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Much like day-to-day life, scheduling methods have roles in managing what to do and how much 

time or resources to invest. Multilevel Feedback Queues (MLFQ) are a widely used algorithm due 

to its capacity to handle a wide range of task types and execution times. There is increasing 

interest in exploring dynamic scheduling models that can adapt to live variables solved by 

machine learning. This study explores an approach to process scheduling by integrating linear 

regression into the dynamic adjustment of round robin time quanta within MLFQ systems. This 

paper identifies system resources that can be modelled using linear regression into dynamic 

round robin, introduces an algorithm using linear regression to optimize system performance in 

an MLFQ implementation, and explains how dynamic time quanta affect the performance of 

MLFQ scheduling algorithms. SJF and Round Robin are the most effective combination within 

the MLFQ system, while FCFS would be the last layer to ensure task completion. Average Waiting 

Time and Average Turnaround Time are the most appropriate metrics for evaluating MLFQ 

systems. The integration of linear regression into dynamic time quantum adjustments improves 

performance by reducing AWT, ATAT, and context switching. 

Keywords: MLFQ, linear regression, scheduling algorithm, dynamic round robin 
 

1) INTRODUCTION: 

Data centers, critical to the operations of modern technology infrastructures, face mounting challenges as global data 

generation increases exponentially. These challenges include resource optimization, energy efficiency, and 

sustainability. Despite advancements in hardware efficiency and cooling systems, data centers remain significant 

energy consumers, driving the need for smarter task scheduling and resource allocation techniques [1][2]. The 

inefficiencies in traditional scheduling algorithms exacerbate computational delays and lead to increased energy 

consumption, underscoring the need for innovative, dynamic solutions. 

In the fields of operating systems and distributed computing, scheduling algorithms play an important role in 

managing processes and resource allocation that directly influence system performance. Among these, Multilevel 

Feedback Queues (MLFQ) have emerged as a widely utilized mechanism due to its adaptability and capacity to handle 

a wide range of tasks and execution times [3]. Traditionally, MLFQ employs static time quanta to regulate task 

execution within distinct levels, offering a balance between short-task responsiveness and long-task throughput. 

However, as demands on computational systems grow, there is increasing interest in exploring dynamic scheduling 

models that can adapt to real-time changes, making use of machine learning and statistical methods to optimize 

performance. 
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Recent developments have demonstrated the potential for dynamic approaches, such as those leveraging 

reinforcement learning, to enhance scheduling efficiency by adapting to workload characteristics in real-time [4][5]. 

However, these approaches often involve complex, resource-intensive solutions that are difficult to implement in 

environments where lightweight, low-latency scheduling is paramount, such as in data centers or IoT systems. 

Furthermore, while round robin scheduling remains a cornerstone of MLFQ configurations, the static nature of its 

time quanta presents a limitation, especially in highly variable environments [6]. 

Current research has extensively examined task scheduling across various computational environments, from cloud 

and fog computing to high-speed data centers. In fog and cloud systems, researchers have proposed novel 

architectures such as Deep Weighted-Fair Fog Servers (DeepWFFS) and deep reinforcement learning-based 

solutions that offer dynamic task scheduling [4][7]. These architectures demonstrate the importance of adaptable, 

granular task management, emphasizing the need for flexibility in handling diverse workloads. 

In more traditional settings like data centers, research has focused on optimizing flow completion times and reducing 

latency for short tasks through innovations in multilevel queue systems [5][6]. These studies highlight the need for 

scheduling algorithms that can adapt quickly to the network and workload conditions, which current static threshold 

systems often fail to address. Dynamic scheduling algorithms like D-MLFQ, which autonomously adjust thresholds 

based on environmental conditions, have shown promise in improving system performance, but gaps remain, 

particularly in balancing complexity with real-time execution demands. 

While the use of deep learning-based dynamic scheduling algorithms has made significant strides, these methods are 

often resource-intensive and may not be suitable for all environments. Research on lightweight dynamic scheduling 

algorithms, particularly those that can be easily integrated into existing MLFQ systems, remains limited. 

