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Cerebellar ataxia (CA) is a disability disease that originated in the cerebellum of the human brain 

and caused several awkward condition as in-organized body balances, eye movements, inability 

to gait, and extremities. Because of these symptoms, early detection of CA is mandatorily targeted 

by the researchers using different conventional methods. These existing detection methods faced 

various disadvantages, as poor performance effectiveness, complexity problems, increased error 

rate, and computational time consumption. To overcome these issues in the existing methods, a 

proposed model is designed as Hybrid Distributed Mixed Attention-based Deep Learning 

approach enabled Competitive Tuning Optimization (Hybrid DMADL-CTO) model that precisely 

detects the abnormalities along with its class labels. The developed model possessed a 

distributive learning approach that captures detective outcomes with minimal operational time. 

Meanwhile, the model's ability and effectiveness are effectually enhanced by the integration of 

Competitive tuning optimization (CTO) and mixed attention mechanisms. The developed 

algorithm eliminates the optimization problem and attained better durability, consistency, and 

convergence rate significantly. Additionally, the mixed attention mechanism minimized the 

complexity problem and achieved effective performance efficacy. Thus, the effectiveness of the 

research model is compared with other related techniques based on the performance metrics, 

such as accuracy, recall, and precision for which the proposed method acquired 97.67%, 97.99%, 

and 95.89% respectively. 

Keywords: Neurological diseases, Distributive learning, Gait analysis, Cerebellar Ataxia, and 

Frame selection. 

 

INTRODUCTION 

In human anatomy, the cerebellum plays a significant role in the brain's nervous system, which effectively controls 

voluntary movement coordination, eye movement, and maintains the balance of muscles. In this context, sudden 

damage causes control loss, cerebellar functional damage, and impairments of body parts, which is termed as 

cerebellar ataxia.  The impairments of body parts include limb in-coordination, speech impairment, eye movement 

abnormalities, and gait instability [1] [2] [3] [4][5].  In addition to this, the CA caused abnormalities in precise 

movement that ledto disability for doing simple tasks like walking, eating, and dressing. Moreover, the major clinical 

abnormalities are dysarthria, ophthalmoparesis, dysphagia, peripheral neuropathy, nystagmus, and hyposmia. At the 

initial stage of cerebellar ataxia, it impacts the daily activities of affected patients. Similarly, at the moderate stage 

that caused difficulty in walking with the support of some walking aid. Comparably, at the advanced stage that caused 

severe impact by carrying the affected patient wheelchair-bound and needing other support to do daily activities [6]. 

To avoid these obstacles, early recognition is important and provides proper treatment for patients, who suffer from 

CA [7].   

In general, CA is diagnosed by numerous imaging techniques with the inclusion of infections, neoplastic, 

inflammatory, toxic, vascular, paraneoplastic, degenerative etiologies, and hereditary.  Furthermore, the traditional 

imaging techniques for the detection of these infections might lead to huge challenges in detection management, 

increased computational cost, and high time consumption. Therefore, the obtained limitation in the traditional 

methods was effectively overcome by machine learning (ML) techniques, which provide a high-order evaluation with 

active mining [8]. The most frequent ML approaches used in the detection of CA are Naïve Bayes (NB), Logistic 
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Regression (LR), Adaptive boosting, Stochastic Gradient Descent (SGD), Random Forest (RF), and Decision Tree 

(DT) classifiers [9]. Based on these ML techniques, the model provides better detection accuracy by resolving 

prediction problems effectively [10][11].  However, the ML approaches had some interpretability issues during the 

detection of cerebellar ataxia, to tackle these challenges, Deep learning (DL) methods were introduced significantly. 

Some of the DL-based methods are Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN), Deep Neural Network (DNN), and Extreme gradient boosting 

(XGB) [12][13], which were implemented in the detection of Cerebellar ataxia.  

Furthermore, the integration of traditional methods required extra manual support to attain better prediction results. 

Moreover, the ML-based detection methods also suffered from complexity issues. In NB evaluation, the model faced 

irrelevant and imbalanced feature issues that did not generate better detection results [14][15]. Similarly, the 

classification approaches of ML-based techniques have the challenges of imbalanced data collection, lack of training, 

generalization problems, and decreased accuracy [16] [17][18]. These challenges are overcome by DL-based 

approaches. Furthermore, the DL-based techniques also suffered from some disadvantages such as high 

computational complexities, increased memory resources, poor prediction results, and imbalance issues. In addition, 

the irrelevant feature issues are resolved by advanced strategies as gait analysis, spatiotemporal features, random 

sampling, and other methodologies [19]. Because of these integrations, the model provides better improvement in 

disease prediction and achievesbetter detection accuracy [20][21]. Therefore, the challenges of existing ML and DL-

based techniques are effectively addressed by the newly developed model that provides better detection results with 

increased ataxia severity classification and feature importance score.  

The Hybrid DMADL-CTO significantly detects and classifies the abnormalities of CA with the inclusion of a standard 

classifier approach along with the advances of developed optimization algorithms and attention mechanisms. In this 

context, the detection process is performed under optimal frames, which are selected by an optimized multi-metric 

frame selection method. Further, the pre-processing and ROI extraction methods are performed accordingly. Along 

with this, the main objective for the research is given as follows.  

• OptimizedMulti-metricframe selection: To perform an accurate detection process, optimal key frames 

are selected with the integration of the CTO algorithm. In this, the competitive strategy and learning factor 

capability are effectively combined to identify the optimal frames. Thus, the obtained keyframes are preceded 

into further detection process. 

• Mixed attention-based Hybrid Distributed Deep Learning approach enabled Competitive 

Tuning Optimization: The insertion of distributed learning in the CNN-LSTM standard classifier enables 

accurate abnormalities detection along with its class labels. In this method, the operational time of the model 

is reduced effectively, and shows better performance in CA detection. Moreover, the ability and scalability of 

the model areimproved by the integration of mixed attention mechanisms that also reduce the overlapping 

problems and complexity issues effectually.  

The remainder part of the research article is scheduled as follows, Section 2 intercepts the prominent related works 

along with the approaches and research scope. Section 3 describes the developed methodology for detecting CA 

disorder along with the execution of mathematical modelling. Further, section 4 explores the experimental setup and 

performance effectiveness of the proposed model, additionally comparing the achieved results with other existing 

methods. Finally, section 5 summarizes the conclusion of the research and presents the future scope directions.     

2. LITERATURE REVIEW 

The section summarizes some of the prominent existing methods and provides a detailed explanation of their 

advances and limitations.   

M. Shanmuga Sundari, and Vijaya Chandra Jadala, [22] introduced anensemble ML technique to detect the 

abnormalities of CA. In the method, the severity of the disease was effectively classified and attained better 

accessibility and efficacy. However, the inherent variants of the ML approaches consumed poor sensitivity and 

stability that resulted in minimal detection accuracy. Pavithra DurganivasSeetharama, and Shrishali Math, [3] 

implemented anextreme gradient boosting method along with the integration of feature selection and ranking 
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approaches (FSR-XGB) for detecting the CA disorder. In this method, the misclassification issues and optimization 

error problems were eliminated precisely. However, the performance efficacy and detection accuracy were reduced, 

which was caused by the cross-validation feature mechanism.  

Massimiliano Pau, et al. [23] developed a quantitative characteristic mechanism fordetecting the disturbances of 

severe gait in CA neurological diseases. In this method, the progression and rehabilitation of the disease were 

monitored precisely and attained better performance efficacy. However, the quantitative mechanism suffered from 

generalizability, scalability, and computational complexity issues. Karan Bania, and Tanmay Tulsidas Verlekar, [4] 

presented a Graph Convolutional Network enabled with the utilization of an ataxia dataset. Thus, the developed 

model is termed as AtGCN model, which effectually strengthens the detection accuracy and provides better prediction 

results accurately. In this evaluation, the model faced high error loss that affected the training capability and 

validation time adequately.  

Dante Trabassi, et al. [24] employed a conditional tabular Generative Adversarial Network (ctGAN) to capture the 

applicability of hereditary CA. The model provided better ability and consistent explainability in disease diagnostic 

performance. Meanwhile, the dependability and robustness of the model were decreased during the evaluation of the 

detection mechanism. Kyriakos Vattis, et al. [25] established a CNN model to garner the effectiveness of cerebellar 

ataxia. The model utilized frequency and time partial derivatives for evaluating the manifestation of ataxias. Based 

on these derivative techniques, the model significantly determined the multi-context with dynamic encapsulation. 

