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One of the most prevalent neurological disorders is epilepsy. Epileptic seizures can occur 

repeatedly in people with the condition for no recognisable reason. The diagnostic methods 

dependent on EEG are promising. EEG has uncovered the dynamic functioning of all brain areas 

throughout time. Its low cost, non-invasiveness, and simply make it crucial for clinical 

evaluations of brain function. Integrating multiple EEG biomarkers as a compound biomarker 

could provide a high performance that may accelerate the diagnosis speeds. Artificial intelligence 

techniques such as machine learning and deep learning provide a significant result in healthcare 

applications. Logistic Regression (LR), Naive Bayes (NB), and Neural Network (NN) were 

evaluated using a compound biomarker containing eleven EEG features that were extracted from 

the Bonn EEG dataset. The aim of this study is to evaluate the feasibility of integrating multiple 

EEG biomarkers as compound biomarkers for identifying epileptic people. The outcomes showed 

the performance of all LR, NB, and NN detection models provide a high performance with 

sensitivity and specificity of greater than 90%. 

Keywords: Epileptic seizures, Healthcare Applications, EEG Biomarkers, Machine Learning, 

Compound Biomarkers 

 

1. INTRODUCTION 

One of the most prevalent neurological disorders is epilepsy (Kanner et al., 2024). The neurobiological, cognitive, 

psychological, and social repercussions of seizure recurrences, as well as a lasting propensity to produce seizures that 

is not triggered by any acute central nervous system damage, are the hallmarks of this chronic brain disorder (Beghi, 

2020). Seizures are not the only clinical signs; cognitive impairments and mental illnesses are frequent amongst 

them(Kanner et al., 2024). Worldwide, epilepsy affects people of all ages and genders (Beghi, 2020). Over 3 billion 

individuals globally suffered from a neurological disorder, including epilepsy, in 2021 (World Health Organization, 

2024). There are 65 million epileptics around the globe (Milligan, 2021). An estimated $119.27 billion (USD) was 

spent on epilepsy worldwide in 2019 (Sharma et al., 2025). Epileptic seizures can occur repeatedly in people with the 

condition for no recognisable reason (R. Shankar et al., 2024).  

Clinically, epilepsy can be diagnosed using different techniques such as Electroencephalogram (EEG), Magnetic 

Resonance Imaging (MRI), Computed Tomography (CT) Scan, and Magnetoencephalography (MEG), which show 

good results in diagnosing epilepsy (Adamczyk et al., 2021). However, the diagnose methods depend on EEG is the 

promising, EEG has uncovered the dynamic functioning of all brain areas throughout time (Al-Juboori, Mkwawa, 

Sun, & Ifeachor, 2017). EEG used to monitor the electricity of the brain cells that capture brain activities (A.H.H. Al-

Nuaimi, Jammeh, Sun, & Ifeachor, 2018; Bogéa Ribeiro & da Silva Filho, 2023). Epilepsy-related brain alterations 

are reflected in EEG (Tian & Zhang, 2025).  

Alterations in complicated brain networks have been scientifically monitored. Its low cost, reproducibility, non-

invasiveness, and simply make it crucial for clinical evaluations of brain function (Ali H Husseen Al-Nuaimi, Al-

Juboori, Jammeh, Sun, & Ifeachor, 2019). To identify pathophysiological brain networks and improve treatment 
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outcomes, EEG was integrated with other diagnosis techniques (Saridas & Demir, 2025)(A H Al-Nuaimi, Jammeh, 

Sun, & Ifeachor, 2017). It can be used to diagnose epilepsy with all ages (Islam, Basak, Islam, & Roy, 2023). 

Artificial intelligence techniques such as Machine learning (ML) and deep learning (DL) provide a significant result 

in healthcare applications (Al-nuaimi, Nsaif, & Al-Juboori, 2025) (A.H. Al-Nuaimi, Jammeh, Sun, & Ifeachor, 2016; 

Armand, Nfor, Kim, & Kim, 2024). ML and DL techniques are commonly used to detect brain disorders such as 

Alzheimer's disease  (Al-Kabi, Al-Tuwaijari, & Al-Nuaimi, 2023) (A. Singh & Kumar, 2024) (A.H. Al-Nuaimi, 

Jammeh, Sun, & Ifeachor, 2017), autism (Kumar & Jaiswal, 2025), and epilepsy (Han, Liu, & Friedman, 2024). 

