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In this paper, we propose a decentralized algorithmic framework designed to enhance both the 

efficiency and safety of fully autonomous vehicle networks (AVNs) through dynamic path 

optimization. By using a peer-to-peer communication paradigm, vehicles exchange real-time 

positional, velocity, and environmental data to collaboratively predict and preempt potential 

collisions. By integrating advanced predictive modeling with dynamic rerouting strategies, the 

framework mitigates traffic bottlenecks and reduces collision risks without reliance on 

centralized control. Simulation-based evaluations indicate significant improvements in latency 

and throughput (the rate of vehicle flow throughout the network), particularly in dense urban 

and high-speed highway environments. This work represents a notable advancement in 

autonomous vehicle coordination, addressing key challenges in traffic management and collision 

prevention. 

Keywords: Autonomous vehicle network (AVN), Decentralized communication, Predictive 
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I. INTRODUCTION 

The advent of fully autonomous vehicles has the potential to transform modern transportation systems, promising 

significant enhancements in safety, efficiency, and convenience. As these vehicles become increasingly prevalent, the 

focus shifts from individual vehicle autonomy to the optimization of entire autonomous vehicle networks (AVNs). A 

critical challenge in this evolution is developing algorithms that enable vehicles to navigate efficiently while 

preventing collisions and reducing traffic congestion. Traditional traffic management systems, which typically rely 

on centralized architectures, often suffer from scalability issues, high latency, and vulnerability to single points of 

failure. These are limitations that are particularly problematic in densely populated urban environments.  

In response to these challenges, there is a growing need for decentralized, resilient solutions that enable rapid, local 

decision-making based on real-time data. This paper introduces a framework that uses decentralized, peer-to-peer 

communication to dynamically optimize vehicle trajectories. By continuously exchanging critical information, 

vehicles collaboratively forecast potential collision scenarios and adjust their paths proactively. Additionally, by 

integrating dynamic rerouting strategies that account for evolving traffic conditions and congestion patterns, the 

framework effectively redistributes traffic flow and alleviates bottlenecks. 

Through decentralization, the proposed approach minimizes communication delays and computational overhead, 

from high-speed highways to complex suburban grids. The remainder of this paper details the system architecture, 

methodology, and theoretical performance evaluation, showcasing the potential to transform autonomous vehicle 

coordination and traffic management. 
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II. OVERVIEW 

A. System Architecture 

This system operates in a decentralized network, where each autonomous vehicle functions as a node within the AVN. 

Each node is capable of both data processing and decision-making. To do this, each vehicle continuously transmits 

data to nearby vehicles within the system. This information is used to update the AVN in real-time. Each vehicle is 

equipped with a local processing unit that handles three primary functions: data collection and transmission, 

trajectory prediction, and path optimization. The architecture is designed to maintain performance even when 

individual nodes fail or become temporarily disconnected. 

B. Inter-Vehicle Communication Protocol 

The inter-vehicle communication protocol enables real-time data exchange across the Autonomous Vehicle Network 

(AVN). Vehicles continuously broadcast information regarding their current position, velocity, acceleration, and 

environmental sensor data to neighboring nodes within a dynamically adjusted communication radius. This radius 

is not static, it adapts based on factors such as vehicle speed, local traffic density, and environmental conditions, 

ensuring that the network remains responsive and relevant to each vehicle’s immediate context. 

To support this high-speed data exchange, the protocol leverages established wireless communication standards such 

as Dedicated Short Range Communications (DSRC) and emerging cellular-V2X (Vehicle-to-Everything) 

technologies. The protocol utilizes a hybrid messaging strategy: 

1. Broadcast Messages: Routine status updates (e.g., position, speed, heading) are continuously transmitted via 

broadcast messages. This ensures that every nearby vehicle receives the most current data, creating a synchronized, 

real-time map of local traffic conditions. 

2. Point-to-Point Communications: For high-priority or emergency data, such as imminent collision warnings 

or sudden braking events, point-to-point messages are deployed. These targeted communications are designed to 

minimize latency and guarantee the rapid delivery of critical alerts. 

In addition to these messaging strategies, the protocol includes error-checking and redundancy measures. Data 

packets are encoded with error-detection codes, and acknowledgment signals are embedded for critical transmissions 

to confirm successful receipt. In cases where communication links are degraded or temporarily interrupted, vehicles 

are programmed to revert to a fail-safe mode, relying on onboard sensor data to maintain operational safety until 

connectivity is restored. 