However, the CNN classifier suffered from scalability, lack of leveraged information, decreased quantitative 

assessment, and poor performance ability during early diagnosis.  

Jennifer Faber, et al. [26] introduced a fastsurferCNN model combined with a U-Net segmentation network 

(CerebNet) for detecting and segmenting the CA. The CerebNet method was very compact and consumed minimal 

GPU validation time. Further, the data augmentation technique effectually addressed the replicability challenge in 

small-scale datasets. While performing the detection process under the complied cross dataset, the generalizability, 

reliability, accuracy, and sensitivity were decreased significantly.Robin Cabeza-Ruiz, et al. [8] developed a CNN 

classifier to detect the abnormalities of CA from magnetic resonance images of the brain. Additionally, the CNN 

method detected the abnormality classes with high-performance efficacy in a precise manner. During evaluation, the 

model affected the estimated volume loss and caused generalizability problems. Due to this, the operational time for 

the detection process was increased enormously.  

2.1 Challenges  

The drawbacks obtained in the related methods are furnished below,  

• While detecting the abnormalities of CA, the CerebNet model consumed minimal efficacy of detection 

accuracy, operating speed, reliability, and sensitivity. Due to this, the generalizability and interpretability of 

the model were also reduced gradually [27].  

• During the evaluation of early diagnosis under the utilization of the CNN classifier, thelevered information 

of the disease was not acquired effectively. Because of this, the model did not provide precise detection 

outcomes and consumed a lot of time for evaluation.  

• The CNN model suffered from certain disadvantages, as high-volume loss, decreased performance efficacy, 

large time consumption, and complexity issues. 

• The major limitation of AtGCN was high error loss, due to this, the ability of the model was reduced 

appropriately and caused an impact on interpretability and generalizability.  

• The FSR-XGB method obtained high false positive rate with minimal performance efficacy because of the 

integration of the cross-validation process.  

2.2 Problem statement  

CA is a neurological disorder that occurs in the cerebellum of brain activity, which affects the movement of muscles 

and other body parts effectively. Mainly, CA causes walking disabilities and getting paralyzed more easily, and these 

issues are significantly overcome by early diagnosis methods.  Numerous conventional methods were built to detect 
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the abnormalities of CA, but these methods faced certain challenges, as lack of training, imbalance data collection, 

high-cost consumption, complexity issues, overfitting risk, lower model performance, and generalizability problems 

[28]. To address these limitations, a Hybrid DMADL-CTO is designed in this research that provides desired detection 

results. Meanwhile, the model is integrated with advanced feature strategies as gait pose kinematic structural 

flowmap features, and mixed attention mechanism. According to this context, the developed Hybrid DMADL-CTO 

reduced the operational time and training execution by the distributed learning method. Let the input for the research 

be garnered from the READISCA dataset [29], which is mathematically notated as, 

1

r

b

b

G k
=

=       (1) 

where, G indicates the video dataset, bk denotes the input video, and r mentions the total video. From this video 

sequence, instructive frames are selected precisely based on the evaluation of Structural Similarity Index Measure 

(SSIM), Peak Signal-to-Noise Ratio (PSNR), and Signal-to-Interference-Noise Ratio (SINR) similarity measures.  

These similarity measures are integrated with the CTOalgorithm for selecting the frames to perform further 

processing. Thus, the selected optimal frames are represented as,  

( ) min
3

SSIM PSNR SINR
D G Threshold

 + + 
= −  

      

(2) 

where, ( )D G refers the optimal frames from the given input video. In this research, the threshold limit is given as 

0.8 for performing the detection process. Therefore, the entire selected frames are illustrated as,  

( )  1 2, ,.... ,.....b i vD k D D D D=
                                

(3) 

where, bk denotes the input video, iD represents the 
thi frames, and vD indicates the total frames. Further, the 

selected frames tend towards pre-processing and ROI extraction methods to eliminate the redundancy and noise 

attributes effectively. Meanwhile, a mixed attention mechanism is combined with a distributive learning approach to 

achieve desired detection outcomes with minimal occurrence of overfitting issues and time complexity problems. 

Based on these integrated mechanisms, the Hybrid DMADL-CTO effectively detects the behavior as normal or 

abnormal. Thus, the performance of the Hybrid DMADL-CTO is strengthened by reducing the categorical cross-

entropy loss function, which is expressed as,  

( )
1

. log
r

b b

b

Ca los t t
=

= −
)

                        

(4) 

where, bt defines the true probability distribution, bt
)

represents the predicted probability distribution. By reducing 

the attained loss function, the Hybrid DMADL-CTO effectively predicts the class as,  

0,

1,

2, mod

3,

b

b

b

b

b

for k is normal

for k is abnormal with slight cerebellar ataxia
t

for k is abnormal with eratecerebellar ataxia

for k is abnormal withadvanced cerebellar ataxia





= 


       

(5) 

where, bt mentions the actual class types that range as ( )0 4− .   

 

3. SYSTEM MODEL FOR CEREBELLAR ATAXIA DETECTION  
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Figure 1 illustrates the system model for CA disorder detection, in which the detection process is achieved with the 

determination of input stage, frame selectionstage, pre-processing stage, feature extraction stage, model training 

stage, and outcome stage. In this context, the optimal frames are selected from the obtained input video sequences 

to reduce unnecessary repetition. The selected frames are further furnished into the pre-processing stage to eliminate 

the noise distortions, and the instructive features are extracted from the feature extraction stage. After getting the 

informative features, which are transferred into the model training phase where effective performance is achieved 

and showed precise detection results at the outcome stage.  

 

Figure 1: System model for cerebellar ataxia 

3.1 Hybrid Distributed Mixed Attention-based Deep Learning approach enabled Competitive 

Tuning Optimization for cerebellar ataxia detection  

The main objective of the research is to develop a Hybrid DMADL-CTO to identify the abnormalities of 

CAneurological disorder.  Initially, the input for the research is captured from the READISCA dataset. The obtained 

input video sequence is further subjected to an optimized Multi-metricframe selection phase, in which the optimal 

frames are selected by the symmetrical measures of SSIM, PSNR, and SINR with the integration of the developed 

CTOalgorithm[30].  In this context, the CTO algorithm is derived by the hybridizing character of Imperialist 

Competitive Algorithm (ICA)  and Teaching Learning Based Optimization (TLO) [31], which effectively degrades the 

local optima issues and achievesa better convergence rate while selecting the optimal frames. Further, the selected 

frames are allowed into the pre-processing stage, where the quality of the frames is enhanced by reducing the 

contrast, noise distortions, redundancy, and inaccurate recordings effectively. Meanwhile, the quality-enhanced 

frames are fed into ROI extraction, in which the texture and structure of the particular region get enhanced and 

proceed for further processing. Then, the extracted region is transmitted into the feature extraction phase that 

performs the extraction process by gait pose kinematic structural flowmap features, which indulges skeleton-based 

gait features, pose estimated features, kinematic spatiotemporal features, and deep flowmap-based structural 

features. Furthermore, the extracted features are allowed into the Hybrid DMADL-CTO to detect the abnormalities 

of CA. Moreover, the performance efficacy of the Hybrid DMADL-CTO is enhanced by tuning thehyperparameters 

using the developed CTO algorithm methods. In addition to this, the mixed attention mechanism extracts the spatial 

and channel information of the features to minimize the overfitting and computational complexity problems. 

Therefore, the overall schematic representation of Hybrid DMADL-CTO is mentioned in Figure 2.  

 

Figure 2: Schematic representation of Hybrid DMADL-CTO model 

3.2 Input video dataset  

The research garnered the input video from the READISKA dataset [27] respectively, which has 155 video sequences 

of 6 seconds time duration with gait performance. By considering these video sequences, the model detects the CA 

disorder precisely. Thus, the video sequence input of the Hybrid DMADL-CTO is depicted as,  
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 1 2, ,...... ,....b rG k k k k=
     

(6) 

The obtained long-range video sequences are segmented into frames for further evaluation, which is mathematically 

illustrated as,  

( )
1

v

b i

i

D k D
=

=
                                                        

(7) 

3.3 Optimized multi-metric Frame selection 

The input video sequences are allowed into the frame selection stage, in which the optimal frames are selected by 

multi-metric parameter evaluation with the integration of optimization. The multi-metric parameter indulges SINR, 

SSIM, and PSNR, in this the pixels and distributed features of every frame are compared with other frames. 

