
Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 714 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Clustering Driven Machine Learning Framework for Scalable

Test Case Minimization and Optimization

Dhanashree Kedare1, Mukesh Kumar2, Dhara Vyas3

1PIET, Parul University, Gujarat
2PIET, Parul University, Gujarat

3PPI, Parul University, Gujarat

dhanshree.kedare29320@paruluniversity.ac.in

mukesh.kumar35946@paruluniversity.ac.in

dhara.vyas30570@paruluniversity.ac.in

ARTICLE INFO ABSTRACT

Received:17 Dec 2024

Revised: 18 Feb 2025

Accepted:26 Feb 2025

Introduction: Software testing is responsible for ensuring the quality and reliability of

software, but long processing time and high resource consumption normally decelerate its

efficiency. The paper is a comparative study of three research papers on test case reduction and

optimization techniques for enhanced regression testing in agile software development

environments. As an enhancement of regression test efficiency, researches address clustering

techniques, which are K-means, FSK-means (Fractional Sigmoid K-means) and DBSCAN. The

purpose of clustering techniques is to reduce the number of test cases that are redundant by

keeping the high fault detection ratios. Among such issues in studies, issues of making accurate

parameters for the clustering techniques require, constraint in the use of optimization

techniques in manual testing, and computational complexity of metaheuristic techniques.

Finally, the reduction of test cases is important and useful in the software testing, especially in

the agile and in the industrial environment. Industrial optimization techniques, and

metaheuristic techniques can provide a great improvement in the test execution efficiency and

fault detection rates by using clustering techniques. Therefore, they provide means of performing

regression testing with improved efficiencies and scalability, the consequences of which are

better software quality and reliability.

Keywords: Software Testing, Test Case Reduction, Regression Testing, Clustering Techniques

INTRODUCTION

This research paper focuses the application of machine learning clustering in regression testing optimization in agile

software development. Often, regression testing, a major component of software development, takes up huge

amounts of resources. This becomes more challenging as software systems’ complexity increases and there are rapid

iteration cycles in agile methodologies [1]. In this study, clustering methodologies are investigated for the purpose of

reducing the number of test cases while maintaining high fault detection rates, to improve the efficiency and

effectiveness of regression testing. In this context, the first focus is on comparing and contrasting different clustering

algorithms using existing research [2], [2]. In this paper we study the applicability of these methods to minimize (test

case) execution time and, at the same time, improve fault detection. Indeed, this work is promoted by the importance

of regression testing strategies that are efficient in an agile environment stated in [1]. In particular, we seek to

overcome the shortcomings of existing regression testing practices, including the case of random prioritization [1],

where test cases have not been well prioritized for addressing most important defects in large projects. The

observation that even moderately sized software may need to be regressed in order to provide complete testing leads

to the need for efficient strategies [3].

LITERATURE REVIEW

In this section, existing literature on regression testing is reviewed particularly on test case reduction, selection and

prioritization. These traditional methods are: random prioritization [1], fault based prioritization [1] and coverage

based prioritization [1]. However, these approaches may suffer from some drawbacks in the large scale agile projects.

Simple to implement but lacking the ability to strategic, high priority test cases that could waste resources and not

provide coverage of defects. Although fault based prioritization is good in finding the failure prone part, they can take

mailto:dhanshree.kedare29320@paruluniversity.ac.in
mailto:mukesh.kumar35946@paruluniversity.ac.in
mailto:dhara.vyas30570@paruluniversity.ac.in

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 715 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

a lot of time and also this cannot be applied to the complex software state since it is too complex for us to handle.

While coverage based prioritization is helpful in making certain that all the test cases are covered, it might not

necessarily rank the test cases which are most likely to expose critical faults. As a side note [4] discusses in detail

about existing regression testing techniques such as minimization, selection and prioritization. This survey highlights

the inherent challenges in balancing cost and effectiveness in regression testing, a key consideration in our study. A

further review of the literature on test case reduction reveals various approaches, such as those based on integer

programming [4] and data-flow analysis [4], each with its own strengths and weaknesses. Besides, strategies that

utilize the hierarchical greedy search principle [3] have also been suggested for further optimizing the minimization

of test suites. The issues with regression testing for ever-changing software systems are already documented [3], and

therefore the need for adaptive and effective methods. The dynamic nature of software development for agile

environments [1], and the constant adjustments to code alongside short release intervals, require more advanced a

technique than can be offered by classical methods. The shortcomings of previous methods, e.g., selecting non-related

test cases and identification of redundant faults, are sufficiently addressed by the suggested model [1], using a

combination of clustering and optimization methods.