One-dimensional squeeze-and-excitation, or 1D SE, CNN (convolutional neural networks), BiLSTM (bidirectional 

long short-term memory), and an attention module were all combined to create the new detection model, which is 

called STFFDA (space-time feature fusion with dual attention). To classify the epileptic episodes, the 22 patients in 

the CHB-MIT EEG dataset were utilised to classify the epileptic seizures. The created model performed 92.42% for 

both recall and accuracy, and 92.47% for precision (Huang et al., 2025). 

The RCMDE (Refine Composite Multiscale Dispersion Entropy) was examined to assess the complexity of seizures 

based on EEG research. To identify epilepsy, the ResCon-LSTM (Residual Convolutional Long Short-Term Memory) 

neural network was developed. The accuracy of the CHB-MIT dataset, which included 24 paediatric individuals with 

epilepsy, was 98.52% (Song, Fan, & Mao, 2024). 

An EEG-based detection model, 1D-CNN (one-dimensional convolutional neural networks), optimised by MFO 

(moth-flame optimisation), was presented to assess the potential of using EEG to detect epileptic seizures. The model 

was assessed using the Bonn EEG dataset with five patients, achieving a maximum accuracy of 99.96 performance 

(Wang et al., 2023). 

Epileptic seizure recognition by ML and DL was the main emphasis of the research. The dataset used for model 

development is the UCI-Epileptic Seizure Dataset. DL algorithms like ANN (Artificial Neural Network) and LSTM 

(long short-term memory) and ML techniques like LR (Logistic Regression), SVM (Support Vector Machine), and 

KNN (K-nearest Neighbour) were explored. The findings demonstrated that DL techniques performed better than 

ML techniques, with LR, SVM, and KNN demonstrating respective performances of 63.9%, 97.23%, and 91.96%. In 

contrast, DL's ANN and LSTM obtained 97% and 97.1%, respectively (Kunekar, Gupta, & Gaur, 2024). 

A study was performed to examine the robustness of a collection of prospective biomarkers of seizure susceptibility. 

A total of 814 EEG recordings from 648 people. 129 for epilepsy, 281 for normal, and 152 for various diseases were 

acquired from eight National Health Service locations throughout the United Kingdom and included in the database 

were clinically non-contributory. Within each recording, eight computational markers were calculated: n is two for 

spectral, n is four for network-based, and n is two for model-based. Ensemble-based classifiers were created using a 

two-tier cross-validation approach. These weighted undirected networks were utilised to create four graph theoretical 

markers, and the low-alpha band phase-locking value between electrode pairs was calculated. These parameters 

comprised the usual path length, mean degree, degree variance, and average weighted clustering coefficient. The 

results revealed that the cohort with clinically non-contributory normal EEGs had a balanced accuracy of 68%, 61% 

for sensitivity, and 75% for specificity (Kunekar, Gupta, et al., 2024). 

Categorising the ictal and inter-ictal phases of raw scalp EEG data, three deep-learning models; LSTM (long-short-

term memory), RNN (Recurrent Neural Network), CNN (convolutional neural network) and LSTM (CNN-LSTM) 

were tested. Five epileptic and five healthy individuals' 40-minute ictal and non-ictal intracranial EEG data are 

included in the Bonn data set. The impact of various scalp EEG channel configurations on the identification of 

epileptic seizures was examined to manage the decrease in mobile devices that use behind-the-ear (BTE) electrodes. 

The sensitivity of the CNN-LSTM model was 73%. A promising sensitivity of 68% was obtained by using BTE channels 

as input to the suggested epileptic recognising seizures method (El-Dajani, Wilhelm, Baumann, Surges, & Meyer, 

2025). 

This paper is arranged as: Section two provides an explanation of the materials and methods used in the article. 

