2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Affordable Sustainability: Making Informed Material Selections for Residential Projects

Dr.C. Rajarajeswari¹, M. Narayanan², Anusha Vidhyasagar³, S. Gurupriyan²

¹Architect, Eswari Architects, Perambalur, Tamil Nadu, India

- ²Associate Professor, School of Environmental Architecture and Design, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India
- ³Associate Professor, School of Environmental Architecture and Design, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India
- ³Asisstant Professor, School of Environmental Architecture and Design, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India

ARTICLEINFO

ABSTRACT

Received: 31 Dec 2024

Revised: 20 Feb 2025

Accepted: 28 Feb 2025

Introduction: The choice of environmentally friendly building materials for homes is examined in this research study. From case studies, the performance aspects as well as environmental and economic factors are analyzed. Choosing sustainable materials for residential construction is important to control the costs and reduce the environmental impact.

Objectives: This study emphasizes selecton, results and problems via cases study.it aims to examine the effect on the economy, environment, sugeest strategies and guidelines for improved material selection in residential projects.

Methods: From case studies, the performance aspects as well as environmental and economic factors are analyzed.this paper analyzes various case studies to determine the most effective materials foor cost, life span and ecological impact.

Results: This paper analyzes various case studies to determine the most effective materials for cost, lifespan, and ecological impact. The primary outcomes showed that bamboo, reclaimed concrete, and rammed earth have major benefits. Still, obstacles, i.e., high upfront costs and industry reluctance, remain. This report proposes changes to the policies, improvement of technologies, and new ways of building to achieve greater acceptance.

Conclusions: This study emphasizes selection, results, and problems via Case studies. Examining the effects on the economy and environment and suggesting strategies and guidelines. To sum up, for residential projects to be cost-effective and sustainable, careful selection of materials is essential.

Keywords: Cost effective construction, material selection, sustainability, affordable housing, Environmental impacts.

INTRODUCTION

Environmental concerns and the needs for economically viable solutions are driving sustainable material selection in residential construction.

The purpose of this research is to:

- Consider economic factors when selecting materials.
- Analyze the environmental impacts of materials.
- Examine factors pertaining to material performance.

This paper asserts that educated choice of materials that are vital for making affordable sustainability possible for house building. Environmental concerns coupled with the importance of low-cost construction businesses have heightened the demand for sustainable houses. In a bid to mitigate carbon emissions and depletion of resources,

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

the building business is adopting green products, though making use of these products in actual-life projects is still a challenge despite new technologies.

This study assesses case studies that illustrate the cost-effectiveness, durability, and environmental sustainability of sustainable materials. It emphasizes the use of the most suitable materials that would bring about affordability and sustainability in residential construction. It aims to improve rational choices for a more ecological result by combining economic and environmental factors. It emphasizes the need to strike a balance between affordability and responsibility towards the environment for an environmentally friendly housing future. In-depth studies on material selection in green buildings show how critical it is to minimize ecological footprint while maximizing energy efficiency. Studies indicate that materials such as bamboo recycled concrete, and rammed earth offer economic and environmental advantages.

Gupta, A., Patel, R., & Kumar, S. (2020) [1] highlight the importance of Life Cycle Assessment (LCA) for rating a material's sustainability. Likewise, Mehta, D., Singh, L., & Rao, N. (2021) [2]. discovered that recycled concrete is as effective as conventional concrete but has a 30% less CO2 emission. Kibert, C. J. (2020) [3] reports that the application of low-impact materials decreases a building's carbon footprint by as much as 40%. Furthermore, Smith, J., & Taylor, M. (2022) [4]. contrast sustainable material policy in Europe, Asia, and North America, with government incentives as a key to their implementation.

These results advocate for the harmonization of economic efficiency and sustainability in material choice towards policies for environmentally friendly housing development.