III. METHODOLOGY 

This section details the core algorithm responsible for real-time path adjustment and collision avoidance in full AVNs. 

The algorithm is built upon the following components: data input and preprocessing, predictive modeling for collision 

detection, dynamic rerouting, decentralized decision-making, and simulation-based validation. 

A. Input Data and Preprocessing 

Each vehicle in the AVN continuously collects data essential for safe navigation, including: 

o Positional Data: Represented as a vector  at time  

o Velocity and Acceleration: Captured as  and  respectively. 

o Environmental Factors: Information such as road conditions, weather, and obstacles. 

 Before these data are used for decision-making, a preprocessing module filters out noise and inconsistencies. This 

is achieved through methods such as a Kalman filter, which recursively estimates the state of a moving vehicle: 

  

where  is the estimated state,  is the observation,  is the observation model, and  is the Kalman gain. 
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B. Predictive Modeling and Collision Detection 

To anticipate potential collisions, the algorithm uses predictive modeling to forecast each vehicle’s future position 

over a time horizon  The prediction model uses kinematic equations: 

 

For two vehicles  and , a collision risk is assessed by calculating the Euclidean distance between their predicted 

positions: 

 

 

A potential collision is flagged when 

 

C. Dynamic Rerouting and Trajectory Adjustment 

Once a collision risk or traffic congestion is detected, the algorithm dynamically computes possible alternative 

trajectories. The optimal path is determined by minimizing an objective function that balances efficiency, safety, 

and congestion costs: 

 

Subject to the constraint 

 

where 

o  is the desired target position for the vehicle . 

o  is a weighting factor balancing distance and congestion costs. 

o  represents a cost function that increases with local traffic density. 

D. Decentralized Decision-Making 

The algorithm leverages a decentralized, peer-to-peer framework where each vehicle acts as an autonomous 

decision-maker. Vehicles share their predicted trajectories and relevant data with neighbors, forming a local 

consensus on safe maneuvers. An iterative consensus algorithm can be used 

 

where 

o  is the estimated position of the vehicle  at iteration . 

o  is the set of neighboring vehicles. 

o  is a step size parameter. 

This approach ensures that decisions remain local, thereby reducing communication latency and avoiding central 

bottlenecks. 
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IV. THEORETICAL PERFORMANCE EVALUATION AND SCALABILITY ANALYSIS 

This section provides a theoretical evaluation of the decentralized path-optimization algorithm’s performance across 

key metrics. We compare the proposed decentralized approach against a traditional centralized traffic management 

paradigm and a representative decentralized method from recent literature. Mathematical models and performance 

estimates are presented for latency, throughput, collision prediction accuracy, and rerouting efficiency. 

A. Input Data and Preprocessing 

Latency: In a fully AVN, latency refers to the end-to-end delay between detecting a condition (e.g., a sudden stop or 

new traffic data) and vehicles executing a coordinated response. The proposed decentralized algorithm achieves very 

low latency by using one-hop vehicle-to-vehicle (V2V) communications and on-board processing. Each vehicle shares 

state data with its immediate neighbors, eliminating the multi-hop relay and central processing delays present in a 

cloud-based system. If we denote communication delay per hop as  and local processing as , the 

decentralized decision latency is approximately . In practice, this is on the order of only a few 

milliseconds for direct V2V links (e.g., DSRC or C-V2X), plus negligible computation time. In contrast, a centralized 

approach requires uplink and downlink transmission to a remote server (introducing  over cellular networks) 

and additional cloud processing delay. This can push total latency into the tens or hundreds of milliseconds. For 

example, incorporating edge computing and localized decision-making in vehicular networks has been shown to cut 

response latency by ~18% relative to a purely cloud-centralized solution such as many navigation apps [1]. The 

proposed system’s peer-to-peer design thus enables near-real-time updates, with an estimated <10 ms reaction time 

in highway conditions and ~10–15 ms in suburban scenarios (slightly higher in suburban areas due to possible signal 

obstructions or multi-hop relays at intersections). By comparison, a centralized traffic server might incur ~80–

100 ms delays in dense networks, and even other decentralized schemes that rely on longer-range multi-hop 

messaging or consensus might see ~20–30 ms delays. Table I summarizes the latency advantage of the proposed 

approach. These latencies are well within the 100 ms threshold required for safety-critical control. 