Section three displays the results, while Section four presents the discussion. The conclusion is in section five. 
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2. MATERIALS AND METHODS 

2.1. Dataset 

Five groups of EEG datasets (A, B, C, D, and E) were analysed (Andrzejak et al., 2001). Each group had one hundred 

fragments of a single channel with a sampling frequency of 173.61 Hz (Hertz), 23.59 seconds' duration for 4097 data 

points from the beginning of recording of the 4396 samples were selected for the analysis. After visually checking the 

continuous multichannel EEG recordings for artefacts, such as those caused by eye movements or muscle activity, 

these portions were chosen and removed. 

The electrode locations for groups A and B were placed based on the 10-20 system as shown in Figure 1 which belongs 

to the five HC (Healthy Cognitive) groups, group A to eyes open and group B to eyes closed. While C, D, and E groups 

originated from pre-surgical diagnostics of the EEG signals. Five patients were chosen, and all of them obtained total 

SC (Seizure Control) following the removal of one of the hippocampus formations. As a result, the epileptogenic zone 

was accurately identified as shown in Figure 2.  Fragments of groups C and D had only activity assessed during 

seizure-free times that were recorded from the hippocampal formation of the opposite hemisphere of the brain and 

from within the epileptogenic zone, respectively. While group E only contained seizure activity. The fragments were 

picked from all recording locations that showed ictal activity. The EEG dataset is available on the Bonn EEG time 

series download page (Universitat Pompeu Fabra Barcelona (UPF), n.d.).   

 

Figure 1: Electrodes positions in accordance with the internationally 10-20 system. 

 

Figure 2: Configuration of intracranial electrodes used to assess individuals with epilepsy before surgery. The 

hippocampus formations were symmetrically implanted with depth electrodes (top) 

2.2. Pipeline procedures for detecting epileptic seizures 

2.2.1. Pre-processing 

Chebyshev-II band-pass filter was used to filter the EEG signal between 0 and 45 Hz. To maintain valuable brainwave 

data like EEG where baseline drift and high-frequency noise must be reduced without changing the signal's 

morphology, Chebyshev Type II filters are especially helpful because of their flat passband and steep roll-off (Sörnmo 

& Laguna, 2005). Filtering the EEG signal to minimise noise and enhance data quality (de Cheveigné & Nelken, 

2019). 
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2.2.2. Normalise the dataset 

An attribute's range of values in a classification process can be very small or very large. The result of the classification 

process may be unfairly dominated by the attribute with a wide range of values just because of its higher values. 

Consequently, prior to classification, these variables need to be normalised (Sinsomboonthong, 2022). The EEG 

dataset was normalised using the following equation (Henderi, Wahyuningsih, & Rahwanto, 2021).  

𝑓(𝑥𝑖) =
𝑥𝑖−𝑥̅

σ
   (1) 

Where f(xi) is the normalised value of the data point xi , x is time series signal likes EEG, x ̄ is the mean of x, σ is the 

standard deviation of x, i refers to the sequence of any data point in x, and N is the length of the signal x. 

The EEG dataset was normalised to guarantee a consistency within the data samples (Benmabrouk et al., 2025). 

2.2.3. Randomise the dataset:  

Randomising data prior to model development could eliminate order bias and guarantee that patterns acquired by 

the model generalise effectively instead of overfitting to certain patterns (Kahan, Rehal, & Cro, 2015). 

2.2.4. Partitioning the dataset 

The EEG dataset was split into two subgroups: training with 60% and validating with 40% splitting rations, 

respectively. 

2.2.5. Features developed 

Eleven features were extracted from the EEG signal as a features vector.  

The extracted features are  

• Detrended Fluctuation Analysis (DFA) (Arsac & Deschodt-Arsac, 2018). 

DFA is used to estimate the self-similarity and scaling property in fractal signals. It quantifies the fractal-scaling index 

of a physiological time series.  

 

Physiological time-series and fractal scaling index were analysed using DFA. The scaling characteristics and self-

similarity of fractal signals were calculated using DFA. The computation of DFA as follows 

 

𝐹(𝑛) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]

2𝑁
𝑘=1   (2) 

 

𝑦(𝑘) = ∑ 𝑥(𝑖) − 𝑥̅𝑘
𝑖=1   (3) 

 

where x ̄ is the mean value of signal x. 