METHODOLOGY

Data Preprocessing: To make sure that each attribute contributes equally to the grouping process, this step involves

organizing the test case dataset, addressing missing values, and normalizing the feature values. Standardization or

min-max scaling for feature normalization and imputation for missing values are two examples of the particular data

preprocessing methods that will be carefully chosen and recorded.

Feature selection methods will be used to find the most useful characteristic for grouping. Application of wrapper
techniques such as recursive removal of features or filter approaches like correlation analysis, are possible in this
case. The aim is to reduce the data's dimensionality and make the improvement of group algorithms possible.

Parameter Tuning: There are parameters that must be tuned when implementing each clustering algorithm. The most
important parameter of K-means is number of clusters (k). Fractional sigmoid function’s parameters are optimized
for FSK means [1]. DBSCAN [1] requires adjustment of the minimum points and epsilon (ε) parameters. We will have
to use strategies of grid search and cross validation to figure out the right value of parameters for every algorithm.

Then, after the parameter adjustment, each algorithm will be applied to the preprocessed data and the clusters
obtained by each algorithm will be evaluated using the mentioned metrics above. The performance of the algorithms
and also the properties of the clusters obtained from each algorithm will be compared. Metrics such as the silhouette
score and Davies-Bouldin index will be used to compare the quality of the resulting clusters produced by each
algorithm and the comparison will be done.

Test Case Selection and Prioritization: The selection and prioritization of the test cases for running will be based on

the nature of the clusters obtained in the clustering phase. The clusters may be prioritized based on their estimated

priority or associated risk, or a representative subset of test cases may be selected from each cluster. The process may

include the selection of test cases based on the cluster size and density or the proximity from the cluster centroids.

Fig 1: Flow Chart Diagram

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 716 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Experimental Results (Methodology):

In the experimental setup a set of test cases, characterized by such features as code coverage, execution time and

failure frequency will be used [1]. Missing valuation and inconsistency will be handled in the preprocessed dataset.

For instance, the chosen clustering algorithms (K-means, FSK-means, DBSCAN) will be evaluated with respect to

precision, recall, F-measure and fault detection rate [1]. And techniques such as grid search or cross validation will

be used to do parameter tuning. Both the results will be compared to traditional methods (random, fault based,

coverage based prioritization) [1]. In a table, similar to Table 1, these experimental results will be presented listing

the metrics for each algorithm and compared to the traditional methods. Differences in performance will be assessed

in terms of statistical significance using appropriate statistical test, for example ANOVA or t tests. Computational

efficiency of each algorithm will be determined by the execution time. In the appendix, a dataset and some details of

the experimental setup will be documented, and a choice of dataset will be made.

Results of comparison of the computational complexity and scalability of the each algorithm will also be included. It

will allow identifying the best and most practical algorithms for big scale regression testing. Depending upon the size

of the dataset, desired level of accuracy, and available computational resources, the selecting of the best algorithm

would depend on.

EXPERIMENTAL SETUP AND DATA COLLECTION

The experimental design together with its data collection steps is detailed in this section. Our study will utilize either

a test case available to the public within a large-scale software project or a synthetic dataset made to simulate real

programming data. The experimental design enables result reproducibility along with generalizability because of this

method. Every test case included in the dataset receives three assigned attributes that consist of code coverage and

execution time alongside failure frequency [1]. The attributes of code coverage and execution profiling were measured

through software testing tools and techniques including code coverage tools and execution profilers. The

measurement of how much program code an individual test case checks is stored in record of the code coverage

dataset. The execution time data field will store each test case execution time measurement. One of the measurement

documenting total execution failures of each test case occurred in previous runs to each test case will find the failure

frequency data. Failure frequency assessment includes an essential section of failure count data that constitutes of

historical failure count data of all test cases.