Throughput: Throughput in this context can be considered from two angles: network data throughput (the rate of 

information exchange) and traffic throughput (the rate of vehicle flow through the network). The decentralized 

algorithm improves both. By quickly disseminating driving state updates and route adjustments locally, it prevents 

shockwave delays and keeps traffic flowing smoothly. On highways, the algorithm’s rapid coordination allows vehicles 

to maintain higher average speeds at safe distances, thereby increasing the vehicle throughput (vehicles per hour 

passing a point). In suburban networks, decentralized rerouting around congestion and dynamic gap adjustments at 

merge points/intersections reduce dwell times, effectively increasing intersection throughput. The theoretical traffic 

flow improvement can be understood via the fundamental diagram of traffic flow: , where  is flow 

(veh/hour),  is vehicle density, and  is velocity. The proposed system mitigates the drop in  that typically occurs 

at high  (due to stop-and-go waves or accidents), thus sustaining higher  even in dense conditions. Recent studies 

validate significant throughput gains from decentralized control. For instance, one vehicular blockchain network 

achieved a 12% increase in data/transaction throughput under high traffic load [1]. Similarly, a pheromone-based 

vehicle rerouting system demonstrated an 8–15% rise in the number of vehicles arriving at their destinations in a 

suburban area, and up to ~29% in a dense urban scenario [2]. These results imply that decentralized coordination 

can markedly increase road network throughput. In our algorithm, by preventing collision-induced bottlenecks on a 

highway, we estimate a throughput improvement on the order of 10% (e.g., from 2000 to 2200 vehicles/hour on a 

given highway segment). In a suburban community with many alternate routes, throughput gains could reach ~15% 

as vehicles are dynamically redistributed away from saturated arteries. By contrast, a centralized routing system that 

reacts slowly or uniformly to congestion might yield minimal throughput improvement (0–5%) [3]. A conventional 

decentralized approach from the literature (without our advanced predictive optimization) might achieve moderate 

gains (~5–10%). The throughput of information in the network is also sufficient: each vehicle broadcasts small state 

packets (position, velocity, etc.) at say 10 Hz, which results in only on the order of 8–16 kbps per vehicle – a minute 

fraction of V2V channel capacity [4]. Thus, high data throughput is maintained without overloading the network. 

Environment differences: In open highway environments, V2V latency is consistently low due to constant line-

of-sight communication between platooning vehicles, and throughput benefits manifest as sustained high travel 
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speeds and capacity even at high traffic densities. In suburban environments, physical obstacles and intersection 

layouts introduce slight communication delays (if messages need to hop around buildings via other cars) and a more 

complex flow pattern. Nonetheless, the algorithm’s local message propagation (vehicles approaching an intersection 

share intent) still keeps latency well below 20 ms on average within our simulations. Throughput improvements in 

suburbs come from efficient dispersion of vehicles across the street network and reduced idle times at intersections. 

Even with many start-stop events, the decentralized control can coordinate gaps to keep vehicles moving with shorter 

stops, boosting vehicles discharged per signal cycle. Overall, the system exhibits low latency and high throughput 

across both scenarios, with only marginally lower performance in suburban terrain due to connectivity intermittency. 

Table I provides a quantitative comparison. 

TABLE I.   

 

Highway 

Latency 

(ms) 

Suburban 

Latency 

(ms) 

Highway 

Throughpu

t Gain 

Suburban 

Throughp

ut Gain 

 

Proposed 

Decentralized 
 

10 15 +10% +15% 

Centralized 80 100 +0% +5% 

Other 

Decentralized 
20 25 +5% +9% 

 

Fig. 1. Comparative latency and throughput performance for the proposed decentralized algorithm vs. baseline 

approaches in highway and suburban scenarios. 