A linear association on a log-log plot implies the presence of power law (fractal) scaling, and in such cases, the 

fluctuations can be attributed to a scaling exponent, the slope of the line relating log F(n) to log n. This calculation is 

carried out over all time scales (box sizes) to identify the interaction of F(n), the average fluctuation, and the box size 

n. Generally, F(n) will increase with box size. 

 

• Skewness (Sk) and Kurtosis (Ku) (Karagiorgis, Ballis, & Drakos, 2023),  

Skewness measures the asymmetry of a signal's distribution around its mean. Where: 

𝑥(𝑖) =
1

𝑁
∑ (

𝑥𝑖−𝑥̅

𝜎
)
3

𝑛
𝑖=1   (4) 

 

• xi it is any data point with sequence i 

• x ̄ is the mean of the signal 
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• σ is the standard deviation of signal x 

• N is the length of the signal x 

A measure of how heavy-tailed or light-tailed (outliers) the data are in comparison to a normal distribution is called 

kurtosis, as shown in Eq. (5) 

𝑥(𝑖) =
1

𝑁
∑ (

𝑥𝑖−𝑥̅

𝜎
)
4

𝑛
𝑖=1   (5) 

 

• Features from envelope  (S. Ghosh, Dallmer-Zerbe, Buckova, & Hlinka, 2024). 

The non-linearity of the EEG signal was measured using the Envelope Entropy (EnEp) to analyse the variability and 

complexity of the signal. 

The envelope feature is calculated using the envelope entropy as shown 

EnEp = −∑ 𝑝(𝑖) log(𝑝𝑖)𝑁
𝑖=1   (6) 

where pi is the normalise probability distribution that computed as,  

𝑝(𝑖) =
𝐴𝑖

∑ 𝐴𝑖
𝑛
𝑖=1

  (7) 

Ai is the amplitude envelope value at time i that computed as, 

𝐴(𝑖) = |𝑧(𝑖)| = √𝑥(𝑖)2 + 𝐻{𝑥(𝑖)}2  (8) 

where |z(i)| is the analytic signal which computed using Hilbert transform (H) of x 

 

• Spectral Edge Frequency (SEF-95) (Poza, Hornero, Abásolo, Fernández, & García, 2007) 

SEF95 measures the upper limit of the spectral content of the PSD (Power Spectral Density) of the signal and has 

been calculated to be the frequency that makes up 95% of the power. It calculated as 

𝑋 = ∑ 𝑃𝑆𝐷(𝑥𝑖)
95
𝑖=1   (9) 

• Instantaneous Frequency (IF) (Carcione, Gei, Picotti, & Botelho, 2021) 

The values of mean (MIF), standard deviation (SIF), and variance (VIF) of IF were computed as features of the EEG 

signal. It is expressed by the rate of the phase change of a signal at any time. It is computed as 

𝑓(𝑖) =
1

2𝜋
.
𝑑∅(𝑖)

𝑑𝑖
  (10) 

 

Where dϕ(i)/di is the phase's derivative in relation to time i, and ϕ(i) is instantaneous phase which is calculated as 

∅(𝑖) = arg(𝑧) 𝑖)) = 𝑡𝑎𝑛−1(
𝐻{𝑥(𝑖)}

𝑥(𝑖)
)   (11) 

 

H{x(i)} is the Hilbert transform of x(i). 

• Peak-to-Peak (P2P) amplitude (R. Ghosh et al., 2023) 

P2P is the phase derivative of the signal in relation to its time. The computation of the P2P as 

P2P=max(x)-min(x)  (12) 

• Autocorrelation Features (ACF) (Soriano & Zunino, 2021) 

The relationship value between the signal's time and time delay is known as the ACF.  
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ACF at lag k is computed as 

𝑐𝑘 =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖+𝑘 − 𝑥̅)𝑁−𝑘
𝑖=1   (13) 

The ACF is a relationship between 𝑥i and 𝑥i+k. The values of lag1 and lag2 were used as features when k=1, and 2. 

The extracted eleven features were used to construct the features vector are:  

DFA, Sk, Ku, EnEp, SEF-95, MIF, SIF, VIF, P2P, lag1, and lag2 

2.2.6. Model development 

ML models were utilised to develop an artificial intelligence (AI) detection system.  The ML algorithms i.e., Logistic 

Regression (LR), Naive Bayes (NB), Neural Network (NN) that show a significant role in biomedical healthcare 

applications such as epilepsy detection have been investigated. 