Conceptually, the CTO algorithm takes the input sequence and assigns the lower bound as 0, the upper bound value 

is the mean value that varies based on the evaluation of multi-metric parameters. Thus, the multi-metric parameter 

representation is depicted as,  

S

3
met

INR SSIM PSNR
Mul Threshold

 + + 
= −  

       

(8) 

In the research, every frame has its own multimetric value ( metMul ), based on this the CTO algorithm selects the 

frame index, which has minimal metMul value. From the evaluation of the above equation, the attained value is 

minimal to the threshold (0.8) value, then the frames are assigned as optimal frames. Thus, the selected optimal 

frames are in the dimensions as ( )1 1920 1080 3   , and the mathematical notation of the selected frames is 

expressed in equation (3).   

3.3.1 Competitive Tuning Optimization Algorithm for optimal frame selection 

The optimal video frames are selected based on the utilization of the Competitive Tuning Optimization (CTO) 

Algorithm, which inhibits the characters of both of ICA [32], and TLO [33] methods. In this context, the imperialist 

competitive algorithm has strong competitive strategy behavior that provides feasible and ideal results to increase 

the power of empires. Based on these strategies, the strong empires captured more power and got stronger enough 

whereas, the weak empires reduced their power and the converge rate collapsed accordingly.  Moreover, in Teaching 

Learning optimization extends the capability to extract the information based on learning factors.  Thus, the 

competitive strategy behavior and extraction capability capture the information with better convergence speed, high 

reliability, and lower computational cost, which also overcomes the disadvantages of poor sensitivity, high complexity 

error, and local optima issues effectively.  

Inspiration: The CTO algorithm is obtained through the inspiration of imperialistic competition and teaching 

learning procedure, which is implemented in the research model to detect the optimal frames for pursuing the 

detection process and tunes the hyperparameters of the model for providing effective outcome results. The 

competitive strong strategy obtained from the ICA and the learning factor extracting capability character of TLO are 

combined effectively to attain relevant results. These merged character algorithms provide better selection results 

and effective detection validation precisely. Thus, the CTO algorithm in the research model provides accurate results 

during the identification of optimal frames, and the hyperparameters are tuned effectively to achieve better detection 

results precisely.   

Initialization: In the random solution positions, the initial position of the solution is determined as P under the 

utilization of the CTO algorithm, which is mentioned as,  

 1,..... ,.....p qJ J J J=
                         

(9) 
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where, 
pJ indicates the competitive group of the solution (video frames) 

, and 
qJ denotes the total number of solutions.  

Objective function: In Hybrid DMADL-CTO, the CTO algorithm is widely used to select the optimal frames for 

making the further detection process simpler with minimum computation cost and speed. While selecting an optimal 

frame, the fitness measure of the CTO algorithm attains minimum value for the multi-metric measures, which is 

represented as, 

( )( )_ minselL fit Fe multi metric= = −
     

(10) 

The efficient frames are selected by the minimization of multi-metric parameters, in which the multi-metric 

parameters indulge SINR, SSIM, and PSNR. Based on these parameters, the optimal frames are effectively selected 

and proceed for further evaluation.   

Solution Update: The solution of the CTO algorithm is updated based on the learning factor of every group. If the 

learning factor attains high value then which has the ability to observe the information of real environment 

experience. Meanwhile, the learning factor attains minimum value, which inhibits poor learning capacity and also 

needs a constant teaching environment.  Due to this minimal learning factor, the poor performance solution in the 

teaching environment is termed as the worst solution. Conceptually, the CTO algorithm captures the information of 

the worst solution for exploring better learning experiences.  

Learning Factor Evaluation  

The learning factor rate is measured for every q solution, and is computed as,  

( ) ( )1

2

m m

p pL J L J
F

− +
 =
 
        

(11) 

where, m denotes the current iteration, 
m

pJ indicates the current competitive group solution at the current iteration, 

1m

pJ −
defines the current competitive group solution at the previous iteration. Based on these learning factors, the 

obtained learning and teaching phase solutions are updated until maximum iteration.  

Phase 1: Exploitation phase- 1L   

If the attained fitness measure is greater than or equal to 1, then it handles the exploitation phase. In this research, 

the exploitation phases include the Global learner, weaker learner, and personal learner phases. Due to these phases, 

the learner improves the knowledge about the interactions  

a) Global Learner Phase ( )1m

p glo thresF J F F+  
 

 

This phase is attained when the learning factor of the updated current competitive group solution ( )1m

pF J +
, is 

greater than the global learning factor gloF , and less than the threshold learning factor thresF . In this phase, the 

learner attained better learning performance with the inclusion of a linear learning experience that enhances the 

detection accuracy of the model. Thus, the mathematical representation of the updated Global learner phase is given 

as, 

( ) ( ) ( ) ( ) ( )1 1

1 1 2 3 4 51 0,1m m m m m m m m m m

p p a p glo p best p p pJ J g J J g J J g J J g J J rnd ran E g+ −  = + − + − + − + − + + +    
(12) 
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where, 
m

aJ indicates the previous competitive group solution at the current iteration, 
m

gloJ represents the global 

competitive group solution at the current iteration, 
m

bestJ mentions the best competitive group solution at the current 

iteration, E defines the interactive experience, ran refers the random variable that ranges from 0 to 1, and 

1 2 3 4, , ,g g g g denotes the random values, which are mathematically illustrated as,  

( )max max min

1 max

max

m l l
g l

m

 −
= −

      

(13) 

( ) max
2 max max min

max 1

m m
g l l l

m −

 −
= + −  

       

(14) 

where, maxl denotes the maximum inertia factors, minl refers the minimum inertia factors, maxm defines the maximum 

iteration. Similarly, the random value of 3 4,g g is expressed as,  

( )3

m m m

p best p

q

g M J J J=  −
                

(15) 

( ) 1

4

m m m

p p p

q

g Q J J J −=  −
     

(16) 

where, ( )m

pM J mentions the global factor of 
thp learner, and ( )m

pQ J expresses the local factor  
thp learner, which 

is illustrated by,  

( )
0,

1,

m m

best p thresm

p

J J F
M J

otherwise

 − 
= 
      

(17) 

( )
11,

0,

m m

p p thresm

p

J J F
Q J

otherwise

− − 
= 
      

(18) 

In equation (12), the term 5g represents the interactive degree, which is depicted as,  

( ) ( )2

5 0 0 min .cos exp 1lg d d d −= − − −
     

(19) 

where, 0d indicates the initial learning factor value, mind defines the minimum value of learning factor, and 

( )2cos exp 1l− − represents the self-learning nature of learners.  

b) Personal Learner Phase ( )1m

p glo thresF J F F+  
 

 

This phase begins when the learning factor of updated competitive group solution ( )1m

pF J +
,  is greater than the 

global learner factor gloF , and also greater than the threshold learning factor thresF . In this phase, the obtained group 

learning and group performance information from the global learner phase is shared with every individual solution 
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to achieve better individual supporting knowledge, which also enhances the overall competitive group performance. 

Based on this condition, the updated personal learner phase is given by,  

( ) ( )1 1 1

2 6 1 7 1

m m m m m m

p p p glo p aJ J g J J g J J+ + += + − + −
     

(20) 

where, 
1

1

m

pJ +
defines the updated solution of the global learner phase, and 6 7,g g illustrates the random value that 

ranges from 0 to 1. The threshold value for the learner phase is mentioned as,  

( ) ( ) ( ) ( )max1 2

max

....
mm m m

thres

F J F J F J F J
F

m

− −+ + + +
=

   

(21) 

where, ( )mF J indicates the learning factor of the competitive group solution at the current iteration, 

( ) ( )1 2,m mF J F J− −
denotes the learning factor of the competitive group solution of previous iterations, and 

( )maxm
F J defines the learning factor of the competitive group solution of maximum iterations. By considering the 

group and individual learning performance ability under successive iterations, the random factor is determined as,  

( ) ( )1 2

2

m m

p p

fac

F J F J
ran

+
=

      
(22) 

where, ( )1

m

pF J indicates the global learning phase with current iteration, and ( )2

m

pF J represents the personal 

learning phase with current iteration.  

c) Weak Learner Phase ( )1m

p gloF J F+ 
 

 

This phase activates when the learning factor updated competitive group solution ( )1m

pF J +
, is greater than the global 

learner factor gloF , which also observes the knowledge of the worst solution.  In this phase, the worst solutions are 

taken into account to provide a better learner value score, which enhances the overall mean of the solution group. 