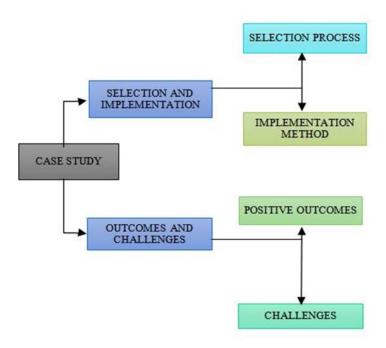
SUSTAINABLE MATERIAL SELECTION

The key selection criterion for sustainable materials includes life cycle assessment (LCA) which evaluates energy consumption, carbon footprint and environmental impact from raw material extraction to disposal, material flow analysis (MFA) which tracks material input/output to minimize waste, cost efficiency (LCC-Life cycle costing) which balances initial cost, maintenance and long term financial savings, local availability of material reduces transportation emissions and supports local economies, energy efficiency that contributes to better thermal performance and reduces operational energy costs, durability and maintenance basically ensures long lifespan with minimal repairs.

Table 1. Economic and environmental factors

Economic Factors:	Environmental Factors:
Initial costs and long-terms savings.	Life cycle impact, from production to disposal.
Emphasis on cost-effectiveness.	Importance of low carbon footprint and resource conservation.

Table 2. Performance Considerations


Energy Efficiency:	Durability and Maintenance:
Material thermal properties and insulation	Sustainable materials often require less maintenance.
Reduced energy consumption, lower utility costs, and enhanced comfort.	Extended building life span reduced environmental impact, and lower costs.

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

METHODOLOGY

Figure 1. Flow chart of case study

- SELECTION PROCESS: Choosing sustainable materials involves considering factors like local availability, durability, and projects compatibility. Through investigation and expert collaboration are crucial for wellinformed decision making.
- IMPLEMENTATION METHOD: Proper installation techniques, skilled labor, and close coordination between stakeholders are crucial for effective material implementation. Sustainable materials may have unique requirement that needs to be met to maximize their benefits.
- POSITIVE OUTCOMES: Sustainable material often lead to minimal energy consumption, good indoor air quality and great comfort for occupants, also a longer building lifespan. They also offer enhanced design possibilities.
- CHALLENGES: Challenges in implementing sustainable materials may include higher initial costs, issues related to sourcing and compatibility, and resistance to change in the construction industry. Addressing these challenges demands strategic project management and clear communication.

Some of the key theories and methodologies underpin sustainable material choices in construction. Cradle to cradle design philosophy focuses on material that can be endlessly recycled or reused , minimizing waste and maximizing circularity. Life Cycle Assessment (LCA) is another widespread approach which considers the environmental cost of a material from birth through to death.

Along with this the Material Flow Analysis (MFA) method is becoming more popular for quantifying material inputs and output across various stages of construction to achieve maximum resource efficiency. The lean and green philosophy also aids sustainable material choice by reducing waste and maximizing efficiency, rendering materials cost effective and eco friendly aspects. The Triple Bottom Line (TBL) approach, which measures economic, environmental, and social sustainability, is being applied more and more to provide a comprehensive assessment of material impacts.

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

By combining these strategies, sustainable material selection can find a balance between ecological stewardship, resource efficiency and economic feasibility in construction.

CASE STUDIES

List of few Case study projects that uses sustainable material and has achieved cost efficiency:

Sustainable material offers long term economics and environmental benefits despite initial investment challenges. These case studies confirms the effectiveness of local, recycled and natural materials in residential construction, policy support, education and emerging technologies can accelerate the adoption of green materials.

Table 3 Case analysis with respect to cost efficiency

The Aranya Low-Cost Housing Project, Indore:[5]			
Over view	Cost efficiency		
This project in Indore focuses on affordable housing with sustainability in mind. It uses local material, natural ventilation and rainwater harvesting. The Aarvli Resort, This project in Kutch, Gujarat this eco friendly resort minimizes its impact on the environment by using natural material.	By keeping construction simple and utilizing natural resources, it offers budget friendly homes with lower operating cost.		
, o	· ·		
The Auroville Earth Instit			
This sustainable residential project in Tamil Nadu employs natural building techniques, permaculture principles, and waste reduction. Auroville's dome homes made from stabilized mud blocks are ecofriendly and cost-effective.	It uses earthbag construction, renewable housing. The dome provides natural cooling and insulation, reducing the need for air conditioning.		
EarthSoul Projec	ct, Bengaluru:[8]		
EarthSoul in Bengaluru offers eco-friendly apartments with rainwater harvesting, waste management, and energy-efficient designs.	Residents enjoy long-term savings on water and energy bills due to these sustainable features.		
Pragati Green Mead	ows, Hyderabad:[9]		
This sustainable community in Hyderabad focuses on reducing water and energy consumption with amenities like rainwater harvesting.	Residents enjoy cost-effective living due to reduced utility costs.		
Mud House,	Kerala:[10]		
Mud houses in rural Kerala provide sourced mud and thatch roofs.	These homes offer budget-friendly comfort in Kerala's hot and humid climate.		