Additionally, the role of statistical models like linear regression in dynamically adjusting scheduling parameters, such 

as time quanta in round robin algorithms, has yet to be explored comprehensively. 

Another notable gap is the application of multivariate factors, such as CPU and memory usage, in real-time 

adjustment of scheduling algorithms. Existing dynamic models, such as D-MLFQ, often focus on single-variable 

adjustments (e.g., task priority or flow completion time) [5]. However, incorporating multiple system factors could 

yield a more holistic and adaptive approach to scheduling, potentially reducing overhead while maintaining high 

efficiency. To better visualize, Figure 1 illustrates how using multiple variables are done from planes to multi-

dimensional visualizations. Here, linear models can be as close or as far from the individual axes based on the 

computed weights and biases.  

 

 
Figure 1 Increment of Axes in Relation to Amount of Variables 
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  Many literature supports the use of dynamic time quanta in round robin algorithms. [8] highlighted that dynamic 

adjustments in Round Robin scheduling reduce waiting times and improve system responsiveness. They 

demonstrated how adaptive approaches can outperform static configurations, especially in environments with highly 

variable workloads where dynamic time quanta can optimize CPU utilization by matching task characteristics to 

processing resources.[9], for their part, emphasized that resource allocation schemes leveraging dynamic scheduling 

improve overall system throughput and fairness. Their findings underline the advantages of tailoring scheduling 

parameters, like time quantum, to workload requirements. [10] stated inefficiencies of static time quantum in Round 

Robin and proposed improvements using adaptive mechanisms. They noted that dynamic adjustments result in lower 

metrics.  

This research builds on established scheduling theories such as round robin in multilevel feedback queue systems 

[3], extending them by incorporating regression-based time quantum adjustment. Linear regression models are a 

natural fit for predicting time quanta based on system metrics, offering a mathematically sound method for dynamic 

adjustments. Simple linear regression, which predicts based on a single factor, and multivariate linear regression, 

which uses multiple factors, is employed to explore how different variables influence scheduling efficiency. These 

concepts support the development of a new scheduling mechanism that adapts to both task and system conditions in 

real-time. 

Linear regression is well-suited for predicting dynamic time quanta due to its simplicity, interpretability, and ability 

to model relationships between features. [11] demonstrated how regression models can dynamically predict 

parameters (e.g., CPU burst time) in scheduling algorithms. Their study showed significant improvements in 

scheduling efficiency when regression models were integrated into scheduling decisions. In the case of [12], the 

exploration of regression-based models in resource allocation demonstrated their capability to predict dynamic 

thresholds for scheduling. Their findings show how linear regression models can balance computational efficiency 

with predictive accuracy. [13]  discussed the effectiveness of regression models in optimizing resource allocation 

systems by predicting parameters based on multivariate inputs. This supports the integration of multivariate 

regression in adjusting time quantum dynamically. Linear regression is the better fit as the predictions and inputs 

are mostly numeric data, not categorical. 

This study explores an innovative approach to process scheduling by integrating linear regression into the dynamic 

adjustment of round robin time quanta within MLFQ systems. By utilizing linear regression, the study aims to 

dynamically calculate time quanta based on real-time factors such as CPU usage, memory usage, network traffic, and 

task priority, thereby creating a more efficient scheduling mechanism. This study proposes that integrating linear 

regression could lead to a more efficient scheduling algorithm that dynamically responds to varying task workloads 

and system conditions, potentially outperforming traditional static approaches. 

With the completion of the undertaking, the following are achieved: The identification of system resources that can 

be modeled using linear regression to predict the dynamic time quantum for round-robin scheduling in a multilevel 

feedback queue implementation; creation an algorithm using linear regression to optimize system performance in a 

multilevel feedback queue implementation; and explanation of how the integration of linear regression into round 

robin dynamic time quanta affect the overall performance of the MLFQ scheduling algorithm. 