Thus, the updated weak learner solution is illustrated as,  

( ) ( ) ( )1 1 1

3 8 9 2 10 1

m m m m m m

p p best mean p weak p pJ J g J A J g J J g J J+ + += + −  + − + −
  

(23) 

where, 
m

weakJ denotes the weak learner solution at the current iteration, 
m

meanJ represents the average mean knowledge, 

bestJ indicates the best solution, A indicates the teaching factor, 8 9 10, ,g g g mentions the random value, which is 

mathematically depicted as,  

( ) ( )( )
( )( )8 max

max ,
1

max

best mean

best

F J F J
g m

F J

 
 = −
 
       

(24) 

( ) ( )( )
( )( )

1

2

9 max 1

2

max ,
1

max

m m

glo p

m

p

F J F J
g m

F J

+

+

 
 = −
 
       

(25) 
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( ) ( )( )
( )( )

1

1

10 max 1

1

max ,
1

max

m m

p p

m

p

F J F J
g m

F J

+

+

 
 = −
 
       

(26) 

From the above equation, the average mean knowledge value is illustrated as,  

( ) ( )
1 1

1 2 1 1 1

11 1 12 1 2
2

m m

p p m m m m

mean p best p p

J J
J g J J g J J

+ +

+ + +
 +

= − − − −  
     

(27) 

where, 11 12,g g denotes the random values, which is mathematically depicted as,  

( ) ( )2

11 0 0 max .cos exp 1lg d d d −= − − −
                

(28) 

( ) ( ) ( )( )
( ) ( )

max min

12 max

best weak

best weak

h h F J F J
g h

F J F J

−  −
= −

−
    

(29) 

where, maxd mentions the maximum value of the learning factor, max min,h h indicates the maximum and minimum 

weight value.  

Phase 2: Exploration Phase- 1L   

If the attained fitness measure is greater than 1, then it remains in the exploration phase.  In this research, the 

exploration phase inhibits the Adaptive learning phase and the Random Learning phase. Because of these phases, 

the prolonged and observational experience makes the model detection accuracy precise.   

a) Adaptive Learning Phase ( )1m

p facF J ran+ 
 

 

When the updated learning factor of the current competitive group ( )1m

pF J +
, is greater than or equal to the random 

factor facran , then the adaptive learning phase occurs significantly. In this phase, the prolonged experience of the 

solution is observed by scheduled learning. Thus, the mathematical representation for adaptive learning is given by,  

( ) ( )( )( )( )1 1 2 3

4 3 40.5 1 2 1m out m m m m m m

p ran p p p pJ J A J A J J J J J     + − − − = +  +  + + + − + − −
   

(30) 

where, 
out

ranJ defines the solution of the random learner in the outside search boundary,
3 4,m mJ J denotes the solution 

experiment at current iteration, indicates the adaptive fusion degree, which is depicted as,  

( )max

max

1 m

glo

m
m J

m


 
=  −  

         

(31) 

b) Random Learning Phase ( )1m

p facF J ran+ 
 

 

When the updated learning factor of the current competitive group ( )1m

pF J +
, is less than the random factor facran , 

then a random learning phase has occurred respectively. In this phase, the position of the solution is explored 

randomly to attain acquired knowledge with a teaching mechanism. Thus, the updated random learning phase is 

determined as,  
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( )1

5

m m m

p p ran pJ J ran J J+ = +  −
      

(32) 

where, 
ranJ indicates the random learner solution, and ran indicates the random numerical. Thus, the CTO 

algorithm effectually selects the optimal frames and the hyperparameters of the Hybrid DMADL are tuned 

significantly to detect the abnormalities of cerebellar ataxia.  

Termination condition: When maxm m  the global position of the competitive group solution is evaluated by the 

learning factor under the exploitation and exploration phase. In these phases, the learning factor of the solution 

isanalyzed by global, personal, and weak learners, additionally in adaptive and random learning phases, which 

effectually reduces the imbalance issue and complexity problems. Therefore, the CTO algorithm execution in the 

frame selection phase effectually selects the optimal frames for pursuing further evaluation. The entire flow map 

representation for the CTO algorithm is illustrated in Figure 3. 

 

Figure 3: Flow map for CTO algorithm 

3.4 Pre-processing and ROI extraction of Selected Video Frames: 

The selected optimal frames are subjected to the pre-processing stage to enhance the quality of every frame by 

reducing the undesired phenomena, noise distortions, redundant data, and contrast influences. When eliminating 

these distortions, the quality of the frames is strenthened, and the weighted method enhances the contrast and 

brightness of the frame and proceeds for further evaluation. The obtained dimensions of the pre-processed frames 

are ( )1 1920 1080 3   , and that is expressed as,  

( )  * * * * *

1 2, ,.... ,.....b i vD k D D D D=
     

(33) 

Thus, the quality-enhanced frames are fed into ROI extraction, here the structure and texture of the image region are 

effectually extracted. Conceptually, the exact regions of images are extracted using morphological operations, which 

analyse the gradient and contour texture of the region.  From this perspective, the shape and similar front objects 

with identical intensity and colour are effectively discovered in a particular curve, which connects all the continuous 

points in the boundary significantly. This contour analysis is widely used in image acquisition and region extraction. 

Further, the size of the image is rescaled as ( )224 224 3n   the attained ROI extracted image is depicted as H , 

and is given as,  

( )( )*

bH RoI D k=
                   

(34) 
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3.5 Feature extraction using gait pose kinematic structural flowmap features  

The extracted ROI image is further allowed into the feature extraction stage, where instructive features are extracted 

significantly. In the research, the gait pose kinematic structural flowmap features are utilized to extract the 

informative features of the RoI image. The developed feature extraction techniques indulge Skeleton-based gait 

features, pose estimation, Kinematic Spatiotemporal features, and deep flow map-based structural features, which 

are briefly elaborated as follows,  

The skeleton-based gait features extract the walking pattern of humanswith the utilization of skeletal mechanisms. 

In this, the extraction process is done based on the integration of a deep learning neural network with an open pose 

system, which effectually estimates the pose of the human body. Additionally, the orientation and position of limbs 

and joints are determined precisely with the representation of skeletal structure. Moreover, the neural network 

indulges convolutional and pooling layers, which extract high-level feature information and emphasize better real-

time performance, accuracy scrutiny, and improved robustness conditions [34]. Thus, the outcome of skeleton-based 

gait features is depicted as B , which is mathematically denoted as follows, and the achieved dimension is

( )1 224 224  .  

B H T e=  +                (35) 

where, T defines the convolution filter, e indicates the learnable parameter, and  denotes the 2- dimensional 

convolutional operation.  

The pose estimation feature method extracts the gait features of humans, along with the specifications of the human 

face, legs, body, and hand joints effectually. Conceptually, the model tracks the human body movements for managing 

diverse capabilities, colour space conversion, frame resizing, and video stream manipulation in real-time scenarios. 

In this research, the estimation analysis is done by a bottom-up technique that assesses the actual pose of the person 

based on the linkable pairs of the body parts [35]. Thus, the obtained dimension of pose estimation is 

( )1 224 224 3   , and the outcome is expressed as N . 

The Kinematic spatiotemporal feature extraction process extracts the informative features based on the technique of 

Multi-Layer Perceptron. In this, the spatial and temporal features are applied in the axes to perform the image 

classificationwith minimal processing time. Conceptually, the model contains multiple blocksthat are widely used to 

extract the spatiotemporal features at united insertion length [36] with dimensions ( )1 224 224  , and the outcome 

is defined as,  

( )( )2 1C H f f norm H= +
         

(36) 

( )( )4 3S C f f norm C= +
        

(37) 

where, C represents the insertion data length, 1 2 3 4, , ,f f f f denotes the MLP parameter,  refers the activation 

function, S indicates the outcome of kinematic spatiotemporal features, and norm  indicates the normalization 

function. 

