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In the oil and gas business, mining, and underground engineering, drilling 

activities are very important. It is very important to get the best results while 

lowering practical risks and costs. Rate of Penetration (ROP) and other 

traditional scientific and physics-based models for predicting drilling success 

have been limited because they can't adapt to settings that aren't linear, have 

a lot of dimensions, and change over time. This study suggests a strong data-

driven approach that uses optimisation methods and machine learning 

techniques like Random Forest Regressor (RFR) and Artificial Neural 

Networks (ANN) to predict and improve drilling performance. Real-life 

drilling data was cleaned up, normalised, and put through feature 

engineering to find the most important practical factors. The suggested ANN 

model, which had two hidden layers and was trained using the ReLU 

activation function and the Adam optimiser, did much better than baseline 

models, with a R² score of 0.91 and much lower RMSE and MAE. The model 

was then combined with a Genetic Algorithm to find the best drilling settings. 

This led to an estimated 12% increase in the expected ROP. Visualisation 

tools like SHAP were added to make the model easier to understand, so it is 

both correct and easy to explain. The results show that smart prediction 

systems could change drilling operations into processes that are flexible, run 

in real time, and are optimised. 

Keywords: Drilling Performance, Rate of Penetration (ROP), Machine 

Learning, Random Forest, Artificial Neural Network, Optimization, Genetic 

Algorithm, SHAP, Real-Time Prediction 

 

INTRODUCTION 

Drilling efficiency has been important for a long time in many fields, including oil and gas research, 

mining, and building work. Geological structures, machine parts, and human decision-making often 

combine in complicated ways during these processes. As the world's need for energy and natural 

resources grows, more and more work is being done to make digging faster, safer, and more cost-

effective. In the past, experts mostly used their gut feelings, mathematical models, and changing the 

drilling settings by hand to make the holes go deeper [1]. These techniques helped shape modern drilling 

techniques, but it's getting harder to keep up with the best results because of how difficult the ground 

is and how many different places there are to drill.  

As monitoring technology and automation have gotten better, drilling has become a process that gathers 

a lot of data. You can always get useful information while drilling, like the force, shaking, and mud flow 

rate, as well as the rate of penetration (ROP) and weight on bit (WOB). There is a chance for predictive 
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analytics and better performance that hasn't been used yet with these data sources [2]. If you want to 

really use this data, you will need smart models that can learn from past trends, figure out how factors 

are connected, and guess how drills will act in the future in different places and weather.  

Machine learning (ML) and data-driven models are getting a lot of attention as things that could change 

the game in this area. With these methods, you can work with multidimensional, irregular data and 

understand it in ways that are hard to see with other methods [3]. Because of this, there is a growing 

interest in making forecasting models that can help drilling engineers make choices based on facts and 

figures that will improve performance, lower costs, and lower risks. 

Even though data-driven modelling is getting more attention in drilling, there are still some problems 

that need to be fixed. The research that has already been done on predicting drilling success is varied 

and scattered [4]. A lot of studies only look at certain parts of the drilling process, like predicting ROP 

or bit wear, without looking at performance improvement as a whole. Also, the models created in these 

studies often have problems when it comes to being able to be used in real time, being able to be 

generalised, or being easy to understand. Artificial neural networks (ANN), support vector machines 

(SVM), and decision trees have all shown promise, but they are often used alone, without integrating 

domain-specific knowledge or being able to change in real time. 

A comprehensive analysis of present techniques reveals that many models are taught and evaluated on 

little datasets only relevant to certain group or location. Their capacity to estimate usually declines when 

used in fresh digging environments as a result. Moreover lacking are robust methods to verify the 

correctness and inaccuracy of the claims these models generate, which might reduce their dependability 

in actual scenarios [5]. How simple it is to grasp ML models is another significant concern. Drilling 

professionals, for instance, must understand how projections are created so they can make the 

appropriate adjustments.  