 

2) METHODS AND METHODOLOGY: 

Following the study framework as illustrated in Figure 2, the study substantiates the application of input (like system 

resources), processes (MLFQ algorithms with regression models), and output (such as scheduling performance 

metrics) in the experimental setup. Their structured approaches and emphasis on data-driven processes validate the 

study's methodology and justifies the relevance of adopting such frameworks for complex systems. [1] highlights how 

clearly defined inputs, like resource allocation (analogous to system metrics like CPU usage and memory usage), can 

drive specific outputs such as improved scheduling outcomes (lower ATAT, AWT, and CS). [14] applies IPO logic to 

model big data integration within the food supply chain. The input is big data from diverse sources, the process 

involves applying analytics, and the output includes performance improvements in traceability, efficiency, and 

quality. Meanwhile, [15] proposes a data-driven IPO framework focusing on community collaboration in disaster 

relief. Inputs include localized data (similar to task-specific system metrics in this study), processes involve data 

analysis and collaboration, and outputs measure response effectiveness. 
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Figure 2 IPO Research Framework 

  

For the first research question, the goal is to identify system resources that can be effectively modeled using linear 

regression to predict burst times dynamically. The review will focus on metrics such as CPU usage, memory usage, 

network traffic, power consumption, task type, and task priority. These resources will be evaluated based on their 

relevance, predictive reliability, and computational efficiency in prior studies related to scheduling optimization. By 

synthesizing findings from existing literature, the study will provide a comprehensive list of inputs that are well-

suited for regression modeling. This approach ensures that the most impactful metrics are selected for inclusion in 

the experimental design, laying the foundation for the regression-based dynamic scheduling algorithm. 

 

The review of related literature to answer the second research question will examine the methodologies of state-of-

the-art studies that employ linear regression or similar predictive models in dynamic scheduling. Special attention 

will be given to the integration of regression-based dynamic time quantum adjustments in scheduling algorithms like 

Round Robin in MLFQs. Insights from the literature will guide the conceptualization of a novel algorithmic 

framework. This algorithm will use linear regression models to dynamically adjust the time quantum for Round 

Robin layers within MLFQ setups. By leveraging findings from past research, the study will propose a robust 

algorithm designed to enhance task scheduling efficiency, ensuring its relevance and feasibility before proceeding to 

experimental validation. 

 

As for the third, the study will employ an experimental setup. The process begins with preparing a dataset that 

includes system metrics stated in literatures tackled in research question one. This dataset will undergo preprocessing 

to normalize inputs and will be split into training (70%) and testing (30%) subsets. Regression models will then be 

trained, including Simple Linear Regression (SLR) models for individual features and a Multivariate Linear 

Regression (MLR) model for combined metrics. As seen in Figure 3, the experimental phase will involve 

implementing various MLFQ configurations, with different levels composed of simple algorithms like shortest job 

first and round robin; and the proposed in research question two. Performance metrics such as Average Waiting Time 

(AWT), Average Turnaround Time (ATAT), context switches, and Mean Squared Error (MSE) will be collected and 

analyzed. Statistical tests will be used to compare the static and dynamic setups, identifying the impact of linear 

regression-based time quantum adjustments on scheduling performance. This experimental validation will provide 

empirical evidence of the proposed algorithm's effectiveness, linking back to the theoretical foundation established 

in the previous research questions.  
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Figure 3 Flowchart of Experimental Setup 

 

The dataset used for this study was retrieved from [19], containing task processes that simulate a high-demand 

computing environment. The dataset consists of tasks with various burst times, arrival times, and priorities, which 

were processed by a custom-built simulator created using Google Colab and associated libraries such as pandas, 

NumPy, and scikit-learn. The simulator applied multiple Multilevel Feedback Queue (MLFQ) configurations, as well 

as simple and multivariate linear regression (SLR and MLR) models to dynamically adjust the time quantum in 

specific configurations. The main performance metrics assessed were Average Waiting Time, Average Turnaround 

Time, and context switching among the MLFQs while MSE was used among the regression models. 

