
Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1159 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Deep Learning Based Tympanic Membrane Segmentation 

Using Residual Double Attention UNet 

 

MarySelvi.S1*,Dr.Subha.V2  , Dr.Manivanna Boopathi.A3 , Thanu.S4 

1,2,4Department of Computer Science and Engineering, ManonmaniamSundaranar 

University,Abishekapatti,Tirunelveli,627012,TamilNadu, India. 

Email: marymarymsu2023@gmail.com1; subha_velappan@msuniv.ac.in2; tharshinimanian@gmail.com4 

3Department of Electrical and Electronics Engineering, Sethu Institute of Technology,  Kariapatti, TamilNadu, India. Email: 

manivannaboopathi@sethu.ac.in3 

*Corresponding author: S.MarySelvi, Research Scholar, Department of Computer Science and Engineering, 

ManonmaniamSundaranarUniversity,Abishekapatti,Tirunelveli,627012,TamilNadu,India. 

Email: marymarymsu2023@gmail.com 

 

ARTICLE INFO ABSTRACT 

Received: 31 Dec 2024 

Revised: 20 Feb 2025 

Accepted: 28 Feb 2025 

The airy spaces of the middle ear and temporal bone are home to the Eustachian tube, which is 

covered by a mucous membrane that is infected and inflamed in Otitis Media (OM). Another of 

the most prevalent diseases is OM. Otoscope pictures are visually inspected in clinical settings 

to make the diagnosis of OM. Being subjective and prone to mistakes, this procedure is 

susceptible. In this study a unique framework Hybrid Colour Residual Double Attention UNet 

(HCRDAUNet)  model is proposed to effectively segment the Tympanic membrane. This model 

utilizes the strength of three different colour spaces namely RGB, LUV and HSV into a single 

joined semantic segmentation model with attention mechanism. The proposed attention gate in 

this approach applies the gating outcome on two different scales of feature map to accurately 

localize the eardrum. The proposed HCRDAUNet model archives up to 96% of dice co-efficient 

and 95% of F1-score, which shows that the proposed model attains significant improvements in 

performance, compared to state art of semantic segmentation models. 

Keywords: Deep Learning, Tympanic Membrane segmentation, Otitis Media, Residual 

Attention U-Net, Attention gate. 

 

INTRODUCTION 

Otitis media (OM) is one of the most common diseases in the globe [1,2]. Otoscopic screening, on the other hand, is 

extremely subspecialized; posing diagnostic challenges for primary care practitioners whose otologic diagnoses are 

relatively erroneous.Any middle ear inflammation is referred to as otitis media (OM), which can be clinically 

divided into acute (AOM), chronic (COM), and otitis media with effusion (OME) forms. 

Untreated OM may result in a life-threatening intracranial condition or permanent hearing loss. Due to its great 

incidence, OM is becoming a major global public health issue [3,4].The high risk of recurrence and parental loss of 

working hours associated with treating OM might result in large healthcare costs [5]. So, in recent years, the 

healthcare sector has become interested in the telemedicine and home care model for OM. 

In actuality, abnormalities in the tympanic membrane (TM) are linked to OM disorders [6,7]. Identification of 

morphological or colour alterations on the TM is necessary for the diagnosis of OM. The clinical symptoms of OM 

might include ear discomfort, ear discharge, headache, current or recent upper respiratory tract infection, 

restlessness, and appetite loss [8].The anomaly of TM causes a variety of effects on patients, including hearing loss 

and serious infection, if it is not promptly identified and treated. As a result, it is critical to spot the TM anomaly for 

an early diagnosis of OM, especially in youngsters [9]. Physicians must complete years of training before they can 

diagnose OM with otoscopic TM results. The state of the ear canal, the diminutive size of the TM, and different 

anatomical abnormalities can occasionally make a diagnosis difficult. The accuracy of diagnosis may vary across 

doctors with various educational backgrounds, which further raises questions in regions where access to healthcare 
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is difficult.The regions of the TMs identified from captured picture frames via the TM segmentation approach are 

significant for subsequent steps in the paediatric otitis media diagnosis process. The segmented region of the TM 

allowed for the derivation of important diagnostic criteria for OM, includes TM size, texture, geometry, and colour 

distribution [10]. 

