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Breast cancer treatment involves personalized chemotherapy regimens to improve patient 

outcomes, and selecting the optimal regimen is a crucial challenge. Machine learning (ML) 

algorithms offer potential solutions by analyzing complex clinical data and predicting effective 

treatment strategies. This study conducts a comparative analysis of multiple ML algorithms, 

including decision trees, support vector machines, neural networks, and ensemble methods, to 

predict the optimal chemotherapy regimens for breast cancer patients. Using a dataset 

comprising clinical, pathological, and molecular features, the models are trained and evaluated 

based on accuracy, sensitivity, specificity, and predictive power. The results demonstrate that 

ensemble methods outperform other approaches, offering higher prediction accuracy and 

robustness. Feature importance analysis further highlights significant predictive factors for 

chemotherapy response. This comparative study provides valuable insights into the strengths 

and limitations of various ML algorithms in the context of personalized chemotherapy for 

breast cancer, contributing to more informed decision-making and potentially enhancing 

treatment efficacy. 

Keywords: SVM, ANN, Gradient boost, CV. 

 

1. INTRODUCTION 

Breast cancer remains one of the most prevalent cancers among women globally and is a significant public 

health concern. Advances in treatment have led to improvements in survival rates; however, chemotherapy remains 

a cornerstone for treating many breast cancer patients. Selecting the optimal chemotherapy regimen is critical for 

maximizing therapeutic efficacy while minimizing adverse effects, given the variability in patient response due to 

factors such as genetic heterogeneity, tumor characteristics, and individual patient profiles. Traditional approaches 

to determining chemotherapy regimens rely on standardized guidelines, clinician experience, and biomarkers. 

However, these methods often face limitations when applied to the diverse patient population, leading to suboptimal 

outcomes for some individuals. The need for more personalized treatment has spurred interest in predictive models 

capable of assisting Oncologists in selecting the most effective chemotherapy regimen. Machine learning (ML), with 

its ability to learn complex patterns from large datasets, holds considerable promise in this context. ML techniques 

have been successfully applied to various aspects of cancer research, including prognosis, diagnosis, and treatment 

prediction. By leveraging clinical, pathological, and molecular features, ML algorithms can potentially predict 

treatment response with high accuracy, aiding in personalized chemotherapy regimen selection.This study aims to 

conduct a comparative analysis of multiple ML algorithms—such as support vector machines, neural networks, and 

ensemble methods—to predict the optimal chemotherapy regimen for breast cancer patients. By evaluating these 

algorithms in terms of predictive accuracy, sensitivity, and specificity, we aim to determine which approach best 

supports personalized treatment decisions, ultimately enhancing patient outcomes and reducing the burden of 

unnecessary side effects. This comparative analysis also seeks to provide insights into the most influential factors 

contributing to chemotherapy success, thus supporting the continued development of data-driven precision 

oncology. 
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2. RELATED WORK 

In 2024, Keikhosrokiani, P., Balasubramaniam, K., Isomursu, has published paper “ Drug Recommendation System 

for Healthcare Professionals’ Decision-Making Using Opinion Mining and Machine Learning” were Sentiment 

analysis and hybrid content-based and collaborative filtering algorithms implemented. The bi-channel 

heterogeneous local structural encoder proposed by Zhang et al. (2023) is a significant contribution to this domain, 

providing a method to extract and utilize the diverse information embedded in HINs. The work by Swati Dongre and 

Jitendra Agrawal (2023) presents a novel healthcare model that leverages deep learning to analyze social media 

posts for drug recommendation and ADR detection. A.S. Mallesh (2022) proposed a decision support platform for 

drug rating generation and recommendation using sentiment analysis of drug reviews.Satvik Garg,(2021)were 

implemented Drug Recommendation System based on sentiment analysis of drug reviews using machine learning 

Uses patient review to predict drugs using sentiment analysis BOW,TD-IDF method. The research by Deloar 

Hossain and Shafiul Azam proposes a system to generate drug ratings and provide recommendations based on 

sentiment analysis of patient reviews using machine learning. The approach utilizes a Linear Support Vector 

Classifier (SVC) to analyze drug reviews and generate ratings, enabling effective drug recommendations. Wen-Hao 

Chiang's study focuses on developing a drug recommendation system aimed at ensuring safe polypharmacy, which 

involves the use of multiple drugs simultaneously. The research addresses the challenge of predicting adverse drug 

reactions (ADRs) that may arise from drug combinations. 