Though not many research directly address ways to enhance drilling success by means of actionable 

recommendations, more and more prediction models are being developed. By itself, prediction is 

insufficient; it must be coupled with techniques allowing engineers to modify control parameters 

depending on their expectations of future events. This is a significant research gap that inspired the 

concept for this work [6].  The main goal of this study is to create a data-driven model that can correctly 

predict drilling performance and improve it using optimisation and machine learning methods. The 

model is meant to do more than just make predictions; it also gives useful information that can be used 

to make decisions in real time. To do this, the study lists several main goals, such as gathering and 

preprocessing real-world drilling data, figuring out which performance parameters are important, 

creating and testing predictive models (like Random Forest, Gradient Boosting, and ANN), and 

combining them with optimisation algorithms like Genetic Algorithms [7]. The study also focusses on 

creating an easy-to-use interface to see forecasts and suggest control settings. Finally, case studies or 

fake benchmarks are used to prove the framework works. 

By assembling a system that integrates predictions and performance enhancement—which has not been 

done together very frequently in prior research—this work generates several significant new findings. It 

emphasises good data management by means of preparation and identification of outliers, and it 

simplifies data utilising tools such as SHAP and LIME. Scalable distribution systems provide real-time 

applicability of the model; optimisation allows it to recommend parameter values and generate 

forecasts. The technology demonstrates its usefulness in real life when evaluated with actual or 

simulated digging data. Its approach may also be used in related areas as machining or tunnelling.  

Overall, the study creates a smart, easy-to-understand, and ready-for-optimization decision-support 

tool that aims to cut down on wasted time, boost productivity, and lower risks in drilling operations. 

 

I. LITERATURE REVIEW 



Journal of Information Systems Engineering and Management 
2025, 10(39s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 666 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

For many years, predicting and improving drilling performance have been major study topics. This is 

mostly because of the need to cut down on non-productive time (NPT), keep costs low, and make sure 

operations are safe. In the past, most of the time, empirical models and linear equations based on past 

performance data and expert knowledge were used to model how well a drill worked. The mechanical 

specific energy (MSE) model, bit wear models, and rock strength-based models were some of these. 

They tried to connect operational factors like weight on bit (WOB), rotation speed, and torque to 

performance signs like rate of penetration (ROP) [8]. 

Early studies, including Bourgoyne and Young's drilling model, used regression analysis to identify 

relationships between various drilling elements. This allowed one to begin understanding how 

complicated subterranean behaviours operate [9]. These models, however, were often constrained by 

the belief that things should be linear, that they could not be applied across various geological strata, 

and that they were poor at handling uncertainty. Researchers become increasingly fascinated in using 

real-time data analytics in performance modelling as sensor technology advanced and more MWD and 

LWD logging data became accessible. Standard analytical methods could not manage the vast quantity 

and diversity of drilling data, however. This indicated we had to change to more flexible and dependable 

approaches.  

The rise of machine learning (ML) and artificial intelligence (AI) has changed the way drilling 

performance modelling is done. Data-driven models let you learn complex connections between factors 

without having to use specific physical formulations. Decision trees, support vector machines (SVM), 

artificial neural networks (ANN), random forests (RF), and, more recently, deep learning structures 

[10] are some of these models. For instance, Gholami et al. used ANN to predict ROP using data from 

surface drilling and found that it was much more accurate than standard regression models [11]. In the 

same way, Al-Mudhafar used support vector regression (SVR) and discovered that it was better at 

modelling nonlinear relationships in drilling data [12]. These studies showed that data-driven models 

are better than traditional models at finding trends that are complicated, irregular, and have a lot of 

dimensions. 

ML models still have issues even with these benefits. Commonly cited issues include "black boxes," the 

possibility of overfitting, and the inability to physically grasp the data [13]. Many machine learning 

models are sensitive to the quality of the data and the processes used to create it, hence they also need 

a great deal of labelled training data. Though they are better at forecasting the future than conventional 

models, they sometimes lack means to enhance their effectiveness, such as being able to recommend 

what has to be done or the optimal settings to apply depending on the forecasts. 

People have also looked into hybrid methods, in which subject knowledge is built into data-driven 

models to make them easier to understand and believe. For example, mixed neuro-fuzzy systems have 

been used to model ROP with built-in geological limitations. These systems produce rules that are easy 

to understand while still being able to learn from data [14]. It looks like these combinations could help 

close the gap between physical modelling and machine learning. 

Table.1 Presents a comparison between conventional and data-driven approaches in drilling 

performance modelling: 

Criteria Conventional Models Data-Driven Models 

Assumptions Linear/empirical Nonlinear, data-based 

Interpretability High Low to medium 

Accuracy Moderate High (with good data) 

Adaptability Low High 

Real-time capability Limited High 

Ease of integration Established in practice Still developing 
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The change from traditional models to data-driven models is an advancement in technology, but it 

also brings new problems, such as integrating data, computing in real time, and the need for 

frameworks that allow humans and machines to understand each other. 