The detection of OM as well as the precision of OM illness categorization can both be enhanced by effective TM 

segmentation in otoscopic images. However, because of the unique characteristics of each patient and the diversity 

of image acquisition procedures, automated and reliable TM segmentation is a difficult task.Additionally, TM 

pictures are often created from video-otoscopic images [11] that have uneven lighting, making certain image areas 

brighter or darker than the typical colour of a particular structure [12]. These traits, together with the low contrast 

of anatomical structure boundaries, make TM automated segmentation tasks challenging, especially when the 

tympanic membrane is perforated or effused.Additionally, TM pictures typically have intensity inhomogeneity 

because of influences during the acquisition procedure. Additionally, there are concealed regions present on the TM 

pictures obtained from video-otoscopic images, which makes TM segmentation even more difficult. 

The most effective AI technique for a variety of tasks, including issues with medical imaging, is Deep learning. 

Recently, deep neural networks have been successfully used for otologic diagnostics. Additionally, several studies 

using the tympanic membrane (TM) have demonstrated the value of deep learning models for the early diagnosis 

and treatment of ear disorders [13]. Nevertheless, despite the fact that those models demonstrated highly accurate 

diagnoses based on the TM, such methodologies have limits when it comes to being effectively used in actual 

practise. The inherent "black-box nature" of deep learning algorithms is to blame for these restrictions.Besides, AI 

system should be understandable, in order to complement medical professionals and allow them to diagnose and 

recall their decisions [14].  

This study focuses on deep neural network based approach for Tympanic membrane from Otoscope images. This 

approach combines the properties of three different colour spaces to accurately localize the membrane. The linked 

Unet with three colour space further improves the proposed double attention model with residual concept.  

RELATED WORKS 

If the input pictures are noisy, inhomogeneous, or have weak borders, the results might not be sufficient. Thus, 

Tympanic membrane segmentation is significant to identify the Otitis media. In the literature, a variety of 

techniques for segmenting time panic membranes have been explored.A large number of models has been 

developed using different machine learning as well as deep learning techniques. Deep learning approaches 

performed well in Tympanic membrane segmentation among a large range of techniques. The succeeding section 

focuses on the previous methods in different techniques. 

Tympanic membrane segmentation was hypothesised as a semi-automatic process by Ibekwe et al. [15] and Hsu et 

al. [16]. When completing segmentation tasks, one must first manually choose a set of points around the subject 

areas using a computer mouse. However, it might be challenging to create accurate TM limits since it requires 

clumsy computer mouse manipulation about the appropriate regions. Accordingly, it could result in mistakes. 

When using a semi-automatic tympanum approach, Comunello et al. [17] construct TM borders by manually 

adjusting the minor and major axes of an initial ellipse that was set by the user.  

To segment TM pictures, Xie et al. [18] use a snake-a parametric active contour model (ACM). Nevertheless, results 

are inadequate if pictures have weak boundaries since the snakes utilise gradient information, such as image 

borders, to guide the curves. According to Tran et al.'s research [19], the categorization of acute otitis media and 

otitis media with effusion uses a segmentation technique based on a level set-based active contour model.  The 

modified double active contour segmentation technique has been presented by Shie et al. [20] to evolve the active 

contour and eventually terminates on the required boundary condition by minimising an energy function.  

Computer-aided systems based on a binary classification technique have been developed for several investigations 

[21, 22]. They trained several learning models including decision trees, SVM, neural networks, and Bayesian 

decision approaches, using the colour information of the eardrum picture in order to determine whether the image 

represents a case of otitis media or a normal ear. Huang et al. [23] used a plug-in otoscope to provide a visual image 
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from the inside and create a system employing the Depth-First Search Algorithm to diagnose otitis media at 

home.In order to distinguish between several classes, such as the external ear canal's obstructed wax, normal TMs, 

OME, AOM, and CSOM OM types, Myburgh et al. [24] suggested a decision tree (DT)-based otitis media diagnostic 

model.Patch-based image classification is accomplished using segmentation methods based on CNNs. In this 

method, the input picture is segmented into patches, and the CNN model is applied to each patch to get the patch's 

class label. Due to the heavily overlapping patches of the image, this process requires a lot of processing and is 

ineffective. Therefore, cutting-edge methods have been created to improve the abilities of deep CNNs for difficult 

segmentation tasks. Unet was introduced by Ronneberger et al. [25] and is used to segment neural structures in 

electron microscopic stacks. Fully convolutional networks (FCNs) for semantic segmentation were introduced by 

Long et al. [26]. Three clinically significant structures were the focus of a segmentation model built by Seok et al. 