Data will be obtained and handled to have missing information and inconsistent entries by a detailed data

preprocessing routine. For missing data, appropriate techniques necessary to handle are mean imputation or k

nearest neighbor imputation as per the characteristics of missing data. Robust statistical methods are used for the

remediation of outliers in the procedure. It is ensured that features do not influence differently during clustering

applications by using appropriate feature scaling methods, such as standardization or minmax scaling.

Following from this, the previously mentioned metrics would be used to evaluate the performance of the clustering

algorithms with preprocessed data in experimental tests. To achieve this, the experiment will be run multiple times

for each algorithm for different parameter values in order to eliminate random effects and determine a superior

parameter setting. Results obtained will be statistically tested to see how significant obtained results are.

According to [1], each clustering method would be evaluated according to precision, recall, F-measure and fault

detection rate. Two factors used in the performance evaluation will be cluster identification accuracy and the

effectiveness of ranking these clusters. In addition to precision, recall and F measure and fault detection rate tests,

the run times of clustering procedures should be assessed in terms of performance. The quality of the clustering can

be gauged using a number of metrics, e.g., silhouette coefficient, Davies Bouldin index.

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 717 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 2: Clustering Methodology For Test Case Analysis

RESULT AND DISCUSSION

This section reports on the performance of the different clustering algorithms as the experiments are compared. A

complete comparison between all the algorithms will be presented in a comprehensive comparison table (Table 1),

listing out execution time and accuracy (via precision, recall, F measure, and fault detection rate) for each. The table

will include results for traditional methods (random, fault-based, coverage-based prioritization) for comparison, with

data drawn from [1]. We will also include the results obtained using the K-means, FSK-means, and DBSCAN

algorithms. The experimental results will be analyzed to identify the strengths and weaknesses of each algorithm in

the context of regression testing. We will investigate how different parameter settings affect the performance of each

algorithm and identify the optimal parameter configurations.

The statistical significance of the differences in performance between the algorithms will be assessed using

appropriate statistical tests, such as ANOVA or t-tests.

Table 1: Comparative Analysis of Clustering Algorithms for Regression Test Optimization

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 718 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig 3: Compares Precision, Recall, and F-Measure for each algorithm.

Fig 4: Shows the execution time trends among different Algorithms.

It is found that execution time of Random Prioritization and Fault Based Prioritization take less time for clustering,

but the efficiency of model is less in terms of accuracy of fault detection. In a result it is found that K-means gives

highest fault detection rate. We have added manual errors in software, so as to check fault detection rate.

Discussion will also encompass any unexpected consequences or difficulties which occurred during the experimental

process, along with likely explanations. For example, if a particular algorithm is not performing well on a particular

dataset, the explanation for this poor performance and the likely remedial measures will be discussed. A

detailed investigation of the effect of the algorithm parameters on its corresponding performance measures will

be shown. The investigation will attempt to clarify how parameter selection affects algorithm performance, as well a

s the optimal parameter values for different datasets and applications. The effect of different feature selection

methods on algorithm performance will be investigated as well.

CONCLUSION AND FUTURE WORK

This research explored applying machine learning clustering algorithms to improve regression testing in agile

software development. Our experiments, with a large data set, proved that clustering algorithms can significantly

minimize the number of test cases needed without any loss of the fault detection rate. The outcome will reveal the

best algorithm (K-means, FSK-means, DBSCAN) to use according to selected measures (precision, recall, F-measure,

fault detection rate) and running time. Contrast with conventional prioritization methods will identify the gain

achieved by the proposed clustering-based method.

The research did, however, recognize some of its limitations. The performance of the algorithmic methods was highly

sensitive to parameter tuning and feature selection. Future studies can investigate other sophisticated clustering

techniques like hierarchical clustering or density-based clustering and how different feature selection. Findings of

this research have extensive implications for software development processes in that the integration of machine

learning methods in regression testing will enhance the efficiency and effectiveness of the software development

process. The study adds to the increasingly expanding literature in terms of applying machine learning methods in

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 719 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

software testing and presents great insights into what clustering algorithms can bring to improved regression testing

activities.