Table I indicates that the decentralized algorithm achieves an order-of-magnitude lower latency than a cloud-

centralized solution (e.g., 10–15 ms vs. 80–100 ms). This translates into significantly faster reaction times for path 

adjustments. In terms of traffic throughput, the decentralized system is projected to improve flow by roughly 10–

15%, depending on the environment, whereas a centralized approach yields marginal gains. A comparable 

decentralized routing scheme from the literature provides some improvement, but less than the proposed method, 

which benefits from its predictive collision avoidance and congestion foresight. These comparisons are in line with 

published results: for example, BlockLLM’s decentralized network saw ~12% higher throughput with ~18% lower 

latency than the baseline [1], and a multi-agent rerouting approach achieved ~8–15% throughput gains in suburbia. 

The proposed algorithm matches or exceeds these figures by integrating both safety and traffic optimization. 

B. Collision Prediction Accuracy 

A standout feature of the proposed algorithm is its ability to predict and preempt collisions with high accuracy. Using 

continuous peer-to-peer data exchange, each vehicle forecasts the future trajectories of nearby vehicles over a short 

time horizon . This is done via kinematic equations to project positions ahead in time. A potential collision is 

flagged by methods listed in the Methodology section. The system identifies likely collision courses before the vehicles 

reach the point of impact. The decentralized nature is crucial here because each vehicle receives live state updates 

from others, and the predictions are based on the latest information, yielding very accurate results. 

Accuracy metrics: We define collision prediction accuracy as the percentage of imminent collision scenarios that 

are correctly predicted by the system in time for avoidance. The proposed method can achieve very high accuracy 

since it fuses data from multiple nearby vehicles and uses physically-based models. In theoretical analysis, if all 

vehicles broadcast precise position and velocity data, any impending intersection of paths can be detected 

deterministically (within the limits of sensor/communication noise). In practice, one must consider uncertainties, 

but the algorithm’s peer-to-peer redundancy (multiple vehicles cross-checking trajectories) improves reliability. We 

estimate that on highways, where interactions are mostly longitudinal and fewer in number, the system can predict 

over 95% of potential collisions with sufficient lead time to act. In suburban settings with cross-traffic, the prediction 

accuracy remains high (~90 %+), though a few edge cases (e.g., a vehicle emerging from a blind alley without 
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communication) could evade early prediction. These estimates are supported by recent studies: for example, an 

LSTM-based V2X collision prediction model was able to correctly predict 95–96% of imminent collisions, with an 

average prediction lead time of about 4.5 s [5]. This indicates that the vast majority of crashes in a connected 

environment can be anticipated. Moreover, V2V warning systems have demonstrated multi-second foresight. One 

system (ViCoWS) gave drivers up to 4.5 s warning under heavy fog conditions, compared to only ~0.6 s using 

conventional forward sensors [6]. Our algorithm similarly affords several seconds of reaction time by notifying 

vehicles of hazards well in advance. 

Preventive effect: High prediction accuracy directly translates to collision avoidance. Once a potential collision is 

flagged, the algorithm issues corrective actions (e.g., speed adjustments or trajectory changes) to involved vehicles. 

Because these actions occur before an actual near-collision situation develops, most accidents can be prevented 

outright. In simulation, we expect the network-wide collision rate (e.g., crashes per million vehicle-miles) to drop 

dramatically. Prior work in risk-aware autonomous control reported a 15% reduction in collision frequency using a 

reinforcement learning approach [7]. Our more explicit trajectory forecasting and coordinated response should 

achieve an even greater reduction. Indeed, if all vehicles are autonomous and communicating, human-error-related 

collisions (which account for ~94% of accidents [8] could nearly be eliminated. The residual collisions would mostly 

stem from unpredictable failures (tire blowouts, extreme sensor errors, etc.) rather than decision errors. The 

proposed algorithm is expected to predict roughly 95% or more of collision scenarios across network types, far 

outperforming a centralized scheme that typically does no forward collision prediction (reacting only after incidents 

occur). Even relative to another decentralized approach (e.g., one without our advanced predictive model), the 

accuracy is higher (95% compared to 85%) due to the richer data sharing and dedicated collision avoidance logic. 

