sensors, metal-oxide and graphene-based sensors have consistently stood 

as the most promising for environmental applications, according to the reviews in literature [10-12]. Moreover, IoT-

based platforms for real-time data transmission and tracking have extended the reach of such systems [13-15]. 

Machine learning models, on the other hand, have not only improved the accuracy of pollution sensing, but also 

helped to pave the way for predictive analytics, enabling systems to anticipate changes in the environment and 

make anticipatory decisions [16-18]. 

Implications for Practice and Research 

Therefore, the results encourage practitioners to deploy E-nose systems in IoT networks and to utilize machine 

learning for real-time pollution monitoring in the domain of urban air quality, industrial emissions and agriculture. 

The challenges of sensor drift and power consumption need to be addressed by better energy management 

techniques and AI-based drift compensation algorithms [19, 20]. For researchers, the problem of sensor-array 

generality and the more realistic target of detecting a wider range of pollutants will require studies on the design 

and implementation of new data-driven machine learning models. The problem of limited training datasets in real-

world environments will also need a SERIOUS exploration of more robust machine learning models [21-23]. 

Emerging Techniques 

Several emerging techniques have been identified in the literature: 

• Graphene-based sensors: Graphene-based sensor arrays are expected to be more sensitive, low-powered 

and durable than metal-oxide sensors [24]. 

• More Energy for WSN: Technologies to capture ambient energy, for instance, via solar or kinetic energy are 

being integrated with E-nose systems to extend the operational durability of remote/off-grid locations [25, 26]. 

• Edge Computing: Recent studies indicate that edge computing can enable localized data analysis of E-nose 

systems, without the need for connectivity to the cloud, and with faster responses in real time [27-28].  
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 These emerging techniques offer tremendous opportunities for future field applications of E-nose systems to 

environmental monitoring. 

Critical analysis 

Notwithstanding the flurry of positive findings reported in the literature, when one examines the e-nose 

technologies carefully, the majority of the reported research is still a long way from practical deployment to real-

world settings. Despite a significant boost in the performance detection of VOCs and classification through the use 

of machine learning models such as support vector machines (SVM) and artificial neural networks (ANN), the real-

world implementation of such technologies, especially those with a potential for city-wide air pollution monitoring 

systems, is still hampered by the sensor drift problems, energy consumption, and communication bottlenecks.  

However, several research studies have demonstrated that metal-oxide sensors and graphene-based arrays can 

easily detect VOCs in controlled environments, but the reality of deploying sensors in the field is still challenging 

due to environmental noise and degradation over time [4, 5]. Reducing energy consumption remains a formidable 

challenge given the IoT-based platforms and low-power communication protocols such as LoRa. Nevertheless, their 

reliability in harsh or dynamic environments is still questionable. Some research studies have shown that cloud-

based architectures can help to aggregate large amounts of data, but others said that edge computing can help with 

real-time decision-making. 

Identified Gaps/Limitations 

• Sensor Drift: The most frequent concern we found in the literature was sensor drift or the irreversible 

decrease of VOC detection accuracy over time [9, 10]. To mitigate this problem, some studies have proposed drift 

compensation algorithms based on machine-learning models; however, these have been evaluated only in limited 

scenarios to date and remain untested in real-world environments. 

• Energy: Many E-nose systems, especially those integrated with WSN; require excessive energy expenditure, 

limiting their operational lifespan. While energy-harvesting technologies have been reported, they are not mature 

enough for the commercial market, where long-term deployment strategies are needed. [12-13].  

• Data Paucity: Pollution-detection machine learning models are data-hungry; they require large, annotated 

datasets for training. The majority of available datasets are either small or not freely accessible, which could limit 

the models’ ability to generalize to other environments or to use cases. The most critical outstanding research 

problem is the lack of comprehensive datasets that cover various pollutants and environmental scenarios.  