 

3) RESULTS AND DISCUSSIONS: 

System Resources that can be Modeled Using Linear Regression to Predict the Time Quantum 

CPU usage. This is a critical factor in task scheduling, as it directly reflects the computational demands of tasks within 

a system. [11] emphasize the role of CPU usage in dynamic scheduling algorithms, demonstrating that predictive 

models like linear regression can optimize time quanta by accurately modeling workload intensity. Similarly, [12] 

highlight the significance of CPU utilization in resource allocation, showcasing how CPU usage predictions lead to 

more efficient scheduling by matching task requirements with available resources. These findings validate the 

inclusion of CPU usage as a core feature for predicting dynamic time quanta in a multilevel feedback queue system. 

 

Memory usage. This is another essential metric for scheduling algorithms, as it impacts task execution and system 

responsiveness. [13] identify memory utilization as a key predictor for task performance, noting that linear regression 

models can effectively capture memory-intensive workload patterns to optimize scheduling decisions. Additionally, 

[8] discuss the importance of memory availability in adaptive scheduling systems, where dynamic adjustments to 

time quanta improve overall efficiency. These studies establish memory usage as a valuable input for regression-

based time quantum prediction in dynamic scheduling systems. 

 

Network traffic. This plays a pivotal role in task scheduling, particularly for latency-sensitive applications. [10] 

explore the inclusion of network traffic metrics in scheduling decisions, highlighting how predictive models can 

address variations in network conditions to ensure fairness and efficiency. Furthermore, [5] underscore the impact 
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of network traffic on scheduling performance in data clusters, advocating for dynamic approaches that leverage real-

time traffic predictions. These findings confirm that network traffic is a significant factor for modeling dynamic time 

quanta in multilevel feedback queue implementations. 

 

Power consumption. This is an increasingly important metric in task scheduling, especially in energy-aware systems. 

[6] investigate the relationship between power consumption and scheduling performance, showing that predictive 

modeling can balance energy efficiency and task throughput by adjusting time quanta dynamically. [16] also highlight 

the role of power metrics in scheduling algorithms, demonstrating how linear regression can optimize resource usage 

while maintaining system performance. These studies establish power consumption as a vital resource for regression-

based dynamic scheduling, enabling systems to achieve both efficiency and sustainability. 

 

Task type. This provides valuable information about workload characteristics, enabling more tailored scheduling 

decisions. [12] demonstrate the integration of categorical variables like task type into predictive models, showing how 

these variables can improve scheduling optimization by accounting for workload diversity. [8] further support this 

by emphasizing the importance of task-specific characteristics in dynamic scheduling systems, where task type helps 

refine time quantum adjustments to match specific needs. These findings validate the inclusion of task type as a key 

predictor for regression-based scheduling. 

 

Task priority. This ensures that scheduling algorithms address fairness and responsiveness in multi-task 

environments. [8] highlight task priority as an essential feature for dynamic scheduling, demonstrating that 

predictive models can adjust time quanta to meet the urgency of high-priority tasks. Similarly, [12] argue that 

incorporating priority levels into regression models enhances system adaptability by ensuring that critical tasks 

receive adequate resources. These studies establish task priority as a crucial factor for modeling dynamic time 

quantum adjustments in multilevel feedback queue scheduling. 

 

System Resources that can be Modeled Using Linear Regression to Predict the Time Quantum 

 

The proposed algorithm leverages linear regression models to dynamically adjust the time quantum in a Multilevel 

Feedback Queue (MLFQ) scheduling system, aiming to optimize Average Turnaround Time (ATAT), Average Waiting 

Time (AWT), context switching, and overall system efficiency. 

Based on the literature reviewed, the study will focus on a set of Multilevel Feedback Queue (MLFQ) configurations 

that are well-supported and relevant to dynamic time quantum adjustments. The most innovative configuration in 

this study will involve Round Robin with Dynamic Time Quanta, where linear regression models are used to 

dynamically adjust the time quantum based on real-time system data such as CPU usage, memory load, and task 

characteristics. Based on insights from [11] and [12], this approach leverages the predictive power of linear regression 

to adapt the time quantum to the current system state, ensuring that each task receives appropriate CPU time without 

excessive waiting. This configuration will be tested in the higher-level queues, allowing for dynamic optimization in 

handling workloads that require efficient processing. 