Table 2: Summary of Literature on Drilling Performance Modeling 

Approach Used Key Contributions Limitations Citation 

Empirical regression-

based drilling model 

Established foundational 

equations for performance 

analysis 

Assumes linearity; limited 

to historical data 

[8] 

Artificial Neural 

Networks (ANN) 

Predicted ROP with improved 

accuracy over linear models 

Lack of interpretability; 

risk of overfitting 

[9] 

Support Vector 

Regression (SVR) 

Modeled nonlinear relationships 

effectively 

Requires tuning; less 

interpretable 

[10] 

Decision Trees and 

Ensemble Methods 

Used hybrid ML models for 

robust drilling parameter 

prediction 

Dataset-specific tuning; 

not real-time 

[11] 

Hybrid Neuro-Fuzzy 

System 

Incorporated domain rules with 

data learning for interpretability 

Complex model tuning; 

slower training 

[12] 

Deep Learning (CNN, 

LSTM) 

Captured time-series trends and 

improved ROP predictions in 

real-time drilling 

Black-box nature; lacks 

transparency 

[13] 

Feature Selection + 

ML 

Identified key parameters 

influencing drilling efficiency 

Doesn’t suggest 

optimization actions 

[14] 

Statistical + ML 

Comparison 

Benchmarked multiple models 

across datasets 

Lacks uncertainty 

quantification 

[15] 

ML + Ensemble 

Techniques 

Boosted accuracy for bit wear 

prediction 

Not validated in real-time 

or cross-formation 

scenarios 

[16] 

Genetic Algorithm 

with ANN 

Combined prediction with 

parameter optimization 

Scalability issues; limited 

deployment 

[17] 

Fuzzy Logic + 

Optimization 

Adaptive enhancement of drilling 

control settings 

Only tested in simulation; 

no field validation 

[18] 

Reinforcement 

Learning (RL) 

Developed autonomous drilling 

decision system 

Early stage; not yet 

industry-standard 

[19] 

XAI (SHAP, LIME) 

with ML 

Made model predictions 

explainable for field engineers 

Limited dataset; 

preliminary 

interpretations 

[20] 

Multi-objective 

Optimization 

Balanced drilling speed and tool 

wear for better performance 

Optimization not 

integrated into predictive 

loop 

[21] 

 

A. Limitations in Existing Methods 

Three main types of study limitations can be found in this body of work: data limitations, model 

limitations, and actual application.  

First, the number and diversity of the facts are quite crucial. Drilling data may be noisy, incomplete, or 

irregular due to sensor errors, environmental influence, or human error. Many models lack sufficient 
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handling of these issues, which reduces their dependability. Steps in data preparation like estimate and 

normalisation are either omitted or not followed uniformly across all versions. This indicates that the 

model functions differently in each one.  

Second, model complexity and readability are big problems. Deep learning models, like convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), are very good at predicting time series 

[22]. However, because they are "black boxes," they aren't widely used in industries where being able to 

explain things is important. Stakeholders need models that are not only correct, but also easy to 

understand and make sense of in terms of subject knowledge. 

Third, one issue is the difficulty of linking to computer systems. Most of the models now available are 

offline tools providing historical data rather than real-time recommendations. This prevents them from 

rapidly altering the digging technique. Because they lack feedback loops linking model estimates with 

real choices, these models are of little utility in high-stakes scenarios like offshore drilling platforms or 

deep mining operations.  

These problems make it clear that we need a complete framework right away that can not only predict 

but also improve drilling performance through ongoing learning, flexible optimisation, and easy 

understanding.  

II. METHODOLOGY 

This study's research approach is designed to examine both the predictive and ideal components of 

drilling performance. It comprises a planned process beginning with data collecting and preprocessing, 

then constructing a model using machine learning algorithms, framing the issue as a mathematical 

equation, implementing the model using specific tools and frameworks shown in figure 1, and finally 

clarifying the decisions taken depending on their performance, simplicity of understanding, and real-

world relevance. 