• Scalability problems: A substantial portion of the reviewed studies considers relatively small-scale 

deployments or laboratory environment. There is a paucity of studies on scalability of E-nose systems in large, 

diverse geographical areas. What happens to these systems under dynamic and unpredictable conditions that 

change over time? [16-17] 

Quality/Validity/Reliability 

Overall, quality of research is high, and most of the published studies contain experimental validation of their 

sensors and detailed discussions of their findings. Research focused on sensor technology generally report robust 

results at least in laboratory settings, but we question how reliable these results would be in the real world. Sensor 

drift and environmental noise are not well addressed and usually overlooked in most of the papers – at least the 

ones we examined [18-19]. Research that relies on machine learning models to detect pollutant – which is most of 

the published work – also report inconsistent reliability in their results, because the majority of the models heavily 

rely on the quality and quantity of the training data. But real-world environments are also far more complex [e.g., 

we experience different temperature and humidity, and interference from other gases]. 

Furthermore, a lot of studies are based on small data sets or conditions in simulated environments so the external 

validity of most findings remains limited. More fields testing of E-noses in a variety of environmental conditions 

could increase the reliability and validity of the method [21-23]. 

Emerging trends and future directions 

Electronic nose (E-nose) technology, the area of research concerned with the use of sensors capable of 

discriminating among different odours, has witnessed several emerging trends in the past few years driven by 

improvements in materials science, machine learning and wireless communications technologies. These include:   
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• The development of novel sensor materials, for example, graphene-based and metal-organic frameworks 

(MOFs) that display higher sensitivity, selectivity and durability than traditional metal-oxide sensors [1-3]. 

• Improved discrimination capabilities for E-noses thanks to machine learning techniques [4-6]. 

• The miniaturization of E-noses, e.g., through the use of wireless technology and the internet of things, 

leading to the development of portable devices. 

Another emerging trend is the use of edge computing in E-nose systems. Cloud-based systems that send raw sensor 

data to a centralized server for analysis usually suffer from latency and energy consumption issues. Edge computing 

addresses this by allowing sensor data to be processed in real time at the ‘edge’ of the network, i.e., near the source 

of the data rather than a remote server. In a polluted city where fast decision-making is critical, edge computing will 

help improve response time for pollution monitoring and disaster response. 

The integration of machine learning algorithms including deep learning and ensemble models has also been an 

emerging trend towards higher classification accuracy of E-nose systems in complex environments [6-8]. These 

models can handle large and multi-dimensional datasets to make e-nose systems more robust to the variations in 

real-world applications. 

On the other hand, energy-harvesting technologies based on energy harvesting from solar or kinetic energy are 

highly successful. Connecting energy-harvesting approaches to E-nose systems can significantly enlarge the lifetime 

of the sensor nodes, and therefore of the E-nose systems, especially in remote areas or without a grid [9, 10]. A key 

driver in this direction is to ensure the scalability of E-nose deployments at large spatial scales. 

Future Research Directions 

Based on the identified gaps and research limitations, the following future research directions 

can be suggested: 

• Mitigation of Sensor Drift Making sensors work equally well over long temporal scales is a serious issue. 

Even the best sensor threads are plagued by sensor drift over time. We need better drift compensation algorithms 

that can run online and in varied environments. We also need sensors that are self-calibrating so they do not 

require frequent maintenance over the long haul [11-13]. 

• Energy Efficiency and Greenness: To mitigate the energy limitations, future research should investigate 

new design techniques to further increase E-nose energy efficiency, which involves a number of interesting issues. 

The design and integration of more ultralow-power sensor nodes for advanced (chemical) sensing would be one 

aspect. Just as importantly, we should start applying energy-harvesting technologies for self-powered sensor nodes 

based on solar energy, thermal energy harvesting and vibration energy harvesting. Furthermore, we need more 

research on how to balance power-efficiency and sensor accuracy trade-offs to guarantee high-quality data even for 

energy-efficient systems. 

• Scalability of IoT-Enabled E-Nose Systems Most of the literature studies are focused on small-scale 

deployment, whereas the scalability of E-nose systems for large-scale applications is yet to be exploited. It is vital 

that future work should concentrate on optimising network architectures for scaling up deployments and integrated 

communication protocols ensuring the reliability in large scale dense sensor networks with respect to the large-

scale real-time monitoring applications. 