[27] utilising R-CNN and ResNet-50 as the backbone. 

For segmenting tympanic membranes (TMs), Pharm et al. [28] added a hybrid loss function to the fully 

convolutional network that combines the Dice loss and active contour loss. To find anomalies in otoscopic ear 

pictures, Park et al. [29] used a mask R-CNN method to divide a typical TM into five substructures: the annulus, 

umbo, malleus, pars flaccida, and cone of light. The effectiveness and dependability of CNNs in identifying the side 

and perforation of TMs in medical pictures are demonstrated by Lee et al. [30]. A unique application of DenseNet 

was proposed by Khan et al. [31] for the automated identification of middle ear (ME) and tympanic membrane 

(TM) infections.  

A Deep CNN-based AlexNet model was suggested by Basaran et al. [32] to distinguish between samples with 

normal TM and chronic otitis media (COM). Basaran et al.[33] utilized an artificial neural network (ANN) and a 

gray-level co-occurrence matrix (GLCM) to discriminate between normal and acute TMs. A unique SelectStitch 

model for semantic segmentation technique was put up by Binol et al. [34] to identify the eardrum in each frame of 

the otoscope footage. The automated detection of eardrum areas in each frame of an otoscope video was trained 

using a setup of a 4-level depth U-Net architecture. Myburg et al. [35] used decision tree to diagnose otitis media. 

Viscaino et al. [36] utilizedLaplacian Kernel to segment the regions of an image.The Laplacian operator draws 

attention to areas of a picture with sudden fluctuations in intensity. 

A novel model backed by CBAM and residual blocks was presented by Alhudhaif et al. [37], and the hyper column 

approach was incorporated for rapid and precise diagnosis. For the purpose of identifying acute otitis media, 

Sundgaard et al. [38] developed a deep metric learning strategy with five distinct loss functions. The Inception V3 

network is the network architecture used in this work. A six-category system of ear illnesses was established by Cha 

et al. [39] using an ensemble model that included ResNet-101 and Inception V3 to categorise eardrum and external 

auditory canal data. By combining Faster R-CNN and pretrained CNNs with a Transfer learning technique, Senaras 

et al. [40] presented an anomaly of the eardrum. 

3. PROPOSED WORK- HYBRID COLOUR RESIDUAL DOUBLE ATTENTION UNET  

3.1 U-Net 

Figure 1 depicts the network architecture [25]. It is made up of a path that shrinks (on the left) and a growing path 

(on the right). The path of contraction follows the typical topology of a convolutional network. It entails applying a 

pair of 3x3 convolutions (unpadded convolutions) repeatedly, every time accompanied by a rectified linear unit 

(ReLU), max pooling operation having filter size2x2, and a stride 2 downsampling operations. We increase the total 

quantity of feature channels by two at every level of downsampling. The feature map must be upsampled before 

each step in the expansive path, which also includes a 2x2 convolution (also known as a "up-convolution") that 

reduces the total quantity of feature channels in one half, concatenation with the appropriately cropped feature 

map from the path of contraction, and two 3x3 convolutions, every one accompanied by a ReLU. Cropping is 

necessary because to eliminate the loss of border pixels in each convolution. As the last layer, a 1x1 convolution is 

employed to divide each 64-component feature vector into the desired number of classes the class will be two either 

targeted membrane  or not. The network as a whole has 23 convolution layers. 
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Figure 1. U-Net architecture (example for 32x32 pixels in the lowest resolution) 

Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. 

The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps.  