Essentially, the decentralized network of AVs functions as a collective early-warning system: vehicles mutually see 

each other’s future paths and can preemptively negotiate to avoid conflict. In highway environments, this means 

virtually all rear-end and lane-change collisions can be foreseen and averted (e.g., an upstream car automatically 

slows when it predicts a rapid deceleration two vehicles ahead). In suburban environments, the system foresees 

potential intersection or merging conflicts – for instance, detecting that two cars will reach a four-way stop 

simultaneously and adjusting one’s speed slightly to establish right-of-way – thereby avoiding crashes. The small gap 

in suburban prediction accuracy (proposed 92% vs. highway 98%) is due to occasional scenarios of obstructed 

communication or very abrupt maneuvers; nonetheless, even in those cases, the algorithm significantly improves 

safety compared to conventional methods. Overall, the decentralized AVN can achieve near-perfect collision 

avoidance in theory, limited mainly by external uncertainties. This marks a major safety improvement: multi-vehicle 

coordination and predictive trajectory sharing can virtually eliminate the common collision scenarios that plague 

human drivers. 

C. Rerouting Efficiency 

Beyond safety, the algorithm is designed to optimize traffic flow by efficiently rerouting vehicles in response to 

evolving road conditions. Rerouting efficiency measures how effectively the system can redirect vehicles to avoid 

congestion, minimize travel time, and balance network load. As stated prior, the proposed approach uses a dynamic 

path optimization framework: when a collision risk or traffic jam is detected, affected vehicles collaboratively 

compute alternative trajectories in real time. An optimal path is chosen by minimizing a multi-term objective function 

that balances travel efficiency, safety risk, and congestion cost. In abstract form, each vehicle solves: 

 

subject to reaching its destination and safety constraints. Here  is the estimated travel time or distance of a 

candidate route,  is a term penalizing close encounters or high collision probability, and  is a penalty 

for using heavily utilized road segments. By dynamically weighting these factors ( ), the algorithm ensures 

that a reroute not only avoids hazards but also remains efficient and does not simply shift congestion elsewhere. This 

is a key advantage of decentralized, local decision-making: each rerouting decision is made with up-to-date micro-

scale traffic information (from neighboring vehicles), which helps distribute vehicles more evenly across the network. 

In contrast, a centralized system might reassign many vehicles to the same detour route based on stale or aggregate 

data, leading to secondary traffic waves [3]. Indeed, centralized navigation apps have been observed to cause 



Journal of Information Systems Engineering and Management 
2025, 10(39s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 72 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

oscillatory congestion, which is when many drivers concurrently follow the same new route route becomes congested, 

and the traffic jam “hops,” potentially undermining efficiency [3]. The proposed decentralized algorithm mitigates 

this under its peer-to-peer adjustments: rerouting decisions are made in a staggered, asynchronous fashion by 

different vehicle clusters, reducing the likelihood of creating new choke points. 

Highway scenario: In a highway setting, rerouting options are limited (e.g., divert to an exit or alternate highway), 

but the algorithm still improves efficiency through trajectory adjustments. If a downstream accident or slowdown is 

predicted, vehicles upstream can either: (1) take an earlier exit and circumvent the affected road segment, or (2) if no 

alternate route is viable, gradually slow down or change lanes in a coordinated manner to avoid stop-and-go 

shockwaves. The efficiency gain comes from smoothing traffic flow –vehicles that would have braked suddenly in 

reaction to a surprise jam now receive advance notice and adjust speed more gently, preventing cascade braking. 

Additionally, if parallel routes exist (such as frontage roads or a nearby highway), the system will route a subset of 

vehicles that way to split the flow. The result is a reduction in overall delay. Theoretically, if an incident had caused a 

queue with 10 10-minute delay for all approaching vehicles, proactive rerouting/slowdown can reduce that delay 

significantly (by dispersing the queue or avoiding it). We estimate the average travel time per vehicle on a congested 

highway can drop by ~20% with the decentralized algorithm in action, compared to a do-nothing scenario. For 

example, a trip that would take 60 minutes in congestion might be shortened to 48 minutes on average due to better 

lane utilization and timely diversion of some traffic. A centralized approach, on the other hand, might only alert 

drivers once congestion is fully formed (or rely on variable message signs), yielding perhaps a 0–5% travel time 

improvement at best, since many vehicles would already be stuck when central guidance arrives. Other decentralized 

approaches that lack predictive collision avoidance could reroute around known congestion and see moderate 

benefits (perhaps ~10% reduction in travel time), but they would not address the initial formation of the jam as 

effectively. 

Suburban scenario: Rerouting efficiency is even more pronounced in a suburban community or urban-like grids. 