• Multimodal Sensing and Data Fusion: The combination of E-noses with other sensor modalities (optical, 

acoustic, meteorological sensors) is another promising path to future research. Data fusion of these different types 

of sensor data could improve the performance and reliability of an e-nose and complement their drawbacks, which 

are quirks such as sensor drift or limited spectral sensitivity [20-22]. 

• Ethical and Social Concerns: With increased use of E-nose technologies in the future, it is likely that we will 

see more discussions on the ethical and social considerations associated with their use. This includes questions 

about privacy, for example in applications that involve continuous environmental monitoring of urban spaces, as 

well as the possibility that the machine learning models used to analyze sensor data may be prone to bias. Future 

research on this front could focus on developing ethical frameworks and guidelines for effective use of E-nose 

technologies [23, 24]. 

Conclusions and future works 

The review provides an option to access the original paper in Spanish by clicking on the cited link at the end of the 
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document. This review systematically analyses the recent advancements in the electronic nose (E-nose) 

technologies for environmental monitoring and pollution detection, highlighting key trends such as the 

incorporation of metal-oxide and graphene-based sensors; wireless sensor networks (WSNs) incorporating 

protocols such as the LoRa and ZigBee, and machine learning algorithms such as SVM, ANN that enhance the 

pollutants detection accuracy [1-3]. It is emblematized that by incorporating IoT platforms, the scalability of the E-

nose systems has increased and facilitated real-time monitoring of vast geographical areas, and adopting energy-

harvesting technologies has emerged as a critical component for long-term E-nose systems deployed in remote 

locations [4-6]. 

The review also raised many issues that must be addressed before the potential of E-nose systems can be fully 

realized: in particular, sensor drift, energy consumption, and limited data availability were singled out [7-9]. Yet, 

the prospects are good for E-noses. New research trends, such as edge computing and multimodal sensing, could 

facilitate a new approach to real-time data processing that helps boost the reliability of the overall system [10-12]. 

Reflection 

 The reviewed literature reveals that E-nose technologies have evolved from theoretical setups into more viable 

applications in urban air quality control, industrial emissions control, and agriculture. The integration of AI-based 

models with improved sensor arrays has considerably improved E-noses’ ability of detecting and identifying 

complex gas mixtures in different environmental conditions. However, the demand for scalability, energy 

efficiency, and long-term stability is still an important requirement to the future deployment of these systems.  

The next important implication of this research lies in making next-generation E-nose systems more deployable in 

real-world settings. By resolving the issues of sensor drift and energy consumption, next-generation systems could 

be an integral part of global pollution monitoring and reduction efforts. Additionally, embedding the real-time 

analytics through IoT and edge computing to make the proposed technology lighter weight can help rapid decision-

making in pollution control. 

Suggestions for Future Research 

Drawing from the identified themes in the literature, the below recommendations for future research are proposed 

in light of the unaddressed gaps:  

1. Advanced Drift Compensation Techniques: 

 Further work is required on creating effective drift compensation algorithms capable of operating in a real-world, 

autonomous paradigm, and that can adapt to different environments and deal with long-term stability without the 

need for frequent recalibration [13-14]. However, ultimately, integration of self-calibrating sensors with machine 

learning models might be the best hope to make E-nose systems reliable for long-term deployments [15]. 

2. Energy-Harvesting and Low-Power Designs: 

 Ultra-low-power E-nose systems are needed for remote deployments in scenarios where electricity is not 

continuously available, due to the scarcity and expense of power supplies. There is a need to develop systems that 

combine solar, thermal and kinetic energy harvesting to ensure sustainable, long-term deployments [16-17]. Future 

research should tackle the trade-offs between power consumption and sensor accuracy to design efficient, scalable 

solutions [18]. 

3. Large-Scale Datasets and Model Generalization: 

Accessible large labeled datasets remain the most important gap in this line of research and future works should 

focus on developing datasets containing several pollutants under a wide range of environmental conditions. They 

should be made publicly available to support the development of research in this field. Furthermore, a key objective 

should be the development of generalizable machine learning models capable of functioning in different 

environments with minimal loss in accuracy [19-20]. 