The pre-trained residual network is influenced by the architecture of the VGG-19 model possessesa deep network 

structure with numerous convolutional layers of 33 filters. Conceptually, the output feature map contains the same 

number of filters, which are then allowed into the Local Ternary pattern for extracting the structural flow-map 

features. The process effectively evaluates the correlation of pixel intensity along with the neighborhood image. Based 

on this correlation information, the pixel representation is converted into ternary code to capture the local texture 

accurately [37]. Thus, the obtained deep flow map-based structural features are mathematically mentioned as,  
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( )
0

.3c

nei cen

c

K R O O
=

= −
     

(38) 

1,

0,

1,

O thr

R O thr

O thr




= =
−        

(39) 

where, R represents the gradient size, neiO indicates the neighbor pixel intensity, cenO denotes the current pixel 

intensity, and thr refers the threshold value.  Thus, the achieved dimensions of Deep flowmap-based structural 

features are ( )1 224 224  .  

Therefore, the extracted features under gait pose kinematic structural flowmap features are expressed as W , which 

is obtained by the concatenation of Skeleton-based gait features, pose estimation, Kinematic Spatio temporal 

features, and deep flow map-based structural features. Thus, the entire concatenate feature is represented in the form 

of a vector with dimensions ( )1 224 224 6   , and the achieved feature vector is represented as,  

 || || ||W B N S K=
      

(40) 

where, B denotes the outcome of skeleton-based gait features, N represents the outcome of pose estimation, S

represents the outcome of kinematic spatio temporal features, and K mentions the outcome of deep flow map-

based structural features.  

3.6 Distributed Learning based Convolutional Neural Network- Long short Term Memory Model 

for detecting cerebellar Ataxia  

In this neurological disorder research, the extracted features are fed into Hybrid DMADL-CTO to detect the 

abnormalities of cerebellar ataxia. In this context, the Hybrid DMADL-CTO is obtained by the combination of LSTM, 

CNN, and distributive learning techniques. In general, the LSTM classifier effectually performs complex structure 

evaluation and retains long data dependencies with high robustness but, it suffers from computational cost, 

interpretability challenges, and complexity issues. To overcome these issues, a Hybrid DMADL-CTO model is 

designed in this research, which evaluates the detection operation by distributed learning method. Because of this, 

the computation cost is decreased gradually and attains better performance efficacy with high detection accuracy. 

Meanwhile, the contextual information of long-range dependencies and model ability is enhanced by the integration 

of a mixed attention mechanism. Additionally, the convergence rate of the model is improved through the usage 

ofCTO algorithm.  By considering these combinations, the Hybrid DMADL-CTO achieved better interpretability and 

flexibility measures with effective performance memory. The schematic representation of the Hybrid DMADL-CTO 

architecture is mentioned in Figure 4 

 

Figure 4: Schematic representation of Hybrid DMADL-CTO Architecture 
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The above figure 4 represents the architecture of the Hybrid DMADL-CTO, in which the input is garnered from the 

extracted features with dimensions ( ),224,224,6n , which is fed into the convolutional layer that ispositioned in a 

distributed form. These distributed evaluations reduced the time consumption and provided better performance 

results. In this context, the convolutional layer captures the temporal and spatial dependencies during the training 

process and the acquired dimension is ( ),222,222,16n . The attained dimension is then allowed into the max 

pooling layer, which selects the maximum value by reducing the dimensions as ( ),111,111,16n . These convolutional 

and max-pooling evaluations are performed in an iterative manner with attained dimension ( ),54,54,32n . Further, 

the achieved dimension is subjected to the mixed attention layer that enhances the efficiency of complex data 

structure and achieves better interpretability, flexibility and decreases the gradient vanishing issue. Conceptually, the 

mixed attention mechanism effectually extracts the contextual information of long-range dependencies with the 

integration of global averagepooling at the output layer that minimizes the overfitting issues and computation 

complexity [35]. The obtained dimension for the mixed attention mechanism is ( ),54,54,32n . Furthermore, the 

outcome of the mixed attention module is subjected to the time-distributed layer or flattened layer that switches the 

dimensions by converting the sequential input into the historical period of time sequence data with more long-range 

features. Thus, the achieved dimension of the flattening layer is ( ),54,1728n . Moreover, the flattened outcome is 

allowed into the LSTM network layer, where the gradient explodes and vanishing problems are reduced gradually. 

On this the updated memory information is stored in three diverse gates they are input, forget, and output. In this, 

the input cell contains the information of the memory cell, whereas the forget gate clears and handles the cell memory, 

and the output gate manages the exposed memory content. Additionally, the LSTM constraints contain hyperbolic 

tangent and sigmoid activation functions to perform element-wise multiplication, which effectively overcomes the 

long dependency issues [36].  Thus, the outcome of the memory constraints is denoted as V with dimension ( ), 20n

, which is mathematically illustrated as,  

( )( )1
tanh

y yce x jV me s n
−

=  +
      

(41) 

where, ceme represents the memory cell, mentions the element-wise multiplication, tanh indicates the hyperbolic 

tangent activation function,  refers the sigmoid activation function, ,s ndefines the parameters of memory 

constraints, yx represents the input sequence, and 1yj − mentions the previous hidden state sequence. Thus, the 

attained outcome from the distributed LSTM constraints is concatenated ( ), 40n , which is further fed into a dense 

layer, where, the actual prediction results are obtained based on the previously extracted feature information, and 

the dimension is attained as ( ), 4n  class labels of normal, abnormal with slight ataxia, abnormal with moderate 

ataxia, and abnormal with advanced ataxia. Further, the performance efficacy and ability of the modelare improved 

by the integration of the CTO algorithm, which is implemented in the layer of the model that reduced the vanishing 

explode and local optimization problems by tuning the weights and bias of Hybrid DMADL-CTO significantly, which 

is briefly explained in section 3.3. During training, the ability of the model is enhanced by CTO algorithm with an 

maximal fitness measure of accuracy, and is mathematically depicted as,  

( )( )_ maxtrL fit mo Accuracy = =
      

(42) 

Based on this fitness measure, the CTO algorithm effectively tunes the bias and weights of Hybrid DMADL to achieve 

accurate detection of CA along the class labels. Thus, the predicted outcome of the model is represented as bt .  
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3.6.1 Mixed Attention Mechanism  

In the research, the mixed attention comprises both spatial and self-attention modules to enhance the efficacy and 

performance of the Hybrid DMADL-CTO, which is implemented in the layer of the model to evaluate the detection 

tasks. Conceptually, the mixed attention captures the correlation of inter-spatial features with the insertion of both 

max pooling and average pooling layers. These pooling operations are done in the channel axis that highlights the 

instructive regions and concatenates the attained features to generate an effectual feature descriptor. Further, the 

feature descriptor is allowed into a convolutional layer to provide an attention map of spatial representatives [37]. 

The computed spatial attention map with the insertion of the sigmoid activation function is described as,  

( )( )7 7 ;maxspa spa spaY co AvgPool pool =
    

(43) 

where, 
7 7co 

represents the convolution operation with filter size 7 7 , spaY  mentions the spatial attention map, 

and  indicates the sigmoid activation function. Moreover, the computational complexities and memory resource 

consumption are effectively reduced by the utilization of mixed attention modules, which garnered the semantic 

information of long-range dependencies accurately. In this context, the input feature vector is mapped by sequence-

to-sequence transformation for capturing the contextual information. Additionally, the sum weights are computed 

by the matrix multiplication method, in which the input feature vectors are further classified into small-size vectors 

in the role of query, key, and value inthe parallel form [38]. From this perspective, the overall average weights of the 

vectors are determined, and the information of diverse vector representations is effectual. Thus, the computed 

weighted average is given as,  

( ). .se igY we qu keva=       
(44) 

where, igwe indicates the weighted parameter, qu refers the parameter of the query vector, ke represents the 

parameter of the key vector, and va  mentions the parameter of the value vector. Therefore, the overall architecture 

of the mixed attention module is expressed in Figure 5.  

 

Figure 5: Architecture of Mixed attention mechanism 

4. RESULTS   

The CA detection performed usingHybrid DMADL-CTO provides effectual results with the utilization of numerous 

evaluation measures of Accuracy, Recall, and precision. The Hybrid DMADL-CTO is significantly analyzed by the 

READISCA dataset, thus the achieved performance effectiveness is briefly determined in the section.  