 

 
Figure 1. Stages of Building Random Forest Regressor for prediction  
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A. Data Acquisition and Preprocessing 

Its quality and reliability are greatly influenced by the data fed into the model. Past drilling data for this 

research comes from normal company files and was verified by field operations. Among the variables 

that comprised the data were Rate of Penetration (ROP), Weight on Bit (WOB), Torque, Rotary Speed 

(RPM), Mud Flow Rate, Standpipe Pressure, Hookload, Bit Depth, and Formation Type. Wherever 

feasible, vibration indicators and mud logging data were used to enhance the models. 

Raw drilling data often suffer from issues such as noise, missing values, and inconsistent logging 

frequencies. Therefore, preprocessing steps were essential to ensure data quality and consistency. The 

preprocessing involved: 

• Data Cleaning: Removal of null values, outliers, and erroneous sensor readings using statistical 

thresholds and domain constraints. 

• Normalization: Min-max scaling was applied to bring all features to a comparable numerical 

scale, which is crucial for distance-based models like KNN and gradient-based models like 

neural networks. 

• Feature Engineering: Derived features such as Mechanical Specific Energy (MSE), Specific 

Torque, and Energy Efficiency Index were computed to encapsulate complex interactions 

between basic operational parameters. 

• Labeling: ROP and other performance metrics were treated as target variables for prediction, 

and were discretized into performance tiers where needed for classification tasks. 

The preprocessed dataset was split into training (70%), validation (15%), and testing (15%) sets using 

stratified sampling to preserve the distribution of formation types and depth intervals across the 

subsets. 

B. Description of Algorithms and Models Used 

A comparative modeling approach was adopted, utilizing several machine learning algorithms to 

predict and optimize drilling performance: 

• Linear Regression (LR): Used as a baseline model to capture linear relationships between input 

parameters and drilling performance. 

• Random Forest (RF): A tree-based ensemble method used for both regression and feature 

importance analysis. RF handles nonlinearities and is robust against overfitting. 

• Gradient Boosting Machines (GBM): Used to incrementally improve predictive performance by 

minimizing residual errors of prior trees. 

• Artificial Neural Networks (ANN): Implemented as multi-layer perceptrons to model complex 

and nonlinear relationships in the data. 

• Genetic Algorithms (GA): Applied in combination with the best-performing predictive model 

to optimize control parameters for enhanced drilling performance. 

• SHAP (SHapley Additive exPlanations): Used to interpret the contribution of each feature to 

the model's predictions, enhancing transparency. 

These models were chosen based on their prior success in similar industrial applications and their 

flexibility in handling large-scale, multivariate datasets. 
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C. Mathematical Model Design 

The core of the predictive model lies in mapping a set of drilling input variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} to a 

performance output y, typically the Rate of Penetration (ROP). The general form of the regression model 

is: 

𝑦 = 𝑓(𝑋) + 𝜖 

where f(⋅) is a non-linear function approximated by a machine learning algorithm, and ϵ\epsilon is the 

residual error term. 

For ANN, this function ff is represented as a composition of layers: 

𝑦̂ = σ(𝑊(3) ⋅ σ(𝑊(2) ⋅ σ(𝑊(1) ⋅ 𝑋 + 𝑏(1)) + 𝑏(2)) + 𝑏(3)) 

where W(i)W^{(i)} and b(i)b^{(i)} are weights and biases of the ithi^{th} layer, and σ\sigma is the 

activation function, typically ReLU or sigmoid. 

For optimization using Genetic Algorithm, the objective function is: 

Maximize: 𝑓(𝑋) = ROP 

Subject to constraints: 

𝑊𝑂𝐵𝑚𝑖 𝑛 1 ≤ 𝑥1 ≤ 𝑊𝑂𝐵𝑚𝑎 𝑥 2 

𝑅𝑃𝑀𝑚𝑖 𝑛 1 ≤ 𝑥2 ≤ 𝑅𝑃𝑀𝑚𝑎 𝑥 2 

𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑖𝑛⁡ ≤ 𝑥3 ≤ 𝑇𝑜𝑟𝑞𝑢𝑒𝑚𝑎𝑥⁡ … 〖{𝑎𝑙𝑖𝑔𝑛𝑒𝑑}⁡&⁡"{𝑊𝑂𝐵}_{⁡𝑚𝑖𝑛} ⁡≤ 𝑥_1⁡GA 

 

 operators such as selection, crossover, and mutation were used to iteratively search for the optimal 

input parameter set X∗\mathbf{X}^* that maximizes predicted ROP. 