 

2.2.6. Model evaluation 

The developed ML models were evaluated using the validation datasets; the remaining 40% of the EEG dataset. 

Sensitivity (Sen), Specificity (Spec), and Accuracy (Acc) were calculated for each of the three ML models as 

performance evaluation metrics. 

3. RESULTS 

Tables 1-6 describe the performance of the LR, NB, and NN detection models. 18 ML detection models were 

developed to detect the SC subjects. 

Table 1 displays how well the LR, NB, and NN models discriminate between group C for with seizure-free periods and 

group A for HC with eyes open. 

Table 1: The ML performance models between groups A for HC with eyes open and C for SC with seizure-free 

periods. 

ML algorithm Sen % Spec % Acc % 

LR 96.67 85.29 90.00 

NB 95.00 91.94 93.33 

NN 96.67 98.31 97.50 

 

Table 2 displays how well the LR, NB, and NN models discriminate between group C for with seizure-free periods 

and group B for HC with eyes closed. 

Table 2: The ML performance models between groups B for HC with eyes closed and C for SC with seizure-free 

periods. 

ML algorithm Sen % Spec % Acc % 

LR 98.33 93.65 95.83 

NB 96.67 90.63 93.33 

NN  96.67 90.63 93.33 

 

Both tables 1 and 2 show high performance measures in detecting SC subjects of group C for SC with seizure-free 

periods and subjects of groups A and B for HC with eyes open and eyes closed to all the three investigated ML models. 
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Table 3 displays how well the LR, NB, and NN models discriminate between group D for SC with epileptogenic zone 

and group A for HC with eyes open. 

Table 3: The ML performance models between groups A for HC with eyes open and D for SC with epileptogenic 

zone 

ML algorithm Sen % Spec % Acc % 

LR 98.33 93.65 95.83 

NB 95.00 96.61 95.83 

NN  98.33 92.19 95.00 

 

Table 4 displays how well the LR, NB, and NN models discriminate between group D for SC with epileptogenic zone 

and group B for HC with eyes closed. 

Table 4: The ML performance models between groups B for HC with eyes closed and D for SC with epileptogenic 

zone 

ML algorithm Sen % Spec % Acc % 

LR 98.33 90.77 94.17 

NB 98.33 90.77 94.17 

NN  98.33 92.19 94.92 

 

Both tables 3 and 4 show high performance measures in detecting SC subjects of group D for SC with epileptogenic 

zone and subjects of groups A and B for HC with eyes open and eyes closed to all the three investigated ML models. 

 

Table 5 displays how well the LR, NB, and NN models discriminate between group E for SC with seizure activity and 

group A for HC with eyes open. 

Table 5: The ML performance models between groups A for HC with eyes open and E for SC with seizure activity 

ML algorithm Sen % Spec % Acc % 

LR 91.67 98.21 95.00 

NB 98.33 98.33 98.33 

NN  98.33 98.33 98.33 

 

Table 6 displays how well the LR, NB, and NN models discriminate between group E for SC with seizure activity and 

group B for HC with eyes closed. 

Table 6: The ML performance models between groups B for HC with eyes closed and E for SC with seizure activity 

ML algorithm Sen % Spec % Acc % 

LR 96.67 98.31 97.50 

NB 98.33 76.62 84.17 

NN  98.33 84.29 90.00 
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Both tables 3 and 4 show high performance measures in detecting SC subjects of group E for SC with seizure activity 

and subjects of groups A and B for HC with eyes open and eyes closed to all the three investigated ML models. 

4. DISCUSSION 

All ages and genders are affected by epilepsy (Beghi, 2020), and the exact causes and contributing factors are not well 

understood. In most cases, the cause of epilepsy was undetermined (Chahal et al., 2021), The precise aetiology of 

epilepsy is unclear in around 50% of instances (Heather Jones, 2023). Therefore, there is a need for simply, low cost, 

and invasiveness biomarkers (A.H. Al-Nuaimi, Jammeh, Sun, & Ifeachor, 2015). EEG is the most preferred tool that 

can be used to detect epileptic people.  