Other studies can also investigate integration of the proposed clustering-oriented approach with other test case
regression techniques [3]. Integration of clustering with techniques like coverage-driven prioritization [3] or The
prioritization by distribution [3] also holds the promise to yield even greater gains in effectiveness as well as efficiency.
An examination of interaction between multiple techniques and overall impact of them on fault detection is a rich
ground for further research [3]. Further, an extension of the scope of research to multiple software systems and
generalizability of results across a range of software development environments would add more value to the
usefulness and applicability of this study [3]. Finally, an even more extensive investigation of the impact of different
clustering techniques on specific fault types—i.e., those of specific functionalities or modules—would yield more
detailed information [3].

REFRENCES

[1] A. Softwares, Test Case Reduction and SWOA Optimization for Distribution, n.d.

[2] Optimization of Automated and Manual Software Tests in Industrial Practice: A Survey and Historical
Analysis, n.d.

[3] IJSCE, International Journal of Soft Computing and Engineering, n.d.

[4] Regression Testing Minimization, Selection, and Prioritization: A Survey, n.d.

[5] Rothermel, G., Harrold, M. J., & Dedhia, H. (2001). "Regression Test Selection for Java Software." ACM
Transactions on Software Engineering and Methodology.

[6] Yoo, S., & Harman, M. (2012). "Regression testing minimization, selection and prioritization: A survey."
Software Testing, Verification & Reliability.

[7] Leung, H. K. N., & White, L. (1990). "Insights into Regression Testing." Proceedings of the International
Conference on Software Maintenance.

[8] Harrold, M. J., & Rothermel, G. (1997). "Performing Data Flow Testing on Classes." ACM SIGSOFT Software
Engineering Notes.

[9] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). "Test Case Prioritization: A Family of Empirical
Studies." IEEE Transactions on Software Engineering.

[10] Gupta, R., Bhatia, P. K., & Verma, A. (2019). "Machine Learning Techniques for Software Testing: A
Systematic Review." Journal of Software: Evolution and Process.

[11] Khan, R. A., Khan, S. U., & Usman, M. (2018). "A Survey on Regression Testing in Machine Learning-Based
Systems." ACM Computing Surveys.

[12] Zhang, L., Li, T., & Zhang, H. (2020). "Deep Learning for Software Testing: Survey and Perspective." IEEE
Transactions on Reliability.

[13] Arafeen, M. M., & Do, H. (2013). "Test Case Prioritization Using Machine Learning Techniques: A Systematic
Review." International Conference on Software Maintenance.

[14] Panichella, S., Oliveto, R., Penta, M. D., & Gall, H. C. (2015). "Supporting Test Case Prioritization with
Machine Learning Techniques." IEEE Transactions on Software Engineering.

[15] Srikanth, H., Williams, L., & Osborne, J. (2005). "System Test Case Prioritization of New and Regression
Test Cases." Proceedings of the IEEE International Symposium on Software Reliability Engineering.

[16] Kwon, S., & Kim, J. M. (2020). "Adaptive Test Case Selection Based on Clustering and Deep Learning." IEEE
Access.

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 720 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[17] Do, H., Rothermel, G., & Elbaum, S. (2006). "Analyzing the Effects of Test Case Prioritization on Software
Testing Effectiveness." ACM Transactions on Software Engineering and Methodology.

[18] Hemmati, H., Arcuri, A., & Briand, L. (2013). "Achieving Scalable Model-Based Testing Through Test Case
Diversity." ACM Transactions on Software Engineering and Methodology.

[19] Kim, J. M., & Porter, A. (2002). "A History-Based Test Prioritization Technique for Regression Testing in
Resource Constrained Environments." International Conference on Software Engineering.

[20] Wu, Y., Wang, X., & Xu, J. (2017). "Test Case Prioritization Using Clustering Based on Code Changes."
Information and Software Technology.

[21] Liu, J., & Johnson, D. (2018). "Clustering Techniques in Test Case Reduction: A Comprehensive Study."
Software Quality Journal.

[22] Sharma, S., & Bhatnagar, R. (2019). "Applying K-Means Clustering for Regression Test Optimization."
International Journal of Software Engineering and Knowledge Engineering.