4.1 System Implementation  

The Hybrid DMADL-CTO research of CA is executed under the software of Pycharm of version 2024.2.1 in the 

application of Python version 3.7 in the operating system of Windows 11 configuration, which has the memory of 128 

GB and 16 GB of ROM and RAM respectively. Furthermore, the operating system has a clock speed that ranges from 

3GHz.[38[39][40]  
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4.2 Dataset Specification  

The input for the CA research is captured from the READISCA dataset, the detailed explanation of this dataset is 

given as follows,  

READISCA dataset [41] contains 155 long video sequences with the inclusion of gait performance, in which the video 

subject is 6 seconds long and that is in an anonymized version. From this perspective, the dataset has four class labels 

normal, abnormal with slight CA, abnormal with moderate CA, and abnormal with advanced CA. These ataxia 

disorder classes are effectively detected by the Hybrid DMADL-CTO model.  

4.3 Experimental Outcomes  

In this section, the outcome of every individual stage of the model under the detection of CA is illustrated in Figure 

6. 
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                                    Figure 6: Experimental outcomes of Hybrid DMADL-CTO 

4.4 Performance Metrics 

To evaluate the effectiveness of the Hybrid DMADL-CTO, numerous evaluation measures are utilized in the research 

as accuracy, recall, and precision under training Percentage (TP), and K-Fold validation (KF), which are briefly 

described in table 1. 
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Table 1: Explanation of Performance metrics 

Performance Metrics Expression Explanation 

Accuracy 
u w

u w u w

Tr Tr

Tr Tr Fa Fa

+

+ + +
 

Measures the corrected classified predicted 

value to the overall number of predicted 

instances. 

Recall 
u

u w

Tr

Tr Fa+
 

Computes the proportion of overall positive 

values obtained from the actual predicted 

value. 

Precision 
u

u u

Tr

Tr Fa+
 

Determines the measure of positive 

instances from the overall actual positive 

predicted value. 

where, uTr mentions the true positive value, uFa represents the false positive value, wTr indicates the true negative 

values, and wFa refers the false negative value respectively.  

4.4.1 Performance Assessment of READISCA dataset under Training Percentage  

The performance assessment of the model under the READISCA dataset for numerous evaluation metrics at a 

maximum TP of 80% with various epochs of 20, 40, 60, 80, and 100. The accuracy obtained by the proposed Hybrid 

DMADL-CTO under epoch 20 is 91.82%, further for epoch 40, the value is increased to 92.62%, for epoch 60 the 

value is 95.16%, for epoch 80 the value is 96.60%, and for epoch 100 the attained accuracy value is 97.52%, which 

shows an increased value while compared with other epochs. Further, the recall measured at 80% TP for epoch 20 is 

92.08%, for epoch 40 is 93.32%, for epoch 60 is 95.63%, for epoch 80 is 96.98%, and for epoch 100, the achieved 

recall value is 98.59%. Similarly, for precision metric under epoch 20, the attained value is 89.89%, for epoch 40 is 

91.96%, for epoch 60 is 93.85%, for epoch 80 is 95.47%, and for epoch 100 is 96.00% under 80% TP. By considering 

this effectiveness, the Hybrid DMADL-CTO increased the ability of detection framework under CA. Figure 7 shows 

the performance analysis based on TP.  

 
 

Accuracy Recall 

 

Precision 

 

Figure 7: Performance Assessment of READISCA dataset under Training Percentage 

4.4.2 Performance Assessment of READISCA dataset under K-Fold validation  

Figure 8, illustrates the performance efficacy of the model under the KF analysis of the READISCA dataset. In this, 

the performance assessment of the model is analyzed for a maximum KF of 10 under various epochs of 20, 40, 60, 

80, and 100. The accuracy obtained by the proposed Hybrid DMADL-CTO under epoch 20 is 88.59%, further the 
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value attained for epoch 40, is 90.08%, the value achieved for epoch 60 is 91.89%, the value attained for epoch 80 is 

95.37%, and the accuracy value attained for epoch 100 is 97.66%, which shows an increased value. Further, the value 

for recall metric under epoch 20 is 89.52%, the value attained for epoch 40 is 91.24%, the value achieved for epoch 

60 is 93.38%, the value obtained for epoch 80 is 96.35%, and the recall metric value for epoch 100 is 97.99%. 

Similarly, the value for precision metric under epoch 20is 87.53%, the value for epoch 40 is 88.84%, the value 

attained for epoch 60 is 90.55%, the value achieved for epoch 80 is 94.54%, and the value for precision metric at 

epoch 100 is 95.88% under maximum KF of 10. 

  

Accuracy Recall 

 

Precision 

 

Figure 8: Performance Assessment of READISCA dataset under K-Fold validation 

4.5 Comparative methods  

The performance effectiveness of the Hybrid DMADL-CTO is compared with other related approaches as FWO-XGB 

[42], ODLCNN [43], DL-MCD-DT [44], AtGCN [45], ctGAN [46], FSR-XGB [47], Hybrid DRL [48], ICA-hybrid DRL 

[49], TLO-hybrid DRL [50], Hybrid DMADL [51], and Hybrid DRL-CTO techniques.  

4.5.1 Comparative Assessment with Training Percentage   

The comparative assessment of Hybrid DMADL-CTO under the READISCA dataset obtained effective results, which 

are illustrated in Figure 9. For 80% of TP, the accuracy value for Hybrid DMADL-CTO is 97.52%, which shows an 

enhancement of 16.60% for FWO-XGB, 12.61% for ODLCNN, 19.17% for DL-MCD-DT, 11.78% for AtGCN, 17.22% for 

ctGAN, 15.27% for FSR-XGB, 8.29% for Hybrid DRL, 5.63% for ICA-Hybrid DRL, 4.43% for TLO-hybrid DRL, 0.84% 

for hybrid DMADL, 2.63% for hybrid DRL-CTO. For recall metric, the value obtained byHybrid DMADL-CTO is 

98.59%, which is 18.03% higher than FWO-XGB, 13.05% greater than ODLCNN, 20.02% enhanced than DL-MSC-

DT, 12.80% developed than AtGCN, 18.19% improved than ctGAN, 16.36% greater than FSR-XGB, 9.24% developed 

than Hybrid DRL, 6.10% enhanced than ICA-hybrid DRL, 4.50% increased than TLO-hybrid DRL, 0.88% improved 

than hybrid DMADL, and 2.69% higher than Hybrid DRL-CTO. Similarly, for precision metric, the value obtained by 

Hybrid DMADL-CTO is 96.00%, which shows an enhancement of 14.98%, 11.78%, 19.14%, 11.12%, 16.44%, 13.73%, 

8.52%, 5.81%, 3.94%, 0.94%, and 2.445% over FWO-XGB, ODLCNN, DL-MCD-DT, AtGCN, ctGAN, FSR-XGB, 

Hybrid DRL, ICA-hybrid DRL, TLO-hybrid DRL, Hybrid DMADL, and Hybrid DRL-CTO method appropriately.  
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Figure 9: Comparative Assessment of READISCA dataset under Training Percentage 

4.5.2 Comparative assessment with K-fold validation    

Figure 10, depicts the comparative assessment of the Hybrid DMADL-CTO under the READISCA dataset of various 

related methods with a maximum KF of 10. In this comparative evaluation, the accuracy metric of Hybrid DMADL-

CTO is97.66%, which is 14.86% higher than FWO-XGB, 11.58% greater than ODLCNN, 16.47% enhanced than DL-

MSC-DT, 11.09% developed than AtGCN, 14.75% improved than ctGAN, 13.02% greater than FSR-XGB, 9.15% 

developed than Hybrid DRL, 8.21% enhanced than ICA-hybrid DRL, 6.65% increased than TLO-hybrid DRL, 0.87% 

improved than hybrid DMADL, and 3.76% higher than Hybrid DRL-CTO. Further, the achieved value for recall metric 

under Hybrid DMADL-CTO is 97.99%, which shows an enhancement of 15.07%, 11.15%, 16.52%, 11.04%, 14.60%, 

12.68%, 9.41%, 7.86%, 6.01%, 0.90%, and 3.46% over FWO-XGB, ODLCNN, DL-MCD-DT, AtGCN, ctGAN, FSR-

XGB, Hybrid DRL, ICA-hybrid DRL, TLO-hybrid DRL, Hybrid DMADL, and Hybrid DRL-CTO method respectively. 