In this study, different EEG biomarkers were integrated as a vector of features (compound biomarker). It is possible 

to improve detection performance by integrating several analytical methods  (Ali H Al-Nuaimi et al., 2021). Improving 

detection performance might help to identify pathophysiological brain networks and improve treatment outcomes 

(Saridas & Demir, 2025). 

Five groups of EEG datasets were used to validate the hypothesis of integrating several analytical methods to produce 

a compound biomarker. It includes HC and SC groups. A is for HC with eyes open, group B is for HC with eyes closed, 

group C is for SC with seizure-free times, group D is for SC with epileptogenic zone, and group E is for SC with seizure 

activity.  

Eleven features extracted from EEG dataset, including the DFA, Sk, Ku, EnEp, SEF-95, MIF, SIF, VIF, P2P, lag1, and 

lag2 were incorporated as a compound biomarker to detect SC.  

The HC, and SC groups were evaluated using the three ML methods, LR, NB, and NN. Therefore, 18-ML detection 

models were constructed to detect the SC subjects, as shown in tables 1-6.  

The results in Table 7 demonstrated the performance summary of the LR model to distinguish between the SC people 

of groups C (seizure-free periods), D (epileptogenic zone), and E (seizure activity) of epileptics and the subjects of HC 

groups (A with eyes open, and B with eyes closed). The average performance of LR was 96.67%, 93.31%, and 94.72% 

for Sen, Spec, and Acc, respectively. 

Table 7: The performance of LR diagnosing models 

Dataset groups description Sen % Spec % Acc % 

A and C  
96.67 85.29 90.00 

B and C 98.33 93.65 95.83 

A and D 98.33 93.65 95.83 

B and D 98.33 90.77 94.17 

A and E 91.67 98.21 95.00 

B and E 96.67 98.31 97.50 

Average of performance 96.67 93.31 94.72 

 

The findings in Table 7 are compatible with the outcomes in other studies which used LR to detect seizures with 

94.86% for average Acc, 96.71% for average precision, and 93.48% for Sen (Li, Qiao, Duan, & Miao, 2024). The results 

of Khan et al. (Khan, Khan, & Farooq, 2022) concluded that the LR method is a preferred ML method for detecting 

SC subjects, with performances of 93.39%, 91.16%, and 92.43 for Sen, Spec, and Acc, respectively. Another study used 

LR to discriminate between Sc and HC subjects and produced a performance of 73.44%, 100%, and 86.72% for Sen, 

Spec, and Acc, respectively (Deepa, Anand, Pandey, Pandey, & Karki, 2022). Results of the study achieved by Aliyu 

et al. (Aliyu & Lim, 2023) stated detecting the epileptic subjects by analysing the EEG signals using LR with 

performance of Acc 92%. 
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The results in Table 8 demonstrated the performance summary of the NB model to distinguish between the SC people 

of groups C (seizure-free periods), D (epileptogenic zone), and E (seizure activity) of epileptics and the subjects of HC 

groups (A with eyes open, and B with eyes closed). The average performance of NB was 96.94%, 90.82%, and 93.19% 

for Sen, Spec, and Acc, respectively. 

Table 8: The performance of NB diagnosing models 

Dataset groups description Sen % Spec % Acc % 

A and C 
 

95.00 91.94 93.33 

B and C 96.67 90.63 93.33 

A and D 95.00 96.61 95.83 

B and D 98.33 90.77 94.17 

A and E 98.33 98.33 98.33 

B and E 98.33 76.62 84.17 

Average of performance 96.94 90.82 93.19 

 

The findings in (Sameer & Gupta, 2021) provided 98% for the area under curve measure in recognising between ictal 

and healthy class using NB detection model. Singh et al. (M. Singh et al., 2023) evaluated the NB classifier in seizure 

recognition, and they found that NB is a promising classifier for analysing EEG signals to recognise SC subjects, with 

performance of 93.7%, 68%, and 88% for Acc, Sen, and precision, respectively. A study evaluating NB using EEG 

signals to detect ictal concluded that NB was a good classifier to detect ictal subjects, with performance of 100% for 

all the Acc, Sen, and Spec measures (Hadiyoso, Wijayanto, & Humairani, 2021). Another study investigated the NB 

classifier in detecting epileptic seizures based on analysing EEG signals and found that NB was a convenient classifier 

in detecting epileptic seizures, with performance of 88.7%, 97.9%, and 96% for Sen, Spec, and Acc, respectively 

(Kunekar, Kumawat, et al., 2024). These findings as shown in Table 8 are compatible with the results of this study 

that indicated that NB is a promising classifier in detecting the SC subjects which produces a high performance.  