3. METHODOLOGY 

 3 methods used here Support vector machine, Gradient boost and artificial neural network 

 

1. Support vector machine: 

In this first Feature extraction and data preprocessing to obtain the feature vector, 𝑥𝑖 ∈ 𝑅𝑛 and labels 𝑦𝑖 ∈

{−1,1} .and then use a kernel function ∅(𝑥) 𝑡𝑜 transform data into a higher-dimensional space if needed for 

linear seperability. Find the optimal hyperplane that maximizes the margin. Solve the optimization problem 

using Lagrange multipliers to determine w and b. Classify new data point’s x using the decision function (𝑥) =

𝑆𝑖𝑔𝑛(𝑤𝑇∅(𝑋) + 𝑏 . 

 

2. Gradient boost method: 

 

2. Gradient boosting is an ensemble machine learning technique that sequentially combines the predictions of 

multiple weak learners, usually decision trees. Its goal is to enhance overall predictive performance by iteratively 

adjusting the model's weights based on the errors from previous iterations. By gradually reducing prediction errors, 

gradient boosting aims to improve the accuracy of the model over time. 

Steps: 

1. 𝐹0(𝑥) = argmin ∑ 𝐿(𝑦𝑖,
𝑛
𝑖=1 𝛾)(L is our loss function) 

 2. For m=1 to M: 

Compute residual  𝑟𝑖𝑚=− [
∂L(𝑦𝑖,F(𝑥𝑖))

∂F(𝑥𝑖)
]

𝑓(𝑥)=𝐹𝑚−1 (𝑥)

 for i=1,…n 

2.2 Train regression tree with features x against r and create terminal node reasons 𝑅𝑗𝑚 for j-1, ....𝐽𝑀 

2.3 Compute  

𝑟𝑗𝑚=argmin = ∑ 𝐿(𝑦𝑖,𝑥𝑖∈𝑅𝑗𝑚
𝐹𝑚−1(𝑥𝑖) + 𝛾)for j=1,....𝐽𝑚 

2.4 update the model  

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚1

𝐽𝑚

𝑗=1

1(𝑥 ∈ 𝑅𝑗𝑚) 
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4. ARTIFICIAL NEURAL NETWORK: 

Data Preparation: The data is pre-processed and fed into the input layer of the network. In the image, this is 

represented by the x1 to xn values. Forward Propagation: The data travels through the network, layer by layer. At 

each layer, the artificial neurons process the data using a mathematical function. This function typically involves 

applying weights to the inputs, summing them, and then passing the sum through an activation function. The 

activation function introduces non-linearity into the network, allowing it to learn complex patterns. Hidden Layers: 

The hidden layers are where most of the computation takes place. There can be multiple hidden layers, each 

containing many artificial neurons. These layers extract features from the data and progressively transform it 

towards the desired output. Output Layer: The processed data reaches the output layer, where it is transformed into 

a final output signal. This output could be a classification (e.g., cat or dog), a prediction (e.g., house price), or a 

control signal (e.g., robot movement).Backpropagation: In training mode, the algorithm compares the output of the 

network to the desired target output. If there's a difference (error), the error is propagated backward 

5. PROPOSED SYSTEM: 

 

Fig.1.System Architecture 

 

 This proposed system is divided into two parts as given in fig.1 that is mention as 1.the training phase and (2) the 

validation phase. Both phases are crucial for achieving accurate predictions. In this proposed system we search 

the best medicine for chemotherapy for breast cancer. There are 4 medicine here we use those are carboplatin, 

Cyclophosphamide, fluorouracil, Doxorubicin. This System predicts best medicine for the chemotherapy of Brest 

cancer.  Here proposed systems have good accuracy when compare with SVM, Gradient boost, ANN, Grid search 

methods. 

Data preprocessing: is crucial for preparing a dataset for machine learning by handling missing values, 

encoding categorical variables, scaling features, and addressing class imbalances. This ensures the breast cancer 

dataset is clean, consistent, and optimized for accurate model predictions.  

Feature extraction: transforms raw data into informative features, improving machine learning model 

performance. In a breast cancer dataset, this involves deriving new features or applying domain-specific 

knowledge to create meaningful attributes for better predictions. 

 

 

Splitting the dataset: into training and testing sets is a critical step in the machine learning workflow. This 

allows the model to be evaluated on unseen data, offering a realistic measure of its performance. In this 

approach, 80% of the dataset is used for training the model, while 20% is set aside for testing. 

Training &Testing: The machine learning model is trained using the training data to learn patterns and 

relationships. Once trained, the model's accuracy and generalization capability are evaluated using the testing 
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data, providing insights into its real-world performance. 