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

From the case study factors like material effectiveness, cost efficiency, scalability is prioritized more.

In case of material effectiveness –bamboo offers high durability and fast renewability but they need proper treatment to prevent decay, recycled concrete reduces landfill waste but has structural performance concerns, and rammed earth has the lowest carbon footprint but requires skilled labour for proper compaction.

Table 4 Case analysis with respect to sustainable material based on key factors:

Material	Cost	Environmental impact	Durability
	effectiveness		
Bamboo	High	Low carbon footprint	Moderate
Recycled concrete	Moderate	Reduced landfill waste	High
Rammed earth	Low	Minimal processing required	Very High

In terms of cost efficiency the initial cost vary, but long term energy savings make materials like rammed earth and mud houses highly affordable.

When it comes to scalability the earthbag and stabilized mud blocks have proven scalable for affordable housing solutions. Additionally these materials offer good thermal insulation, structural stability and more benefits environmentally making them ideal for replicable cost effective residential development across diverse geographical context.

Table 5. Comparative Performance of Sustainable Materials

Material	Cost Savings	CO2 Reduction	Energy Efficiency	Life
	(%)	(%)	Improvement (%)	span
Bamboo	20	50	30	50+
Recycled	15	30	20	60
Rammed Earth	25	70	40	100

Case study comparison and insights gives the overall understanding on material usage, cost efficiency, environmental impacts and challenges faced.

Table 6. Comparative overview of case studies

Project name,	Key sustainable	Cost	Environ	Challenges
location	materials used	efficiency	mental	faced
			impact	
Aranya housing,	Local materials,	High	Moderate	Limited
Indore	natural ventilation			scalability
Aarli Resort,	Natural stones, local	Moderate	High	Dependence on
Kutch	materials			skilled labour
Aurovile,	Stabilized mud	High	Very high	Initial
Tamilnadu	blocks, earth bag			investment
	construction			

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Earth soul,	Rainwater harvesting	High	High	Policy and
Bangalore	and ecofriendly			regulatory
	material			challenges
Pragati green	Energy efficient	High	High	Infrastructure
meadow,	design and rain water			development cost
Hyderabad	harvesting			
Mud house,	Sourced mud,	Very High	Moderate	Require seasonal
Kerala	thatched roofing			maintenance.

There are other case studies reveal more about sustainable uses of materials. The Passive House in Germany, for instance, shows that the combination of high-performance insulation and airtight materials will lower heating energy usage by as much as 90%. The Bosco Vertical in Milan, Italy, on the other hand, uses green facades and recycled building materials to remarkably reduce urban heat island effects while improving air quality.

In summary, Case studies are practical applications of theoretical considerations. Selecting and implementing sustainable materials involve research and skilled workmanship. Positive outcome such as energy efficiency and improved comfort are achievable, but challenges, including cost consideration and industry resistance, must be managed effectively. Case studies offer insights into the real world impact of sustainable material choices in residential construction.

BENEFITS AND RECOMMENDATIONS

Economic and environmental impacts

- **Economic impact:** Sustainable materials might have higher initial costs but results in long term economic benefits. These benefits include reduced energy consumptions, lowering maintenance expenses and increases property value. Recognizing sustainable materials as investment is important as they offer financial sustainability overtime.
- **Environmental impact:** sustainable material has a lesser carbon footprint, consumes fewer resources and causes less harm to the environment. Choosing these materials as investments is crucial as they offer financial sustainability overtime.

Strategies and recommendations

- **Strategies:** Promoting the use of sustainable material requires increasing awareness and educating stakeholders in construction industry. Strategies include incentives, trainings and partnership between manufactures owners and builders. Explaining the long term benefits through Case studies and supporting information is essential.
- **Policy recommendations:** Policies plays an important role in shaping choices in material construction. It includes tax initiatives for sustainable material use, revisions to building codes that supports sustainability and establishment of industry standard. These policies create a environment that encourages the responsible use of sustainable materials, promoting more sustainable approach to residential projects.