3.2 Attention U-Net 

In order to highlight significant features that are sent via the skip connections, the proposed Attention Gates(AG) 

are shown in Figure 2 incorporated into the standard U-Net design. Data collected on a coarse scale is employed in 

the gating process to differentiate between unimportant and noisy answers in skip connections. To combine just 

pertinent activations, this is done just before the concatenation procedure. Furthermore, AGs filter the activations 

of neurons throughout the forward pass and the backward pass. Gradients that originate from the backdrop are 

given a lower weight throughout the backward pass. This enables the updating of model parameters in deeper 

layers depending largely on spatial regions relevant to a specific job. 

To determine the result of the skip connection, complimentary information from each sub-AG is retrieved and 

merged. By performing linear transformations lacking any spatial support (1×1×1 convolutions) and downsampling 

input feature-maps to the resolution of the gating signal, comparable to non-local blocks, the quantity of trainable 

parameters and computational cost of AGs are decreased [42]. The associated linear transformations separate the 

feature-maps for the gating operation and map them to a lower-dimensional space. Low-level feature-maps, or the 

initial skip connections, as recommended in [41], are not utilised in the gating function due to the fact that they fail 

to depict the input information in a high dimensional space. We enforce semantic discrimination at each image 

scale in the intermediate feature-maps using deep-supervision [43]. As a result, attention units are better able to 

control how people react to a wide variety of visual foreground content at various scales. Thereby, we avoid 

reconstructing dense predictions from tiny subsets of skip connections. 

 

Figure 2. Architecture of Attention U-Net 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1163 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

3.2.1Attention Gates 

The attention mechanism, a key technology, has been heavily employed in many domains, including speech 

recognition, picture detection, statistical learning, and natural language processing (NLP). The idea of Non-local 

[42] was the initial attempt to apply the attention mechanism for computer vision. We employ the Attention U-Net 

method, which modifies the network design by including an Attention Gate, to concentrate on the relevant 

partslinked to the segmentation task. Figure 3 shows the structural representation of Attention Gate, which receives 

its inputs from the expansion path's upsampling characteristics and the encoder's matching features.Using the 

former as a gating signal, task-related regions are inhibited and target area learning that is relevant to segmentation 

is improved [44]. The two inputs are first subjected to the Convolution and BatchNorm processes before being 

added to produce the output which is further applied by Relu activation layer. Then, this outcome further applied 

by Convolution (1 x 1), and BatchNorm operation is utilised to obtain second level of outcome. Then it is passed 

through the second activation function Sigmoid and Resample in order to obtain the attention coefficient (𝛂), the 

encoder feature is finally raised pixel-by-pixel by the attention coefficient. 

 

Figure 3. Block Diagram of Attention Gate 

3.3 Hybrid Colour  Residual Double Attention UNet  (HCRDAUNet) WorkFlow 

This model takes three colour spaces as input, namely RGB, LUV and HSV. The HSV colour space is more intuitive 

to how people experience colour than the RGB colour space. As hue (H) varies from 0 to 1.0, the corresponding 

colours vary from red, through yellow, green, cyan, blue, and magenta, back to red. As saturation(S) varies from 0 

to 1.0, the corresponding colours (hues) vary from unsaturated (shades of gray) to fully saturated (no white 

component).In LUV colour space, L gives luminance and U and V give chromaticity values of colour image. 

Negative value of U indicates the prominence of red component in colour image and negative value of V indicates 

the prominence of green component over blue. 

The architecture of the proposed Hybrid Colour  Residual Double Attention UNet  (HCRDAUNet) is depicted in 

Figure 4. 
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Figure 4. Architecture of the proposed work (HCRDAUNet) 

In the proposed model, similar to traditional Unet, the first four level of double convolution with corresponding 

maximum pool followed by double convolution without maxpooling  are applied for the three colour space 

simultaneously. Let us consider the output produced by the first five levels of HSV colour mode are represented as  

d_convmp_hsv1, d_conv_mp_hsv2, d_convmp_hsv3, d_convmp_hsv4 and d_conv_hsv5.This process is carried 

out for other two images of LUV and RGB. 