D. Method and Techniques 

The methods and models selected in this study are justified based on several criteria: predictive 

accuracy, generalization capability, interpretability, and applicability in real-time operational settings. 

• Predictive models such as Random Forest and Gradient Boosting were chosen for their ability 

to model nonlinear relationships and provide insight into feature importance. These models are 

less prone to overfitting compared to single decision trees and have demonstrated consistent 

performance across datasets. 

• Artificial Neural Networks were selected for their capability to approximate complex functions 

where feature interactions are not explicitly defined. While they require more computational 

resources and careful tuning, their performance in multi-parameter industrial systems is well-

established. 

• Genetic Algorithms were integrated to extend the model from mere prediction to optimization. 

Unlike gradient-based optimization techniques, GA does not assume differentiability or 

convexity and can efficiently search a wide solution space — making it suitable for optimizing 

drilling control parameters. 
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• Explainability tools like SHAP were included to make the models interpretable for field 

engineers and decision-makers. This is particularly important in drilling operations where 

blind trust in predictions without rationale can be risky. 

• Scalability and deployment were also considered. The selected models and frameworks are 

highly portable and can be integrated into real-time monitoring systems or cloud platforms, 

enabling continuous learning and adaptive decision-making. 

• The approach used guarantees not only correct forecasting of drilling performance measures 

but also offers optimisation advice and practical insights. This integrated strategy aims to close 

the gap between data-driven modelling and practical improvement of drilling operations. 

 

III. MODEL DEVELOPMENT 

This section discusses the design, rationale, and use of the prediction model developed to evaluate and 

enhance drill performance. Starting with selecting the input characteristics and continuing with model 

architecture design, training and validation, hyperparameter adjustment, and performance assessment, 

the modelling framework consists of numerous stages. The model is supposed to do more than only 

forecast Rate of Penetration (ROP), a key performance indicator (KPI). Predictive optimisation is also 

intended to assist in practical decision-making. 

A. Model Structure, Logic, and Flow 

Structured on a supervised regression framework shown in figure 2, the model created in this work aims 

to learn a mapping between operational input variables and a continuous performance output, namely 

ROP. 

 

Figure 2. Stages of Building Prosed Predictive model 
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The model architecture comprises the following core components: 

1. Input Layer: Consists of normalized and engineered features such as: 

o Surface drilling parameters (WOB, RPM, Torque, etc.) 

o Mud properties (flow rate, standpipe pressure) 

o Bit-specific features 

o Geomechanical formation indicators 

o Derived metrics like Mechanical Specific Energy (MSE) 

2. Feature Selection Module: A Random Forest Regressor was initially used to evaluate feature 

importance and remove redundant or weakly contributing variables. This reduced the 

dimensionality of the input and improved computational efficiency. 

3. Prediction Engine: Based on comparative evaluation, two core models were selected for 

development: 

o Random Forest Regression (RFR) for baseline accuracy and feature interpretability 

o Artificial Neural Network (ANN) for modeling complex nonlinear interactions 

4. Output Layer: Provides the predicted value of ROP or other performance metrics. Additionally, 

prediction intervals were calculated for confidence estimation. 

5. Optimization Layer (optional in deployment): Integrates the trained model with a Genetic 

Algorithm (GA) to find optimal input parameter combinations that maximize predicted ROP 

under given constraints. 

B. Implementation and Training 

Model 1: Random Forest Regressor (RFR) 

RFR was implemented using the scikit-learn library. It operates as an ensemble of decision trees, each 

trained on a bootstrapped sample of the training data shown in figure 3. At each decision node, a subset 

of features is randomly chosen to split, which enhances diversity and reduces overfitting. 

 

Figure 3. Random Forest Regressor (RFR) Model 

Key implementation details: 
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• Number of estimators: 200 

• Maximum tree depth: None (allow full growth) 

• Bootstrap: Enabled 

• Criterion: Mean Squared Error (MSE) 

Training time was relatively low due to the parallelizable nature of Random Forests. Feature importance 

plots were extracted to interpret the dominant influencing parameters for ROP. 