6. EXPERIMENTS 

This Experiment section discuses and evaluates performance of new proposed model. It uses Data Set for 

performance evaluation. 

Dataset: 

The proposed model is simulated breast cancer datasets .data set consist of 3326 patient data with 8 features. 

Performance Evaluation: 

By Comparing against SVM, Gradient boosting, Artificial Neural Network ,Grid search Classifier with proposed 

model then measure the performance. For more development and assessment of model dataset, it was randomly 

divided into training (80%) and testing (20%) subsets. 

Evaluation Metrices: 

Five Metrics are used her for evaluation are precision (Prec), recall (Rec), F1-score (F1), accuracy (Acc.). 

7. RESULT 

In this system we discuss on the proposed ensemble deep learning model achieved an accuracy of 96% on 

dataset. This outperforms both the Support Vector Machine (SVM) which achieved 77% accuracy and the 

Gradient Boosting classifier which reached 87.6% accuracy.In result here calculated for 4 medicines which is 

used in chemotherapy test and from that four medicine one perfect medicine predicted by the 

system.Table1.shows result for carboplatin medicine 

Classifier Acc (%) Pre (%) Rec (%) 
F-score 

(%) 

Svm 70% 0.70 1 0.83 

Gradient 

Boost 
70% 0.70 1 0.83 

ANN 80% 0.85 0.88 0.86 

Proposed 

Model 
90% 0.90 0.92 0.93 

Table1.Result for Cyclophosphamide medicine 

 

 

Fig2.Accuracy Result for Cyclophosphamide medicine 

Table 1 presents the results for the cyclophosphamide medication, comparing the performance. The prediction 

results for cyclophosphamide depicted in Figure 1; confirm that the highest accuracy is achieved with this 

method. 
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Classifier Acc (%) Pre (%) Rec (%) 
F-score 

(%) 

Svm 73 0.73 1 0.85 

Gradient 

Boost 
73 0.73 1 0.85 

ANN 81 0.85 0.91 0.88 

Proposed 

Model 
96 0.97 0.99 0.97 

Table2.Result for fluorouracil Medicine  

 

 

Fig2.Accuracy Result for fluorouracil medicine 

Fig2.predict fluorouracil has highest accuracy i.e. 96% 

 

Classifier Acc (%) Pre (%) Rec (%) 
F-score 

(%) 

Svm 72% 0.72 1 0.84 

Gradient 

Boost 
72% 0.72 1 0.84 

ANN 82% 0.83 0.95 0.89 

Proposed 

Model 
97% 0.97 1 0.98 

Table3 .Result for Doxorubicin medicine 

73% 73%

81%

96%

0

10

20

30

40

50

60

70

80

90

100

SVM GB ANN Proposed

A
cc

u
ra

cy

Classification Algorithm

SVM

GB

ANN

Propo
sed



657 
 
 

Jayshree Bedade et al. / J INFORM SYSTEMS ENG, 10(5s) 

 

Fig2.Accuracy Result for Doxorubicin medicine 

Graph shown in fig3 predict Doxorubicin have highest accuracy i.e. 97%  

Classifier Acc (%) Pre (%) Rec (%) 
F-score 

(%) 

Svm 77% 0.77 1 0.87 

Gradient 

Boost 
77% 0.77 1 0.87 

ANN 84% 0.85 0.97 0.90 

Proposed 

Model 
98% 0.99 1 0.99 

Table 4.Result for Carboplatin medicine 

 

 

Fig4 Result for Carboplatin medicine 

 

Graph shown in fig4 .predict carboplatin have highest accuracy. 
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Fig5.prediction of best Medicine (Carboplatin) 

As per all result prediction we conclude that carboplatin is best medicine for breast cancer therapy as per graph 

shown in Fig.5carboplatin has highest accuracy 98%. 

 

8. CONCLUSION & FUTURE SCOPE 

The proposed system introduces a novel approach to aid healthcare professionals in patient care by offering 

recommendations for potential medications suitable for treatment. What sets our recommendation system apart is 

its ability to provide easily interpretable suggestions. By analyzing medications previously administered to patients 

with similar characteristics to the current patient, our system generates recommendations that are intuitively 

understandable. This ensures that healthcare personnel can readily grasp the rationale behind each suggested 

medication, facilitating informed decision-making in medical care. The future of ML in predicting optimal 

chemotherapy regimens lies in creating intelligent, adaptive, and ethical systems that empower clinicians and 

improve patient outcomes. With advancements in data integration, algorithm design, and clinical implementation, 

ML has the potential to transform breast cancer treatment into a highly precise and personalized science. 
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