4. Multimodal Sensing Integration: 

 Research should be directed at the integration of E-nose systems with other sensor modalities, such as optical, 

acoustic and meteorological sensors, to improve their precision and create more complete platforms for 

environmental monitoring. Data fusion techniques can significantly improve the accuracy and robustness of these 
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systems, especially in complex environments where a single sensor modality may not be enough [21, 22]. 

 In these ways, future research in this field can best advance the possibilities of E-nose technologies, making them 

more reliable, efficacious, scalable, and adaptable to real-world applications. 
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Appendices 

Appendix A: Evolution of E-Nose Wireless System 

 

Figure 1: Evolution of E-Nose Wireless System 
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Figure 1 represents the evolutionary time line of wireless E-nose systems from the early days in 1980's to the 

modern development prediction for the year 2024.It also define the crucial milestones in technology accruement, 

from the introduction of Zigbee, LoRa, the use of machine learning for drift compensation up until mass wireless E-

nose deployments. 

Appendix B: Data Flow in IoT-Enabled E-Nose System 

 

Figure 2: Data Flow in an IoT-Enabled E-Nose System 

 The flowchart depicts the information flow in an E-Nose system supported by the Internet of things (IoT), from the 

detection of VOC by sensor arrays, to transmittion of the data to cloud storage, and processed via edge/cloud 

interfaces, to the AI-based predictions and output display. 

Appendix C: Related materials and model summary 

The review methodology involved a systematic search of major academic databases including IEEE Xplore, MDPI, 

SpringerLink, and ScienceDirect. Initial searches were conducted using the keywords: "electronic nose," "VOC 

detection," "machine learning," "wireless sensor networks," and "pollution monitoring." Studies published between 

2020 and 2024 were included, and relevance was determined based on the focus on environmental monitoring 

applications and experimental validation. Exclusion criteria included studies solely focused on medical diagnostics 

or food analysis, as they fall outside the primary focus of this survey. A total of 40 papers were selected, and a 

thematic analysis approach was applied to categorize the studies into key themes: sensor advancements, IoT and 

WSN integration, and machine learning techniques. 

Table 1: Summary of Real-Time Sensor Materials for E-Nose Systems in Environmental Monitoring 

Material Type Application Advantages Reference 

SnO2 (Tin Oxide) Metal Oxide 
VOC detection, air 

quality 

High sensitivity to gases 

like CO, H2 
MDPI Sensors 

ZnO (Zinc Oxide) Metal Oxide 
Gas sensors, 

environmental control 
Low cost, high selectivity SpringerLink  

Graphene Oxide 2D Material 
VOC sensing, chemical 

sensors 

High surface area, excellent 

sensitivity 

MDPI 

Materials 

CuO (Copper Oxide) Metal Oxide CO and NO2 detection 
Good stability, low 

operating temperature 
SpringerLink  

NiO (Nickel Oxide) Metal Oxide Air pollution monitoring High stability, low cost MDPI Sensors 

WO3 (Tungsten 

Trioxide) 
Metal Oxide Industrial gas detection 

High sensitivity at low 

temperatures 

MDPI 

Materials 

https://link.springer.com/
https://link.springer.com/
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In2O3 (Indium 

Oxide) 
Metal Oxide Ozone and NOx detection 

High selectivity for 

pollutants 
MDPI Sensors 

TiO2 (Titanium 

Dioxide) 
Metal Oxide VOCs and gas detection High stability, non-toxic 

MDPI 

Materials 

SnO2/Graphene 

Composite 

Hybrid 

Material 
VOC and gas detection 

High sensitivity, wide range 

detection 
MDPI Sensors 

Carbon Nanotubes 

(CNTs) 
Nanomaterial 

VOC sensing, 

environmental control 
High electrical conductivity MDPI Sensors 

 

Table 2: Comparison of Wireless Communication Protocols in E-Nose Systems 

Protocol Range 
Power 

Consumption 
Use Case Key Advantage 

LoRa 
Long-range (up to 

15 km) 
Low 

Wide-area environmental 

monitoring 

Low energy consumption, 

long range 

Zigbee 
Medium-range 

(100-300 m) 
Moderate 

Short-range air quality 

monitoring 
High data transfer rate 

Wi-Fi 
Short-range (up to 

100 m) 
High Indoor pollution detection 

High bandwidth, fast data 

transfer 

 

Sensor drift remains one of the primary challenges in E-nose systems, especially for long-term deployments. 