  For LUV and HSV colour space model, the last end two level of attention is carried out as similar in 

traditional ResAttentionUNet model, but the attention is designed by the proposed double attention model which is 

explained in the  section 3.3.2.  Whereas for  RGB model, all the process are carried out similar to 

ResAttentionUnet with proposed double attention model.  The process of gating and its corresponding 

doubleattention block process for HSV and LUV for last two levels are presented  in the following equation 1 to 4. 

att1_hsv = attention(gating(d_conv_hsv5), d_conv_mp_hsv4)                       (1) 

dconv1_hsv = d_conv(concatenate(up(d_conv_hsv5), att1_hsv))                  (2) 

 att2_hsv = attention(gating(dconv1_hsv), d_conv_mp_hsv3)           (3) 

dconv2_hsv = d_conv(concatenate(up(dconv1_hsv), att2_hsv))        (4) 

In the Hybrid Colour Residual Double Attention UNet model the feature maps from HSV and LUV areintegrated  as 

input for the final attention block. Here both the outputs from the encoder section are concatenated and given as 

input feature map for the Double attention block, whereas  both the output from the decoder block after the second 

level of attention mechanism are given as input for the gating of the third level double attention. It is clearly shown 

in the Figure 1 and represented by the following equation 5 to 8. 

concat_hsv1 = concatenate (dconv2_hsv, dconv2_luv)                                     (5) 

concat_hsv2 = concatenate (d_conv_mp_hsv2, d_conv_mp_luv2)                  (6) 

att3_hsv = attention(gating(concat_hsv1), concat_hsv2)                                  (7) 

dconv3_hsv = d_conv(concatenate(up(concat_hsv1), att3_hsv))                     (8) 

Now the HSV and LUV linked features with effective attention co-efficient are further merged with the RGB level of 

feature map with the help of final attention module which is separatelyshown below the full block diagramofthe 
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Figure 4. Here, the three red dots represent the first level of the doubleconvolution with max pooling for the three 

colour spaces which are concatenated to represent input feature map for the  double attention block. Similarly, the 

two yellow dots represent the LUV and HSV linked third level of attention with double convolution outcome and 

the same level of outcome from the individual RGB mode. Finally, the linked tri colour mode of the attention block 

is further applied by double convolution followed by the probability prediction of Tympanic Membrane using 

convolution layer of the filter size as one (Binary Loss) with corresponding batch normalization and Relu activation 

This is described by the following equations from 9 to 13. 

concat_1 = concatenate (dconv3_rgb, dconv3_hsv)                                                       (9) 

concat_2 = concatenate (d_conv_mp_hsv1, d_conv_mp_luv1, d_conv_mp_rgb1)      (10) 

att_fin = attention(gating(concat_1), concat_2)                                                             (11) 

dconv_fin = d_conv(concatenate(up(concat_1), att_fin))                                              (12) 

conv_fin = relu(BN(conv(dconv_fin)))                                                                          (13) 

 

3.3.1 Proposed Double Attention Gate 

`  

 

Figure 5. Structural Overview of the Double Attention Gate  

The architecture of Double Attention Gate is illustrated in Figure 5.  In order to improve the localization 

performance compared to the Attention Gate in UNet, an attention mechanism is carried out by double times. The 

single gating is coupled with two mode of convolution with different size as 3 x 3 and 2 x 2.  The process of 

extracting the attention co-efficient from the two end of process is further added together to get final attention co-

efficient.  

The process is illustrated as follows, the first concatenation  is carried out from the outcome of a convolution layer 

with a 3×3 filter size applied to the feature map (x), and  the result of a transpose layer with a 3×3 filter size that 

occurs after gating and convolution of filter size 1×1, let's say TransOp1. Contrarily, the TransOp1 combined 

simultaneously with a 2×2 convolution that is applied on the feature map (x). Both the concatenated layers are 

supplied separately to Relu, Convolution layer with a filter size of 1×1, Sigmoid, and Upsampling layers, let’s say 

ConcOp1 and ConcOp2. The results of both are then combined once more, multiplied by the feature map (x), placed 
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into a convolution layer with a filter size 1×1, and then subjected to batch normalization. The process of Double 

Attention Gate is presented in the following equations. 