 

Round Robin is a widely used algorithm where each task is assigned a fixed time quantum. Tasks are processed in 

circular order until they completed or are requeued if they have not finished within their time slice. Round Robin is 

known for its fairness, as each task receives equal CPU time. The use of fixed time quanta simplifies the scheduling 

process, making it ideal for static workloads. It is typically combined with Shortest Job First (SJF) or First-Come-

First-Served (FCFS) in MLFQ configurations. 

 

For other queue setups for comparison, the study will implement Round Robin (RR) with fixed or dynamic Time 

Quanta. To support [17] and [6], traditional Round Robin is widely used due to its fairness in distributing CPU time 

equally across tasks. However, the fixed nature of the time quantum can lead to inefficiencies, particularly when tasks 

have widely varying burst times. Round Robin will be tested in combination with higher-level algorithms like 

Preemptive SJF, creating a balanced system where time-sensitive tasks are handled at the top levels, and general 

tasks receive fair time distribution in lower-priority queues. 
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The levels might employ Preemptive Shortest Job First (SJF). This approach, as highlighted by [10] and [9], is 

effective in reducing response times by allowing shorter tasks to preempt longer ones, thus improving overall system 

throughput and responsiveness. Preemptive SJF is essential for tasks that require quick turnaround times and is 

typically used in the upper levels of the MLFQ system to handle high-priority processes. 

 

First-Come-First-Served is a simple, non-preemptive algorithm where tasks are processed in the order of arrival, 

without consideration of their priority or burst time. FCFS is straightforward and easy to implement, making it 

suitable for lower-level queues where tasks are not time-sensitive. However, it suffers from the "convoy effect," where 

longer tasks delay shorter ones. This is typically combined with Round Robin or SJF at higher levels. FCFS is used 

for the lowest-priority tasks that can tolerate longer waiting times. [10] and Chandiramani et al.’s (2019) analysis of 

MLFQ systems highlights FCFS as the default choice for the lowest priority queue. This is because FCFS ensures that 

tasks at the lowest level, which often have the least urgency, are processed without interruptions, reducing the 

complexity of scheduling at that layer. 

 

In summary, the MLFQ configurations exhibited in this study will include Preemptive SJF, Non-preemptive SJF, 

Round Robin with Fixed Time Quanta, and the novel Round Robin with Dynamic Time Quanta powered by linear 

regression models. These configurations cover a range of scheduling strategies that will allow the study to thoroughly 

evaluate the effectiveness of dynamic time quantum adjustments in improving scheduling performance.  

 

In the first setup (MLFQ1), the system employed two rounds of Round Robin with fixed time quanta, followed by 

First-Come-First-Served (FCFS). The time quanta of the round robin levels are 25 and 50 respectively. This setup is 

most common in examples and literature of a depiction on MLFQs [10][18]. In the second setup the system applied 

one Round Robin cycle with a time quantum of 50, followed by Preemptive Shortest Job First (SJF), and finally FCFS. 

This is synthesized from the readings stated above. In the third setup, Non-Preemptive SJF replaced the preemptive 

version, alongside one Round Robin cycle prior while the round robin time quanta is 25. The fourth is a static version 

of the proposed fifth setup where it would be one (1) level of round robin with a time quantum of 50 and the last level 

being FCFS. The fifth setup (and those proceeding) introduced dynamic time quantum adjustments powered by a 

linear regression model. This configuration applied one Round Robin cycle with time quantum dynamically adjusted 

based on the system's state and task characteristics, followed by FCFS for longer tasks. Figure 3 is a visualization of 

these. 