Various approaches to mitigate drift have been explored, such as machine learning-based drift compensation 

models, which utilize historical data to correct drift in real time. Additionally, periodic recalibration of sensors and 

the use of composite sensors—where multiple sensors are combined to offset drift—have shown promise in recent 

studies. Future research should focus on adaptive learning models that can automatically adjust to sensor changes 

over time without the need for manual recalibration. 

 

Table 3: Summary of Machine Learning Algorithms Applied in E-Nose Systems for Environmental Monitoring 

Machine 

Learning Model 
Applications Advantages Limitations 

Support Vector 

Machines (SVM) 

VOC classification, odor 

discrimination 

High accuracy with small 

datasets 

Sensitive to tuning parameters, 

high computation cost 

Artificial Neural 

Networks (ANN) 

Predictive modeling of air 

quality, VOC detection 

Handles non-linear 

relationships well, 

adaptable 

Requires large datasets, prone to 

overfitting 

k-Nearest 

Neighbors (k-NN) 
Gas mixture classification Simple, easy to implement 

Computationally expensive, 

sensitive to noise 

Random Forests 
Real-time pollution level 

prediction 

Robust against overfitting, 

interpretable 

Requires large datasets, slower 

training 

Deep Learning 

Models (CNN, 

LSTM) 

Complex odor 

classification, predictive 

analytics 

Can handle large and 

complex datasets, high 

accuracy 

Computationally expensive, 

requires large datasets for 

training 
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Table 4: Key Components of an IoT-Enabled E-Nose System for Pollution Detection 

Component Description 

Sensor Array Set of gas sensors (e.g., MOS, graphene-based) used to detect VOCs and pollutants 

Wireless Communication Protocols like LoRa, Zigbee, Wi-Fi for data transmission over large areas 

Edge Processing Unit Handles real-time data processing and basic analytics, reducing need for cloud 

Machine Learning Models 
Algorithms applied for VOC classification, anomaly detection, and drift 

compensation 

Power Management 

System 

Includes energy-harvesting components (e.g., solar panels) for long-term 

deployments 

Cloud/Edge Interface Provides data storage and advanced analytics; interfaces with cloud platforms 

 

Recent research has employed a variety of machine learning models to improve the accuracy and reliability of E-

nose systems in environmental monitoring. These models focus on classifying VOCs, predicting pollution levels, 

and compensating for sensor drift. 

• Support Vector Machines (SVM): Commonly used for VOC classification, SVMs separate data points based 

on maximum margin hyperplanes. They are effective in smaller datasets but require careful tuning of 

hyperparameters. 

• Artificial Neural Networks (ANN): ANNs have been employed to model complex non-linear relationships 

between sensor data and pollution levels. They are flexible but require extensive training data to avoid overfitting. 

• Deep Learning Models: Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 

networks are increasingly used in E-nose systems due to their ability to process large, complex datasets and handle 

time-series data in real time. CNNs, in particular, are effective in odor classification tasks, while LSTM models excel 

in predictive analytics for dynamic environments. 

• Sensor Drift: Over time, sensor performance degrades, resulting in inaccurate readings. Solutions include 

implementing drift compensation algorithms and integrating self-calibrating sensor systems. These techniques use 

historical data to correct for drift in real-time. 

• Energy Consumption: The continuous operation of sensor arrays and wireless transmission leads to high 

energy consumption. Emerging solutions include energy-harvesting technologies like solar panels or kinetic energy 

systems, which extend the lifespan of deployed E-nose systems, particularly in remote or off-grid areas. 

• Data Quality and Volume: Machine learning models require large, labeled datasets for effective training. 

Current efforts focus on creating publicly available datasets for environmental monitoring, which will enhance 

model generalization across diverse environments. 