concat1 =concatenate(TransOp1,Conv3×3)                           (14) 

concat2 = concatenate(TransOp1, Conv2×2)                                      (15) 

 alpha1 = relu(conv(sigmoid(upsample(concat1))))               (16) 

alpha2 = relu(conv(sigmoid(upsample(concat2))))               (17) 

alpha= alpha1+alpha2                                                       (18) 

multiply = featureMap(x) * alpha=                    (19) 

result = BathNorm(Conv1×1(multiply))                   (20) 

4. RESULTS AND DISCUSSION 

4.1 Dataset Description 

A database of 1012 OM otoscopic images from children aged 6 months to 12 years old, taken by otologists using a 

digital otoscope (Karl Storz, Tullingen, Germany), was retrospectively examined using the Institutional Review 

Board clearance from Cathay General Hospital (No. CGH-P103040). 505 of them have been deemed normal, while 

507 have been deemed to have paediatric OM, comprising AOM (100), OME (111), and COM (296). The existence of 

purulence or effusion in the tympanic cavity, which indicates the suppurative stage or sub-acute stage of AOM or 

OME, and hyperemic change, bulging, or perforation of the tympanic membrane (TM)[45], that indicate early 

stage, suppurative stage, and spontaneous performance of AOM, respectively, are additional characteristics of 

paediatric OM(s).The images were entirely clear and unobstructed by cerumen, allowing for the visualisation of 

TM. 

4.2 Evaluation Metrices 

We contrast the findings of the proposed approach with the ground facts (professional manual annotations) in 

order to evaluate its performance. We employed the Dice similarity coefficient (DC) and Jaccard coefficient (Jac) to 

assess the quantitative accuracy of segmentation results, as is typical of FCN methods. The following formula is 

used to determine the Dice coefficient, which assesses how comparable automatic and manual segmentations are: 

𝐷𝐶 =
2𝑆𝑎𝑚

𝑆𝑎 + 𝑆𝑚
 

The resemblance among two sets is also determined using the Jaccard coefficient, which is defined as: 

𝐽𝑎𝑐 =
𝑆𝑎𝑚

𝑆𝑎 + 𝑆𝑚 − 𝑆𝑎𝑚
 

Where, the regions that are dynamically delimited, manually segmented, and their intersection are designated as 

Sa, Sm, and Sam, correspondingly. 

Furthermore, we assessed the efficacy of tympanic membrane segmentation algorithms using additional metrics 

like accuracy, sensitivity, and specificity. The accuracy (Acc) is the percentage of accurate results used to gauge how 

reliable a diagnostic test is, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Where, the initials TP, TN, FP, FN stand for the corresponding totals of true positives, true negatives, false 

positives, and false negatives. 

The algorithm's ability to accurately forecast the eardrum regions is indicated by the sensitivity (Sen). The genuine 

positive rate is specifically indicated by it, and it appears in the following manner: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The algorithm's ability to accurately anticipate non-eardrum regions is demonstrated by the specificity (Spe), which 

is written as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

We employ the Hausdorff distance (HD) and Mean Absolute Distance (MAD) to quantify the inaccuracy among the 

outlines produced by artificial segmentation and the actual data. The errors associated with the generated 

boundary, A, and the manually segmented boundary, B, are calculated using the Hausdorff distance, specified [34] 

as; 

𝐻𝐷(𝐴, 𝐵) = max⁡{ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)} 

Where ℎ(𝐴, 𝐵) = maxmin
𝑎𝜖𝐴𝑏𝜖𝐵

{𝑑𝑖𝑠𝑡(𝑎, 𝑏)}, and dist(a,b) is the Euclidean distance among points a and b. 