Table 9 shows the performance of the NN model to discriminating between the SC people of groups C (seizure-free 

periods), D (epileptogenic zone), and E (seizure activity) of epileptics and the subjects of HC groups (A with eyes 

open, and B with eyes closed). It summarises the average performance of the LR model with 97.78%, 92.66%, and 

94.85% for Sen, Spec, and Acc, respectively. 

Table 9: The performance of NN diagnosing models 

Dataset groups description Sen % Spec % Acc % 

A and C 
 

96.67 98.31 97.50 

B and C 96.67 90.63 93.33 

A and D 98.33 92.19 95.00 

B and D 98.33 92.19 94.92 

A and E 98.33 98.33 98.33 

B and E 98.33 84.29 90.00 

Average of performance 97.78 92.66 94.85 

The results in Table 9 are compatible with the results in other studies (Guerrero, Parada, & Espitia, 2021) that 

indicated that NN is a good method for detecting epilepsy patients with an accuracy of 86.1%. The results presented 

by Shankar et al. (R. S. Shankar, Raminaidu, Raju, & Rajanikanth, 2021) indicated that ANN can be used to detect 
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the epileptic seizure with high performance of 97.55%, 91.48%, and 94.24% for Acc, Sen, and precision, respectively. 

Demirci et al. explored the ANN model to analyse EEG signals to recognise epileptic seizures. Their results showed 

the ANN performed a high recognition performance of 100% for Acc in seizure detection (Demirci, Demirci, & Engin, 

2023). A study investigated the AAN for detecting seizure using EEG signal showed that ANN provided 97.60%, for 

the Acc.   

The results in Table 9 are compatible with the results of other studies (Guerrero et al., 2021) that indicated that NN 

is a good method for detecting epilepsy patients with an accuracy of 86.1%. The results presented by Shankar et al. 

(R. S. Shankar et al., 2021) indicated that ANN can be used to detect epileptic seizures, with high performance of 

97.55%, 91.48%, and 94.24% for Acc, Sen, and precision, respectively. Demirci et al. explored the ANN model to 

analyse EEG signals to recognise epileptic seizures. Their results showed the ANN performed a high recognition 

performance of 100% for Acc in seizure detection (Demirci et al., 2023). A study investigating the AAN for detecting 

seizures using EEG signals showed that ANN provided 97.60% for the Acc (Ech-Choudany, Scida, Assarar, Landré, 

& Bellach, 2020) .   

The findings in this study indicated that integrating multiple EEG biomarkers as a compound biomarker could 

provide a high performance that may accelerate the diagnosis speeds. This acceleration could present more 

significance to clinical decision-making (Tait et al., 2024).   

5. CONCLUSIONS 

The findings of this study indicated that EEG signals are a promising tool for discovering the brain changes that are 

caused by epilepsy. Analysing EEG signals providing significant features might assist in developing a compound 

biomarker that could be used to identify people suffering from epileptic seizures. Integrating several analytical 

methods might improve detection performance. Furthermore, ML algorithms such as LR, NB, and NN classifiers 

showed a high efficiency of detection with a short time of the models’ development. 

Improving detection performance might help to identify pathophysiological brain networks and improve treatment 

outcomes. The future work will focus on evaluating the developed ML detection model using real-time EEG signals.   

Supplementary Materials: The EEG dataset used in this study is available at https://www.upf.edu/.  

Extra information about the dataset is available at 

https://www.upf.edu/documents/229517819/232450661/Andrzejak-PhysicalReviewE2001.pdf/0e9a54b8-8993-

b400-743e-4d64fa29fb63 
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