For Precision metric, the obtained value for Hybrid DMADL-CTO is 95.88%, which shows an enhancement of 13.37% 

for FWO-XGB, 10.70% for ODLCNN, 15.16% for DL-MCD-DT, 10.20% for AtGCN, 13.62% for ctGAN, 12.08% for 

FSR-XGB, 8.32% for Hybrid DRL, 7.20% for ICA-Hybrid DRL, 5.90% for TLO-hybrid DRL, 0.90% for hybrid 

DMADL, 3.41% for hybrid DRL-CTO.  

 

Figure 10: Comparative Assessment of READISCA dataset under K-fold validation 

4.6 ROC curve  

This section determines the results of the true positive rate (TPR) with respect to the false positive rate (FPR). These 

evaluation metrics provide accurate detection of CA with its class label classification. Because of these enhancements, 

the entire performance efficacy and ability of the model is improved effectually. The obtained ROC value for the 

Hybrid DMADL-CTO is 0.97, which shows an improved value when compared with other related methods as FWO-

XGB, ODLCNN, DL-MCD-DT, AtGCN, ctGAN, FSR-XGB, Hybrid DRL, ICA-hybrid DRL, TLO-hybrid DRL, Hybrid 
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DMADL, and Hybrid DRL-CTO. These conventional methods attain the ROC valuesof 0.83, 0.85, 0.86, 0.90, 0.88, 

0.89, 0.92, 0.93, 0.95, 0.960, and 0.965. Therefore, the ROC curve for the model is depicted in Figure 11.  

 

ROC curve 

 

Figure 11: ROC evaluation of the proposed model 

4.7 Confusion matrix  

In the research, the Hybrid DMADL-CTO utilized the READISCA dataset, which effectively classifies the class labels 

as normal, abnormal slight CA, abnormal moderate CA, and abnormal advanced CA. In this context, the confusion 

matrix evaluation determines the predicted label with respect to the true label that provides precise detection with 

accurate class classification labels.  In this evaluation, 1458 data are precisely classified as normal labels, 346 data 

are categorized as abnormal slight CA labels, 587 data are classified as abnormal with moderate CA labels, and 47 

data are categorized as abnormal with advanced CA labels. Thus, the Hybrid DMADL-CTO attainsa high detection 

rate with [precise classification of class labels when compared to other related methods. The attained confusion 

matrix is represented in Figure 12.  

 

Confusion Matrix 

Figure 12: Confusion matrix of proposed model 

4.8 Comparative Discussion 

The Hybrid DMADL-CTO achieved effective detection results when compared with other conventional approaches. 

In the FWO-XGB model, the operation time was increased, which caused overlapping and scalability issues .  

Similarly, the ODLCNN model requires manual imputation of features to achieve accurate detection results.  

Comparatively, the DL-MCD-DT model faced high computation complexity while validating the detection and 

classification process. Furthermore, the FSR-XGB model performed a cross-validation feature selection method that 

reduced the performance effectiveness of the model . Additionally, the AtGCN model faced high error loss that 

affected the validation time and training capability.  The ctGAN model suffered from minimal dependability and 

robustness issues during the evaluation of the detection process .  Moreover, the Hybrid DRL-CTO model consumed 

a huge operational time to provide accurate detection results, which caused a minimal decrease in its performance 

effectiveness gradually. To overcome these disadvantages, a Hybrid DMADL-CTO provides precise detection results 

with minimal time consumption, which are schematically tabulated in Table 2.  
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Table 2: Comparative Discussion of the Hybrid DMADL-CTO 

Methods/Metrics 

READISCA dataset 

TP (90%) KF (10) 

Accuracy (%) Recall (%) Precision (%) Accuracy (%) Recall (%) Precision (%) 

FWO-XGB 83.15 83.22 83.06 81.33 80.81 81.62 

ODLCNN 86.35 87.06 85.62 85.22 85.73 84.69 

DL-MCD-DT 81.58 81.80 81.34 78.83 78.85 77.62 

AtGCN 86.83 87.17 86.10 86.03 85.97 85.32 

ctGAN 83.26 83.68 82.82 80.73 80.65 80.22 

FSR-XGB 84.94 85.56 84.30 82.63 82.45 82.82 

Hybrid DRL 88.73 88.77 87.90 89.43 89.48 87.82 

ICA-Hybrid DRL 89.65 90.29 88.98 92.03 92.58 90.42 

TLO-Hybrid DRL 91.17 92.10 90.22 93.20 94.15 92.22 

Hybrid DMADL 96.82 97.10 95.02 96.70 97.72 95.10 

Hybrid DRL-CTO 94.00 94.60 92.62 94.95 95.93 93.66 

Hybrid DMADL-CTO 97.67 97.99 95.89 97.52 98.59 96.01 

 

5. CONCLUSION  

The Hybrid DMADL-CTO is significantly designed for detecting the abnormalities of CA along with its class labels. 

In this research, the CTO algorithm and mixed attention module are effectually integrated to elevate the performance 

efficacy and convergence rate by reducing the computational cost, complexities, and memory constraints problems.  

Additionally, the instructive optimal frames are selected by an optimized multi-metric frame selection method to 

perform further detection operations. Furthermore, the increased operational time of the previous model challenge 

is effectively addressed by the implementation of a distributed learning approach. Meanwhile,the mixed attention 

module boosts the ability and effectiveness precisely. Due to these methods, the Hybrid DMADL-CTO effectually 

classified the class labels of CA with enhanced performance efficiency, which is then compared with other related 

existing approaches with numerous evaluation measures under maximal TP and KF 3scores. Thus, the higher 

performance efficacy of the Hybrid DMADL-CTO is obtained under maximal TP validation of accuracy, recall, and 

precision measures that achieve 97.67%, 97.99%, and 95.89% respectively. Furthermore, future research for CA 

detection explores diverse learning techniques with the insertion of distinct optimization algorithms to achieve 

precise performance with better classification effectiveness.  

REFERENCES 

[1] Pau, M., Porta, M., Pau, C., Tacconi, P. and Sanna, A., “Quantitative characterization of gait patterns in 

individuals with spinocerebellar ataxi”, Bioengineering, vol.10, no.7, pp.788,2023. 

[2] Shanmuga Sundari, M. and Jadala, V.C., “Neurological disease prediction using impaired gait analysis for foot 

position in cerebellar ataxia by ensemble approach”, Automatika: časopis za automatiku, mjerenje, elektroniku, 

računarstvoikomunikacije, 64(3), pp.540-549, 2023. 

[3] Seetharama, P.D. and Math, S., “Ataxia severity classification using enhanced feature selection and ranking 

optimization through a machine learning model”, Indonesian Journal of Electrical Engineering and Computer 

Science, 32(3), pp.1605-1613, 2023. 

[4] Bania, K. and Verlekar, T., “AtGCN: A Graph Convolutional Network For Ataxic Gait Detection”, arXiv preprint 

arXiv:2410.22862, 2024. 

[5] Trabassi, D., Castiglia, S.F., Bini, F., Marinozzi, F., Ajoudani, A., Lorenzini, M., Chini, G., Varrecchia, T., 

Ranavolo, A., De Icco, R. and Casali, C., “Optimizing Rare Disease Gait Classification through Data Balancing 

and Generative AI: Insights from Hereditary Cerebellar Ataxia”, Sensors, 24(11), p.3613, 2024. 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1299 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[6] Vattis, K., Oubre, B., Luddy, A.C., Ouillon, J.S., Eklund, N.M., Stephen, C.D., Schmahmann, J.D., Nunes, A.S. 

and Gupta, A.S., “Sensitive quantification of cerebellar speech abnormalities using deep learning models” IEEE 

Access, 2024. 

[7] Faber, J., Kügler, D., Bahrami, E., Heinz, L.S., Timmann, D., Ernst, T.M., Deike-Hofmann, K., Klockgether, T., 

van de Warrenburg, B., van Gaalen, J. and Reetz, K., “CerebNet: A fast and reliable deep-learning pipeline for 

detailed cerebellum sub-segmentation”, Neuroimage, 264, p.119703, 2022. 

[8] Cabeza-Ruiz, R., Velázquez-Pérez, L., Linares-Barranco, A. and Pérez-Rodríguez, R., “Convolutional neural 

networks for segmenting cerebellar fissures from magnetic resonance imaging”, Sensors, 22(4), p.1345, 2022. 

[9] Radmard, S., Zesiewicz, T.A. and Kuo, S.H., “Evaluation of cerebellar ataxic patients”, Neurologic clinics, 41(1), 

pp.21-44, 2023. 