Model 2: Artificial Neural Network (ANN) 

The ANN was implemented using Keras (TensorFlow backend). It was configured as a feedforward 

multilayer perceptron with the following architecture: 

 

Figure 4. Artificial Neural Network (ANN) Model 

• Input Layer: 12–18 neurons (depending on selected features) 

• Hidden Layers: 2 hidden layers with 64 and 32 neurons respectively 

• Activation Functions: ReLU for hidden layers, Linear for output layer 

• Output Layer: 1 neuron for ROP prediction 
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• Loss Function: Mean Squared Error 

• Optimizer: Adam (learning rate = 0.001) 

• Batch Size: 32 

• Epochs: 100–150 (with early stopping) 

Training was conducted on a GPU-enabled system using NVIDIA CUDA for faster convergence. The 

training and validation losses were monitored to avoid overfitting. Dropout layers (rate = 0.2) were 

introduced between hidden layers for regularization. 

C. Hyperparameter Tuning 

Hyperparameter tuning was crucial to ensure model robustness and avoid overfitting or underfitting. 

The tuning process involved: 

i. For Random Forest 

• Grid search over: 

o n_estimators: [100, 200, 300] 

o max_features: [‘auto’, ‘sqrt’] 

o max_depth: [10, 20, None] 

o min_samples_split: [2, 5, 10] 

The best combination was determined using 5-fold cross-validation based on R² and RMSE scores. 

ii. For ANN 

• Manual and automated tuning via KerasTuner: 

o Number of hidden layers: 1–3 

o Neurons per layer: [32, 64, 128] 

o Dropout rates: [0.1, 0.2, 0.3] 

o Learning rates: [0.001, 0.0005] 

Early stopping and model checkpointing were used to preserve the best-performing model during 

training. The final ANN model achieved a validation R² of 0.89 and RMSE reduction of 15% over the 

baseline. 

D. Datasets and Tools Used 

The following datasets were used for model development: 

• Synthetic Training Set: A simulated dataset combining various lithologies and drilling scenarios 

to initially train models and test robustness. 

• Field Data: Real drilling datasets from vertical and deviated wells, sourced from an oilfield 

operator, with logging intervals of 1–5 seconds. 

• Data Dimensions: 

o ~60,000 data points 

o ~15 input features 

o 1–2 output performance variables 
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• A rigorous, modular approach that was flexible enough to accommodate a variety of input 

scenarios and success criteria constructed the prediction model. Both the Random Forest and 

ANN models were taught, tested, and fine-tuned to ensure their high accuracy and applicability 

in numerous contexts. The feature selection and explainability tools guaranteed the clarity and 

dependability of the model projections, thereby enabling the use in actual drilling operations.  

 

IV. RESULTS AND EVALUATION 

Using visualisations to clarify the metrics and providing a complete discussion about the outcomes, this 

section addresses how well the new drilling performance prediction models performed by comparison 

to conventional techniques. The goal of the research is to verify that the suggested prediction framework 

works and that it may be used in actual excavating activities.  

 

A. Performance Metrics and Visualization 

To assess the accuracy, consistency, and robustness of the developed models, the following standard 

regression performance metrics were employed: 

Table 3. Model Performance Summary 

Model RMSE MAE R² Score 

Linear Regression 10.43 8.29 0.64 

Random Forest Regressor 5.17 4.01 0.88 

Gradient Boosting 4.92 3.84 0.89 

ANN (2 Hidden Layers) 4.38 3.52 0.91 

As shown in Table 3, the Artificial Neural Network (ANN) achieved the highest R² value of 0.91, 

indicating strong predictive capability. The Random Forest Regressor (RFR) also delivered high 

accuracy with excellent generalization across testing data. 

 

Figure 5. RMSE and MAE Comparison Summary 
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Common methods to assess the accuracy of a regression model include RMSE and MAE shown in figure 

5. RMSE is more sensitive to large errors than MAE as it is squared; MAE provides an average of how 

large an error is. Of all the models evaluated, Linear Regression performed the poorest. Its largest RMSE 

(10.43) and MAE (8.29) indicate that it cannot represent non-straight line interactions. By contrast, 

Random Forest and Gradient Boosting advanced significantly, with RMSEs of 5.17 and 4.92, 

respectively. The Artificial Neural Network (2HL) performed best with the lowest RMSE (4.38) and 

MAE (3.52) values. This indicated that it could pick more complicated data patterns and was more 

accurate and example shown in Table 4. 