Table 1.Tympanic membrane segmentation analysis of using single colour model. 
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AttentionUnet [50] 0.9010 0.942 - 0.892 0.964 13.293 - - 

AttentionUnet_HSV 0.8748 0.9047 0.8427 0.8624 0.9248 14.476 0.7775 0.8524 

AttentionUnet_LUV 0.8621 0.8935 0.8347 0.8561 0.9175 14.871 0.7577 0.8453 

ResidualUnet [49] 0.9020 0.932 - 0.896 0.967 13.172 - - 

ResidualUnet_HSV 0.8772 0.9094 0.8449 0.8661 0.9341 14.269 0.7813 0.8554 

ResidualUnet_LUV 0.8657 0.8972 0.8416 0.8607 0.9229 14.577 0.7632 0.8510 

Att_ResUNet_RGB 0.9137 0.9497 0.8897 0.9076 0.9788 12.454 0.8411 0.8986 

Att_ResUNet_HSV 0.8984 0.9293 0.8724 0.8935 0.9583 13.439 0.8155 0.8828 

Att_ResUNet_LUV 0.8919 0.9248 0.8643 0.8881 0.9529 13.843 0.8049 0.8760 

DAG_ResUNet_RGB 0.9342 0.9698 0.9183 0.9241 0.9871 9.562 0.8765 0.9212 

DAG_ResUNet_HSV 0.9182 0.9491 0.8942 0.9093 0.9669 11.886 0.8488 0.9017 

DAG_ResUNet_LUV 0.9051 0.9372 0.8917 0.9028 0.9563 11.512 0.8267 0.8972 

 

Table 1 contains the segmentation methods. It demonstrates that the DAG_ResUNet_RGB achieves 0.9342 Dice, 

0.9698 Accuracy, 0.9183 precision, 0.9241 Recall, 0.9871 specificity, 9.562 HD, 0.8765 IoU and 0.9212 F1-score 

which is higher than all the prior methods. 

The corresponding graph represented as Dice, HD and F1-score for single colour model 
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Figure 6. Dice comparison between single colour model 

From the Figure 6, it is found that better dice result for single colour model. The   

DAG_ResUNet_RGBmodelachieves improved result +0.205 thanAtt_ResUNet_RGB, +0.032 than 

ResidualUnet[49] and +0.033 than AttentionUnet[50]. 

 

Figure 7. HD comparison of single colour model 

From the Figure 7 HD value of the DAG_ResUNet_RGBlower than Att_ResUNet_RGB, ResidualUnet[49] and 

AttentionUnet[50] by 2.10, 3.61 and 3.73 respectively. 

 

Figure 8. F1-score comparison between single colour model 
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From the Figure 8 shows the DAG_ResUNet_RGBF1-score value for single colour model. The DAG_ResUNet_RGB 

better value than +0.022 than Att_ResUNet_RGB. 

Table 2. Comparison of Bi and Tri colour models  
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Att_ResUNet_RGB_HSV 0.9391 0.9731 0.9178 0.9276 0.9827 9.856 0.8852 0.9227 

Att_ResUNet_HSV_LUV 0.9274 0.9578 0.8987 0.9163 0.9618 11.283 0.8647 0.9074 

Att_ResUNet_LUV_RGB 0.9205 0.9522 0.8961 0.9132 0.9612 10.728 0.8527 0.9046 

Att_ResUNet_RGB_HSV_

LUV 0.9387 0.9654 0.9135 0.9224 0.9855 10.121 0.8845 0.9179 

DAG_ResUNet_RGB_HSV 0.9572 0.9783 0.9378 0.9483 0.9888 7.244 0.918 0.9430 

DAG_ResUNet_HSV_LUV 0.9427 0.9672 0.9278 0.9348 0.9784 8.371 0.8916 0.9313 

DAG_ResUNet_LUV_RGB 0.9411 0.9626 0.9241 0.9303 0.9776 8.795 0.8888 0.9272 

HCRDAUNet 0.9689 0.9845 0.9475 0.9592 0.9897 6.872 0.9397 0.9533 

 

Table2 contains the segmentation methods. It demonstrates that the DAG_ResUNet_RGB_HSVachieves0.9572 

Dice, 0.9783 Accuracy, 0.9378 precision, 0.9483 Recall, 0.9888 specificity, 7.244 HD, 0.918 IoU and 0.9430 F1-

score which are higher than all the prior methods. 

The corresponding graphs represented as Dice, HD and F1-score comparison of Bi and Tri colour models. 