[10] Suzuki, M., Hirano, S., Otte, K., Schmitz-Hübsch, T., Izumi, M., Tamura, M., Kuroiwa, R., Sugiyama, A., Mori, 

M., Röhling, H.M. and Brandt, A.U., “Digital motor biomarkers of cerebellar ataxia using an RGB-Depth camera-

based motion analysis system”, The Cerebellum, 23(3), pp.1031-1041, 2024. 

[11] Seemann, J., Daghsen, L., Cazier, M., Lamy, J.C., Welter, M.L., Giese, M.A., Synofzik, M., Durr, A., Ilg, W. and 

Coarelli, G., “Digital gait measures capture 1‐year progression in early‐stage spinocerebellar ataxia type 2”, 

Movement Disorders, 39(5), pp.788-797, 2024. 

[12] [ Timm, E.C., Purcell, N.L., Ouyang, B., Berry-Kravis, E., Hall, D.A. and O’Keefe, J.A., “Potential Prodromal 

Digital Postural Sway Markers for Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Detected via Dual-

Tasking and Sensory Manipulation”, Sensors, 24(8), p.2586, 2024.. 

[13] Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, 

C., Parker, K. and Pezzulo, G., “Consensus paper: the cerebellum's role in movement and cognition”, The 

Cerebellum, 13, pp.151-177, 2014. 

[14] Guell, X., Gabrieli, J.D. and Schmahmann, J.D., “Embodied cognition and the cerebellum: perspectives from the 

dysmetria of thought and the universal cerebellar transform theories”, Cortex, 100, pp.140-148, 2018. 

[15]  Schmahmann, J.D., “The cerebellum and cognition", Neuroscience letters, 688, pp.62-75, 2019. 

[16] Stoodley, C.J. and Schmahmann, J.D., “Functional topography in the human cerebellum: a meta-analysis of 

neuroimaging studies”, Neuroimage, 44(2), pp.489-501, 2009. 

[17] Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P. and Rochester, L., “Accuracy of the Microsoft Kinect 

sensor for measuring movement in people with Parkinson's disease”, Gait & posture, 39(4), pp.1062-1068, 2014. 

[18] Schmitz-Hubsch, T., Du Montcel, S.T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., Giunti, P., Globas, C., 

Infante, J., Kang, J.S. and Kremer, B.,” Scale for the assessment and rating of ataxia: development of a new 

clinical scale”, Neurology, 66(11), pp.1717-1720, 2006. 

[19] Rusz, J., Benova, B., Ruzickova, H., Novotny, M., Tykalova, T., Hlavnicka, J., Uher, T., Vaneckova, M., Andelova, 

M., Novotna, K. and Kadrnozkova, L., “Characteristics of motor speech phenotypes in multiple sclerosis”, 

Multiple sclerosis and related disorders, 19, pp.62-69, 2018. 

[20] Kashyap, B., Pathirana, P.N., Horne, M., Power, L. and Szmulewicz, D., “Automated tongue-twister phrase-based 

screening for Cerebellar Ataxia using Vocal tract Biomarkers”, In 2019 41st Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 7173-7176). IEEE, July 2019. 

[21] Kashyap, B., Horne, M., Pathirana, P.N., Power, L. and Szmulewicz, D., “Automated topographic prominence-

based quantitative assessment of speech timing in cerebellar ataxia”, Biomedical Signal Processing and Control, 

57, p.101759, 2020. 

[22] Mancini, M., King, L., Salarian, A., Holmstrom, L., McNames, J. and Horak, F.B., “Mobility lab to assess balance 

and gait with synchronized body-worn sensors”, Journal of bioengineering & biomedical science, p.007, 2011. 

[23] Shumway-Cook, A. and Horak, F.B., “Assessing the influence of sensory interaction on balance: a suggestion 

from the field”, Physical therapy, 66(10), pp.1548-1550, 1986. 

[24] Hasegawa, N., Shah, V.V., Carlson-Kuhta, P., Nutt, J.G., Horak, F.B. and Mancini, M., “How to select balance 

measures sensitive to Parkinson’s disease from body-worn inertial sensors—separating the trees from the forest”, 

Sensors, 19(15), p.3320, 2019. 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1300 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[25] Mancini, M., Priest, K.C., Nutt, J.G. and Horak, F.B., “Quantifying freezing of gait in Parkinson's disease during 

the instrumented timed up-and-go test”, In 2012 Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (pp. 1198-1201). IEEE, August 2012. 

[26] Powell, L.E. and Myers, A.M., “The activities-specific balance confidence (ABC) scale”, The Journal of 

Gerontology Series A: Biological sciences and Medical sciences, 50(1), pp.M28-M34, 1995. 

[27] The READISCA dataset,” https://rochester.app.box.com/v/AtaxiaDataset” accessed on November 2024.  

[28] Buckley, E., Mazzà, C. and McNeill, A., “A systematic review of the gait characteristics associated with Cerebellar 

Ataxia”, Gait & posture, 60, pp.154-163, 2018. 

[29] Atashpaz-Gargari, E. and Lucas, C.,” Imperialist competitive algorithm: an algorithm for optimization inspired 

by imperialistic competition”, In 2007 IEEE Congress on evolutionary computation (pp. 4661-4667). Ieee, 

September 2007.  

[30] Rao, R.V., Savsani, V.J. and Vakharia, D.P., “Teaching–learning-based optimization: a novel method for 

constrained mechanical design optimization problems”, Computer-aided design, 43(3), pp.303-315, 2011. 

[31] Gao, S., Yun, J., Zhao, Y. and Liu, L., “Gait‐D: skeleton‐based gait feature decomposition for gait recognition”, 

IET Computer Vision, 16(2), pp.111-125, 2022. 

[32] Singh, A.K., Kumbhare, V.A. and Arthi, K., “Real-time human pose detection and recognition using media pipe", 

In International conference on soft computing and signal processing (pp. 145-154). Singapore: Springer Nature 

Singapore, June 2021. 

[33] Oda, M., Furukawa, K., Navab, N. and Mori, K., “ KST-Mixer: kinematic spatiotemporal data mixer for colon 

shape estimation", Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 

11(4), pp.1050-1056, 2023. 

[34] Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Chakraborty, J. and Nandi, D., “Brain tumor classification 

using ResNet-101 based squeeze and excitation deep neural network”, In 2019 Second International Conference 

on Advanced Computational and Communication Paradigms (ICACCP) (pp. 1-6). IEEE, February 2019. 

[35] Zhou, L., Wang, M. and Zhou, N., “Distributed federated learning-based deep learning model for privacy MRI 

brain tumor detection”, arXiv preprint arXiv:2404.10026, 2024. 

[36] Khan, M.A. and Kim, Y., “Cardiac Arrhythmia Disease Classification Using LSTM Deep Learning Approach. 

Computers”, Materials & Continua, 67(1), 2021. 

[37] Woo, S., Park, J., Lee, J.Y. and Kweon, I.S., “Cbam: Convolutional block attention module”, In Proceedings of the 

European Conference on Computer Vision (ECCV) (pp. 3-19), 2018. 

[38] Al-Asadi, M.A. and Tasdemir, S., “Using artificial intelligence against the phenomenon of fake news: a systematic 

literature review”, Combating fake news with computational intelligence techniques, pp.39-54, 2022. 

[39] Stoean, C., Stoean, R., Atencia, M., Abdar, M., Velázquez-Pérez, L., Khosravi, A., Nahavandi, S., Acharya, U.R. 

and Joya, G., “Automated detection of presymptomatic conditions in Spinocerebellar Ataxia type 2 using Monte 

Carlo dropout and deep neural network techniques with electrooculogram signals”, Sensors, vol.20, no.11, 

pp.3032, 2020. 

[40] Procházka, A., Dostál, O., Cejnar, P., Mohamed, H.I., Pavelek, Z., Vališ, M. and Vyšata, O., “Deep learning for 

accelerometric data assessment and ataxic gait monitoring”, IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol.29, pp.360-367, 2021. 

[41] Seetharama, P.D. and Math, S., “Ataxic person prediction using feature optimized based on machine learning 

model”, International Journal of Electrical and Computer Engineering (IJECE), vol.14, no.2, pp.2100-2109, 

2024.  

https://rochester.app.box.com/v/AtaxiaDataset