 

Performance of the MLFQ Setups 

The findings indicate that integrating regression-based dynamic time quantum adjustments into MLFQ scheduling 

can significantly enhance performance. Among the traditional methods, MLFQ Block 2 (Round Robin, Preemptive 

SJF, and FCFS) was the most effective, but it was still outperformed by all configurations of MLFQ Block 5. This 

suggests that regression models, particularly when based on CPU usage, offer substantial improvements in 

scheduling efficiency over static configurations. To further cement the implications that dynamic round robin 

through linear regression in MLFQs deliver better results, nine more test cases were created. Through incrementing 

the random_state variable in the split function of the simulator by ten (10) in the splitting of the training and test 

datasets, multiple cases are created and their metrics collected after running through the simulator. As seen in Figure 

4 and Figure 5, the ATAT and AWT are visualized per setup per test case.  
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Figure 4 ATAT Among the Ten (10) Test Cases 

 

 
Figure 5 AWT Among the Ten (10) Test Cases 

 

The means for MLFQ1, MLFQ2, MLFQ3, and MLFQ4 are very close, all approximately 8.68 × 10⁹ ms, showing 

minimal variation between static configurations. The mean ATAT for the regression-based models ranges from 8.638 

× 10⁹ ms to 8.640 × 10⁹ ms, slightly lower than the traditional MLFQ configurations, indicating better turnaround 

time due to dynamic time quantum adjustments. Overall, the Shapiro-Wilk Test proves that the data are normal. 

 

These reveal that the regression-based dynamic configurations consistently achieve lower mean values compared to 

static MLFQ configurations, indicating improved scheduling efficiency. Regression models leveraging features like 

cpu_usage and memory_usage demonstrate the lowest variability (standard deviations around 4.56 × 10⁷ ms) and 

thus exhibit more consistent performance. The Shapiro-Wilk test confirms normality for all configurations, with p-

values exceeding 0.05, making the data suitable for parametric comparisons.  
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The Greenhouse-Geisser Correction is applied because the assumption of sphericity (equal variances of differences) 

is violated. For both AWT and ATAT, the p-value is less than .001, which is highly significant. This result indicates 

that there are statistically significant differences in AWT and ATAT across the MLFQ configurations. 

 

Performing repeated measures ANOVA on separate AWT and ATAT datasets, the results in Table 1 are created. Since 

the p-values for both AWT and ATAT are < .001, it can be concluded that the different MLFQ configurations have a 

significant impact on both Average Waiting Time and Average Turnaround Time. In practical terms, this means that 

the choice of MLFQ configuration leads to meaningful differences in scheduling performance. To have a closer look 

at the differences, post hoc tests were done to the ATAT and AWT results. The post hoc test results for ATAT and 

AWT indicate significant differences between the traditional MLFQ configurations (MLFQ1, MLFQ2, MLFQ3, and 

MLFQ4) and all regression-based MLFQ5 models, with p-values less than 0.001. The differences are consistently 

large showing that the regression-based dynamic time quantum adjustments significantly reduce turnaround times 

compared to static configurations. However, among the MLFQ5 configurations, no significant differences are 

observed, as all pairwise comparisons yield non-significant p-values (p > 0.05). This suggests that while the dynamic 

models outperform static ones, the specific feature or regression model used does not drastically affect performance. 

This reinforces the effectiveness of dynamic adjustments as a group while indicating a relative equivalence between 

different regression-based approaches. For details, see appendices C and D for the results of post hoc tests. 

 

Table 1. ANOVA Results 

Cases Sphericity Correction Sum of Squares df Mean Square F p 

ATAT Greenhouse-Geisser 4.456×10+16 1.011 4.408×10+16 29.745 < .001 

Residuals (ATAT) Greenhouse-Geisser 1.348×10+16 9.099 1.482×10+15   

AWT Greenhouse-Geisser 4.456×10+16 1.011 4.408×10+16 29.745 < .001 

Residuals (AWT) Greenhouse-Geisser 1.348×10+16 9.099 1.482×10+15   

 

Among the static configurations, MLFQ1 demonstrates the highest average number of context switches at 74,394, 

with a standard deviation of 168.18. This reflects the inefficiency of using two static Round Robin layers, which cause 

frequent task preemptions and significant scheduling overhead. MLFQ2, on the other hand, performs better with an 

average of 58,055 context switches and a lower standard deviation of 133.29. The inclusion of Preemptive Shortest 

Job First (SJF) in MLFQ2 reduces unnecessary switches by prioritizing shorter tasks, resulting in more efficient 

scheduling compared to MLFQ1. 