Table 4. SHAP visualization 

Feature Impact on ROP 

WOB Strong Positive 

Torque Positive 

Mud Flow Rate Moderate Positive 

Standpipe Pressure Mixed Influence 

RPM Weak Positive 

B. Comparison with Existing/Baseline Methods 

To contextualize the performance of the proposed models, comparisons were made with traditional 

and previously published methods: 

Table 5. Model Comparison with existing methods 

Method Dataset Used R² 

(Reported) 

RMSE Remarks 

Bourgoyne & Young 

(Empirical) 

Single-Well Field 

Data 

0.58 12.0 Limited to linear 

assumptions 

ANN by Gholami et al. 

[9] 

Formation-Based 0.84 6.2 Domain-specific, not 

generalized 

SVR by Al-Mudhafar 

[10] 

Lab-Tested Drill 

Sim 

0.79 7.1 Small dataset used 

Proposed ANN (2HL, 

ReLU, Adam) 

Mixed-Formation 

Dataset 

0.91 4.38 Generalized, 

interpretable, optimized 

 

The proposed ANN model is more consistent and applies better to more circumstances as it outperforms 

earlier models by 6–13% in R² and significantly reduces RMSE. Including SHAP and optimisation levels 

among interpretability tools helps to make this work more relevant in a manner that earlier research 

lacked shown in Table 5. 
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Figure 6. R² Score Comparison Summary 

The R² score indicates how well the model matches the range of values for the target variable. A higher 

R² value indicates a better performance of the model shown in figure 6. Linear regression produced a 

R² value of 0.64, which only accounts for 64% of the variation in ROP. Random Forest improved this 

to 0.88; Gradient Boosting performed slightly better at 0.89. With a R² value of 0.91, the ANN (2HL) 

bested all others, indicating it accounted for 91% of the variance in performance. These findings indicate 

that the model becomes stronger at identifying difficult, nonlinear connections in drilling data as it 

becomes more complex, particularly when ANN's deep learning capabilities are used. 

 

Figure 7: The plot compares the predicted Rate of Penetration (ROP) from the ANN model with the 

actual observed ROP values. 



Journal of Information Systems Engineering and Management 
2025, 10(39s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 678 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

Most of the data points cluster around the vertical line, indicating that the ANN model predicts ROP 

rather well. Small deviations from the line are to be anticipated given the inherent unpredictability and 

noise in the digging data. The graph supports the high R² score of 0.91 discovered in the findings by 

showing the model is stable and has low residual error in figure 7.  

 

Figure 8: The chart illustrates the relative importance of various input features in predicting drilling 

performance (ROP) using the Random Forest model. 

The image indicates that Weight on Bit (WOB) and Torque are the most crucial elements; Mud Flow 

Rate and RPM are second and third, respectively shown in figure 8. These elements significantly 

influence the digging rate in keeping with what is understood in the sector. Less significant 

characteristics including Hookload and Standpipe Pressure don't really matter and may not be given as 

much attention in future model enhancements. In actual digging circumstances, this knowledge guides 

feature engineering and optimisation. 

V. CONCLUSION 

This research showed a complete system based on machine learning for using real-world operating data 

to predict and improve drilling performance. The proposed approach, which exhibited rather decent 

prediction accuracy, incorporated both ensemble and deep learning models comprising a Random 

Forest Regressor and a two-hidden-layer Artificial Neural Network. Results indicate that the ANN 

model performed best. Its R² value was 0.91 and its RMSE and MAE values were lower than those of 

the other models. One should underline that the research included a Genetic Algorithm for 

optimisation, hence exceeding expectations. The model was able to provide helpful insights and 

recommendations for factors enhancing digging efficiency.  The results indicate that notably when 

handling uneven trends, complicated feature interactions, and changing natural circumstances, data-

driven methods outperform conventional linear models. Tools for interpretation such as SHAP also 

helped to clarify model outcomes, hence increasing their dependability for use in the actual world.  

Because it reveals strategies to reduce non-productive time (NPT), enhance operational safety, and 

minimise expenses, the research has significant consequences for the development of smart drilling 

systems. In the future, researchers will add real-time sensor streams to the dataset, use reinforcement 
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learning to help the system make decisions on its own, and put it to use in edge computing settings to 

help with live optimisation. 
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