 

Figure 9. Dice comparison between Bi and Tri colour model 

As shown in Figure 9, the HCRDAUNet has a higher dice value for Bi and Ti colour model. The HCRDAUNet better 

than 0.0298 for Att_ResUNet_RGB_HSV, +0.0415 for Att_ResUNet_HSV_LUV, +0.048 for 

Att_ResUNet_LUV_RGB, +0.0302 for Att_ResUNet_RGB_HSV_LUV, +0.012 for DAG_ResUNet_RGB_HSV, 

+0.026 for DAG_ResUNet_HSV_LUV and +0.028 for DAG_ResUNet_LUV_RGB.   
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Figure 10. HD comparison between Bi and Tri colour model 

From the Figure 10 HD value of the HCRDAUNet lower than comparison model of Bi and Tri colour. The 

HCRDAUNet lower value than 2.98 for Att_ResUNet_RGB_HSV, 4.411 for Att_ResUNet_HSV_LUV, 3.856 for 

Att_ResUNet_LUV_RGB, 3.249 for Att_ResUNet_RGB_HSV_LUV, 0.372 for DAG_ResUNet_RGB_HSV, 1.50 for 

DAG_ResUNet_HSV_LUV and 1.923 for DAG_ResUNet_LUV_RGB. 

 

 

Figure 11. F1-score comparison between Bi and Tri colour model 

From the Figure 11 shows the HCRDAUNet F1-score value for Bi and Tri colour model. The HCRDAUNet better 

value than +0.0306 for Att_ResUNet_RGB_HSV, +0.046 for Att_ResUNet_HSV_LUV, +0.049 for 

Att_ResUNet_LUV_RGB, +0.0354 for Att_ResUNet_RGB_HSV_LUV, +0.0103 for DAG_ResUNet_RGB_HSV, 

0.022 for DAG_ResUNet_HSV_LUV and 0.026 for DAG_ResUNet_LUV_RGB.    
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Table 3. Comparison of Proposed model with baseline models 
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FCN [52] 0.8910 0.939 - 0.89 0.961 14.445 - - 

SegNet [51] 0.8920 0.936 - 0.879 0.879 14.304 - - 

Unet [25] 0.89 0.94 - 0.888 0.96 12.789 - - 

Van-Truong Pham[45]  -  0.958 -  0.92 0.976 9.29  -   -  

DRLSE [46] 0.8680 - - - - 23.223 0.773 - 

CV-vector valued [47] 0.8700 - - - - 22.978 0.776 - 

Deep nested LS [48] 0.8944 - - - - 19.192 0.809 - 

AttentionUNet [50] 0.9010 0.942 - 0.892 0.964 13.293 - - 

ResidualUNet [49] 0.9020 0.932 - 0.896 0.967 13.172 - - 

HCRDAUNet 0.9689 0.9845 0.9475 0.9592 0.9897 6.872 0.9397 0.9533 

 

Table 3 contains the segmentation methods. It demonstrates that the proposed work achieves 0.9689 Dice, 0.9845 

Accuracy, 0.9475 precision, 0.9592 Recall, 0.9897 specificity, 6.872 HD, 0.9397 IoU and 0.9533 F1-score which is 

higher than all the prior methods 

CONCLUSION 

Recent success in computer vision and deep learning attains very good success in medical imaging field. The 

abnormalities in the tympanic membrane (TM) are mainly connected with Otitis Media (OM) disorder. The early 

diagnosis of OM is very important to avoid hearing loss in all ages. The proposed deep semantic segmentation 

model helps to segment the mid ear membrane to make further study on it to find the occurrence of inflammation. 

This method enhances the performance of segmentation  with the help of three different colour spaces using a 

unique linked form with the double end attention block. Initially, the Hybrid Colour Linked model combines the 

deep features of HSV and LUV model in the decoder or up sampling part and then those information are further 

joined with the standard RGB mode decoder features with the help of Double Attention Gate to provide the final 

representation of  Tympanic membrane.  The proposed HCRDAUNet method achieves96.89% Dice, 98.45% 

Accuracy, 93.97% IoU and 95.33% F1score for the tympanic membrane dataset. The proposed Hybrid Colour 

Double Attention Linked form of UNet model significantly rises the performance of membrane segmentation than 

the state-of-the-art works.   
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