Barriers

- **Higher initial cost:** Many sustainable materials require higher upfront investment, though they offer long term savings.
- **Limited awareness:** lack of knowledge among homeowners and industry professionals hinders uptake.
- **Resistance to conventional building practices:** developers are wary of adopting sustainable options because they are not familiar with new materials.

Policy recommendations for promoting sustainable materials

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- **Financial incentives:** Tax rebates and subsidies: provide tax benefits for projects using at least 30% sustainable materials. Low interest loans: special financing for sustainable projects.
- **Regulatory interventions:** mandating green building standards: compulsory use of LCA-certified materials in residential projects. Building code revision: include bamboo, rammed earth and recycled concrete in construction codes.
- **Education and awareness programs**: workshop and training: government backed initiatives to train construction professionals in sustainable building techniques. Incentivizing research: funding universities foe material innovation in eco friendly construction.

FUTURE PROSPECTS AND KEY CHALLENGES

Though sustainable materials have immense advantages, they face barriers like high upfront expenses, lack of awareness and resistance from conventional building practices for widespread adoption. However, new technologies in AI-based material selection, adaptive properties of smart materials, and the circular economy provide effective solutions to overcome these barriers.

Case study studies show that local materials help achieves higher cost-effectiveness and lower environmental footprint. For example, rammed earth building in rural homes reduces expenses while improving thermal performance, while bamboo structures exhibit high strength and quick renewability. For wider implementation, the use of digital technologies like Building Information Modeling (BIM) can enhance the choice of materials, while specific policy measures can make financial and regulatory support available for sustainable building.

With the use of technological innovation and evidence-based policy models, material selection can be optimized in a systematic manner towards more resilient and sustainable development in residential construction.

CONCLUSION

Sustainable material save money in the long run and helps the environment by reducing carbon footprints and resource use. This research adds value for the future of residential construction. It proves that choosing sustainable material makes home affordable and eco-friendly. It highlights the construction industries role in fighting climate change and conserving resources, benefiting homeowners and environment.

This research highlights the economic and environmental benefits of using sustainable material choices in home construction. Although there might be initial cost overruns, future cost savings, energy efficiency, and better building performance make their adoption worthwhile. With an examination of real-life application, this study shows how using sustainable materials incorporates greater efficiency and longevity into building.

Future studies would need to delve into developments in material sciences, smart material integration, and the application of computer modeling tools to select materials with optimized properties. Further, circular economy concepts and AI-based solutions can also optimize sustainability, improving construction to become more resource and environmentally-friendly.

REFRENCES

- [1] Gupta, A., Patel, R., & Kumar, S. (2020). Life cycle assessment for sustainable material selection in construction. Journal of Green Architecture, 15(2), 45–60.
- [2] Mehta, D., Singh, L., & Rao, N. (2021). Comparative analysis of recycled and traditional concrete: Structural and environmental performance. Construction Sustainability Review, 18(4), 101–115.
- [3] Kibert, C. J. (2020). Sustainable construction: Green building design and delivery (5th ed.). Wiley.
- [4] Smith, J., & Taylor, M. (2022). Policy approaches to sustainable material adoption: A global perspective. International Journal of Sustainable Architecture, 22(1), 75–90.
- [5] Aga Khan Trust for Culture. (n.d.). Aranya Community Housing. Aga Khan Development Network. Retrieved from https://the.akdn/en/how-we-work/our-agencies/aga-khan-trust-culture/akaa/aranya-community-housing
- [6] Araavali Trails. (n.d.). Araavali Trails. Retrieved from https://www.araavalitrails.com
- [7] Earth Auroville. (n.d.). Earth Auroville. Retrieved from https://www.earth-auroville.com

2025, 10(40s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [8] Earth Soul Projects. (n.d.). Earth Soul Projects. Retrieved from https://www.earthsoulprojects.com
- [9] Pragati Resorts. (n.d.). Pragati Resorts. Retrieved from https://pragatiresorts.com
- [10] Roots and Basics. (n.d.). Mud House Kerala. Retrieved from https://www.rootsandbasics.com/mud-house-kerala