 

MLFQ3 and MLFQ4 exhibit the lowest average context switches among the static configurations, both at 44,642. 

Their improved performance stems from the use of only one Round Robin layer in combination with Non-preemptive 

SJF (MLFQ3) and a static Round Robin layer (MLFQ4). This minimizes the overhead associated with frequent 

preemptions and ensures a balance between task prioritization and system fairness. Furthermore, their lower 

standard deviations (~75.95) indicate greater consistency in reducing context switches compared to MLFQ1 and 

MLFQ2. 

 

As shown in Table 2, the regression-based MLFQ5 configurations show comparable performance to MLFQ3 and 

MLFQ4, with averages ranging between 44,641 and 44,646 context switches. These setups utilize dynamic time 

quantum adjustments based on real-time feature predictions, which effectively maintain efficiency while introducing 

adaptability. However, slightly higher variability (standard deviations between 95.88 and 97.97) reflects the dynamic 

nature of these adjustments. 
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Table 2. Amount of Context Switches 

Setup MLFQ

1 

MLFQ

2 

MLFQ

3 

MLFQ

4 

cpu_u

sage 

memo

ry_usa

ge 

networ

k_traff

ic 

power

_cons

umpti

on 

task_t

ype 

task_p

riority 

Multiv

ariate  

Case 1  74167 57915 44572 44572 44545 44546 44548 44551 44548 44545 44551 

Case 2  74420 57982 44634 44634 44644 44634 44634 44637 44632 44624 44625 

Case 3  74534 58172 44689 44689 44708 44709 44707 44707 44707 44709 44713 

Case 4  74416 58004 44644 44644 44654 44649 44659 44657 44651 44649 44646 

Case 5  74420 58021 44634 44634 44630 44629 44632 44626 44628 44625 44635 

Case 6  74341 58000 44690 44690 44686 44689 44685 44695 44689 44698 44700 

Case 7  74262 58061 44554 44554 44547 44542 44543 44555 44544 44549 44557 

Case 8  74203 57904 44529 44529 44493 44491 44489 44501 44494 44485 44493 

Case 9  74435 58142 44695 44695 44704 44700 44708 44708 44700 44703 44704 

Case 

10  

74745 58345 44780 44780 44820 44820 44821 44824 44820 44820 44826 

 

Averag

e  

     

74,394  

     

58,055  

     

44,642  

     

44,642  

     

44,643  

     

44,641  

     

44,643  

     

44,646  

     

44,641  

     

44,641  

     

44,645  

 SD  168.17

98 

133.29

35 

75.946

55 

75.946

55 

95.878

92 

96.628

1 

97.163

32 

94.623

76 

95.567

37 

97.969

44 

96.652

87 

 

In the case of MSEs between the linear regression models, little differences can be found. The uniform performance 

of the regression models underscores the versatility of the features in predicting burst times for dynamic scheduling. 

While individual features like cpu_usage and task_priority perform slightly better in terms of consistency, the 

multivariate model offers a comprehensive perspective by incorporating multiple system metrics. These findings 

support the feasibility and reliability of regression-based dynamic time quantum adjustments in scheduling systems. 

It does however mean that there is an unnecessary number of computations should multivariate be used in modeling 

such predictive functions. Thus, simple linear regression should be used in practical implementations. 

4) CONCLUSION: 

The variables that can be modelled in linear regression are CPU usage, memory usage, network traffic, power 

consumption, task type, and task priority. These are effective predictors for dynamic time quantum adjustments in 

round-robin scheduling. The proposed algorithm composes of Round Robin with dynamic time quanta using linear 

regression and First Come, First Served implemented in Multilevel Feedback Queue systems. The regression-

integrated MLFQ significantly outperforms traditional approaches in minimizing ATAT, AWT, and context switching, 

thereby improving overall system efficiency. 
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