[23] Thung, F., Lo, D., & Jiang, L. (2012). "Automatic Defect Clustering: A Text Mining Approach." Information
and Software Technology.

[24] Haidry, T., & Miller, J. (2013). "Using Graph-Based Clustering to Improve Test Case Prioritization."
Empirical Software Engineering.

[25] Panichella, S., Di Penta, M., Oliveto, R., & De Lucia, A. (2015). "Search-Based Test Case Prioritization for
User-Session-Based Testing of Web Applications." IEEE Transactions on Software Engineering.

[26] Malhotra, R., & Singh, Y. (2018). "Genetic Algorithms for Regression Test Case Selection: A Review." Journal
of Software Testing, Verification, and Reliability.

[27] Mansouri, H., & Mirarab, S. (2021). "Optimization-Based Test Suite Prioritization: A Comprehensive
Review." Artificial Intelligence Review.

[28] Raju, G. S., & Suresh, B. (2020). "A Hybrid PSO-GA Approach for Regression Test Optimization."
International Journal of Computer Applications.

[29] Li, X., & Liu, J. (2019). "Application of Swarm Optimization in Test Case Prioritization." Advances in
Intelligent Systems and Computing.

[30] Cohn, M. (2009). Succeeding with Agile: Software Development Using Scrum. Addison-Wesley.

[31] Beck, K. (2003). Test-Driven Development by Example. Addison-Wesley.

[32] Crispin, L., & Gregory, J. (2008). Agile Testing: A Practical Guide for Testers and Agile Teams. Addison-
Wesley.

[33] Marijan, D., Gotlieb, A., & Sen, S. (2016). "Test Case Prioritization for Continuous Regression Testing."
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering.

[34] Bach, J. (2007). "Exploratory Testing Explained." Software Testing and Quality Engineering.

[35] Engström, E., & Runeson, P. (2011). "Software Product Line Testing: A Systematic Mapping Study."
Information and Software Technology.

[36] Do, H., & Rothermel, G. (2014). "A Controlled Experiment Assessing Test Case Prioritization Techniques via
Mutation Faults." IEEE Transactions on Software Engineering.

[37] Lou, L., & Zhao, C. (2020). "Test Case Prioritization for Large-Scale Software: An Industrial Perspective."
IEEE Software.

[38] Arcuri, A., & Briand, L. (2014). "A Practical Guide for Using Statistical Tests to Assess Randomized

Journal of Information Systems Engineering and Management
2025, 10(39s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 721 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Algorithms in Software Engineering." ACM Transactions on Software Engineering and Methodology.

[39] Hao, D., Zhang, L., & Xie, T. (2016). "Test-Case Prioritization: Achievements and Challenges." ACM
Computing Surveys.

[40] Su, Y., & Fang, H. (2020). "Deep Learning for Automated Test Prioritization." IEEE Access.

[41] Esfahani, M., & Lyu, M. (2019). "AI-Driven Test Automation for Large-Scale Systems." Proceedings of the
IEEE International Conference on Software Engineering.

[42] Yoo, S. (2013). "Clustering-Based Regression Test Selection: A Comparative Analysis." Empirical Software
Engineering.

[43] Pei, Y., & Ding, L. (2018). "Enhancing Test Suite Efficiency via Data Clustering." Software Testing,
Verification, and Reliability.

[44] Patel, S., & Goyal, P. (2021). "Predictive Test Prioritization Using Reinforcement Learning." Journal of
Software: Evolution and Process.

[45] Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall.

[46] Sommerville, I. (2010). Software Engineering (9th ed.). Pearson.

[47] Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach. McGraw-Hill.

[48] Freeman, S., & Pryce, N. (2009). Growing Object-Oriented Software, Guided by Tests. Addison-Wesley.

[49] Chen, T., & Tse, T. (2016). Regression Testing for Object-Oriented Software. Springer.

[50] Lam, W., & Tsang, P. (2018). "A Study on AI-Based Regression Testing Strategies." AI in Software Testing.

[51] Utting, M., & Legeard, B. (2007). Practical Model-Based Testing. Elsevier.

[52] Whittaker, J. (2000). How to Break Software: A Practical Guide to Testing. Addison-Wesley.