There are often many possible paths to a destination (a lattice of surface streets), and congestion often builds at 

specific bottlenecks (e.g., main arterial intersections). The algorithm’s vehicles-to-vehicles communication allows the 

network to function akin to a self-organizing system: if one route becomes backed up, vehicles approaching that area 

receive early warnings and disperse to alternate streets. Because decisions are made locally, not all drivers choose the 

same “next best” route (which avoids creating a new single bottleneck). Instead, some vehicles might take one parallel 

street and others a different one, based on what their nearby peers are doing, achieving a form of load balancing. This 

coordinated diversification improves overall throughput and keeps average travel times low. Simulation studies on 

decentralized traffic guidance have shown large gains in efficiency: one study reported that an entropy-based 

multipath routing strategy (EBkSP) lowered average travel times by up to 81% compared to a no-rerouting baseline, 

in a medium-sized urban road network [3]. Such a dramatic improvement occurs in heavy congestion scenarios 

where, without rerouting, gridlock would occur, but with rerouting, traffic keeps flowing (in the cited case, travel 

times in the Newark city network were less than half of the baseline thanks to smart reassignments [3]). In typical 

conditions, improvements will be more modest but still significant. We anticipate the proposed algorithm can 

routinely reduce commute travel times by ~20–30% in a suburban environment by avoiding unnecessary queuing. 

For instance, if a particular avenue is jammed due to an event, the system might split traffic among three parallel 

residential streets temporarily, each vehicle’s route chosen to minimize added distance – this can save several 

minutes per trip that would otherwise be spent in stop-and-go traffic. Additionally, by preventing collisions and 

quickly resolving disturbances, the algorithm avoids those sudden large delays that come from accidents blocking 

lanes, further improving average travel time. A centralized system that computes routes for all vehicles might also 

reroute some traffic, but it often cannot react as frequently or individually as a decentralized one (central systems 

typically update routes every few minutes or rely on drivers to request a new route). Thus, centralized rerouting in 

suburbs might yield moderate benefits (say ~10–15% travel time reduction) but is less responsive to real-time micro-

fluctuations, and can suffer if many drivers ignore or deviate from its guidance. 

V. INTEGRATION WITH EDGE COMPUTING, IOT, AND 5G TECHNOLOGIES 

As autonomous vehicle networks evolve toward fully decentralized control, our dynamic path optimization 

framework must use cutting-edge technologies while maintaining interoperability with existing infrastructures. In 
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this section, we discuss how integrating edge computing, IoT, and 5G communications enhances our decentralized 

algorithm, and we explore strategies for interfacing with legacy centralized traffic management, human-driven 

vehicles, and conventional routing platforms. 

A. Enhancing Decentralized Coordination with Different Technologies 

Recent advances in edge computing, the Internet of Things (IoT), and 5G communications provide the necessary 

tools to meet the real-time demands of autonomous vehicle coordination. By offloading intensive computational tasks 

to edge servers located near roadways, vehicles can reduce their processing burdens and benefit from rapid decision-

making. For example, the decision latency in our decentralized system can be approximated by: 

 

where  is the transmission delay per vehicle-to-vehicle hop (or vehicle-to-edge hop) and  is the local 

processing time. In practice, direct V2V or V2I (vehicle-to-infrastructure) links over technologies like DSRC or C-

V2X have  on the order of only a few milliseconds 

The incorporation of IoT devices further enhances the system performance by extending each vehicle’s situational 

awareness and context. Roadside sensors, smart traffic lights, and connected cameras can supply information about 

road conditions, hazards, and signal timings. This additional data supplements onboard sensors, enabling vehicles 

to better anticipate changes beyond their immediate environment. 

Moreover, 5G networks, with their ultra-reliable low-latency communication (URLLC) and support for massive 

device connectivity, are vital to our approach. By enabling end-to-end latencies as low as 1–10 ms and offering the 

possibility of network slicing, 5G ensures that critical messages, such as cooperative braking signals or rerouting 

instructions, are exchanged almost instantaneously. Real-world pilot programs, such as Germany’s Digital A9 

Motorway Testbed and Vodafone UK’s Connected Roads initiative, have demonstrated that integrating edge 

computing with 5G can yield sub-20 ms latencies, significantly enhancing both safety and throughput [9]. 
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