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Accurate classification and detection of brain tumors on medical imaging is essential for 

diagnosis and treatment planning. As deep learning models can learn discriminatory properties 

from raw data, they have shown notable success in various medical imaging applications 

including brain tumor classification Furthermore, cloud computing resources enable scalability 

and accessibility, enabling sophisticated deep learning models to be used for performing medical 

image processing tasks. This paper presents an in-depth analysis of brain tumor classification 

and detection using deep learning models established in a cloud environment. We explore how 

deep learning algorithms such as convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and a combination thereof can be used to accurately distinguish specific types 

and grades. AI-driven techniques have the potential to greatly improve treatment planning since 

machine learning algorithms can evaluate massive datasets of patient outcomes and treatment 

protocols and suggest individualized treatment plans based on the distinct qualities and medical 

histories of each patient. This tailored strategy has the potential to maximize resource use, reduce 

side effects, and enhance therapeutic success. In the field of personalized medicine, artificial 

intelligence (AI) makes it easier to create prediction models that classify patients according to 

their genetic composition, lifestyle choices, and exposure to the environment. This allows 

medical professionals to provide more focused treatments and preventative measures. 

Healthcare professionals may proactively identify patients who are at a high risk of acquiring 

specific illnesses and take preventive measures to minimize these risks by utilizing AI-driven 

predictive analytics. By using AI-driven solutions, administrative tasks—which are frequently 

hampered by manual procedures and inefficiencies—can be simplified and streamlined. By 

automating coding, billing, and documentation processes, natural language processing 

algorithms lower administrative burdens and free up more time for medical staff to provide 

patient care.  

Keywords: Brain tumors, Deep learning, Convolutional neural networks (CNNs), Recurrent 

neural networks (RNNs), Cloud computing, medical imaging 

 

INTRODUCTION 

Epilepsy is a continual neurological disease characterized by recurrent seizures, affecting about 50 million humans 

worldwide. One of the considerable demanding situations in managing epilepsy is figuring out the simplest remedy 

strategy for character sufferers, especially the ones newly identified.[7]While various antiepileptic capsules (AEDs) 

are to be had, the top-of-the-line choice for each affected person remains unsure, regularly leading to an ordeal-and-

mistakes approach which can delay effective seizure control and exacerbate the affected person's soreness [10].  To 

deal with this challenge, predictive fashions were proposed to assume remedy reactions primarily based on patient 

characteristics and scientific data. However, traditional fashions cannot frequently seize complicated patterns and 
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interactions inherent in epilepsy's multifaceted nature. In current years, deep knowledge of techniques has emerged 

as effective gear for information analysis,[23] demonstrating superior overall performance in numerous clinical 

domains. 

In this observation, we present the improvement and validation of a deep learning version in particular tailored for 

predicting remedy reactions in patients newly recognized with epilepsy. [43] Leveraging a wealthy dataset comprising 

demographic statistics, scientific capabilities, electroencephalogram (EEG) findings, and treatment effects, our 

version ambitions to provide clinicians with well-timed and correct insights into a man or woman-affected person 

prognosis and reaction to AED therapy.  

One of the most prevalent neurological conditions affecting people, epilepsy is a non-communicable disease that is 

typically accompanied by abrupt episodes [1]. A quick and early irregularity in the brain's electrical activity that 

disturbs a part or the entire body is known as a sudden outbreak of seizures [2]. Approximately 60 million individuals 

globally are afflicted with various forms of epileptic seizures [3]. Occasionally, these episodes result in cognitive 

abnormalities that might seriously harm the patient's physical health. Moreover, mental discomfort brought on by 

social rejection and shame might occasionally affect persons who have epileptic seizures. Therefore, patients' quality 

of life can be enhanced, and assistance provided by early diagnosis of epileptic episodes. Functional and structural 

neuroimaging modalities are two major types of screening techniques used in the diagnosis of epileptic seizures 

[4,5,6,7,8,9]. For medical professionals and neurologists, the functional neuroimaging modality offers crucial 

information on brain function during epileptic seizures [4,5,6,7,8,9]. Doctors may learn a great deal about the brain 

anatomy of patients experiencing epileptic seizures thanks to structural neuroimaging methods [4,5,6,7,8,9]. EEG 

[5,], magnetoencephalography (MEG) [6, positron emission tomography (PET) [7], single-photon emission 

computed tomography (SPECT) [7,10], functional magnetic resonance imaging (fMRI) [4,11], electrocorticography 

(ECoG) [12], and functional near-infrared spectroscopy (fNIRS) [13] are the most significant functional 

neuroimaging techniques. Conversely, two of the most important structural neuroimaging methods are diffusion 

tensor imaging (DTI) and structural magnetic resonance imaging (MRI) [4,14]. Because they are affordable, portable, 

and exhibit distinct frequency domain patterns, EEG signals are commonly used [8, 9]. The voltage changes 

generated by the ionic current flowing through brain neurons are provided by the EEG and serve as an indicator of 

the bioelectric activity of the brain [15]. Long-term recordings are required to identify epileptic convulsions. 

Furthermore, the analysis is complicated since these signals are captured in numerous channels. Additionally, the 

main power source, electrode movement, and muscle tremor might produce abnormalities in the EEG signals [16]. 

The inability to detect epileptic seizures using noisy EEG readings will provide difficulties for medical professionals. 

To identify epileptic seizures, several machine learning methods have been created utilizing statistical, temporal, 

frequency, time-frequency domain, and nonlinear parameters [23, 24]. The traditional machine learning methods 

rely on a trial-and-error approach for selecting features and classifiers [25, 26]. To create an accurate model, one 

must possess a solid understanding of data mining and signal processing methods. These models work effectively 

with small amounts of data. These days, machine learning methods might not work as effectively due to the growth 

in data availability. As a result, the state-of-the-art DL approaches have been used [27, 28]. Unlike traditional 

machine learning methods, deep learning models need a large amount of data during the training phase [29]. This is 

a result of the many feature spaces in these models. 

While most simulations in traditional machine learning techniques were run in the Matlab software environment, 

deep learning models are often created utilizing the Python programming language and a variety of open-source 

toolboxes. The availability of additional open-source deep learning toolboxes in Python has aided academics in 

creating innovative automated systems, while cloud computing has made computational resources more accessible 

to everybody. Due to its adaptability and usefulness, TensorFlow and one of its high-level APIs, Keras, are often 

utilized for epileptic seizure detection employing deep learning in evaluated studies (Figure 1).  
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Figure 1: The number of times that different research automatically detected epileptic seizures using each DL 

technique. 

1.1. Background 

Epilepsy is a neurological sickness characterized by recurrent seizures, affecting tens of millions of human beings 

internationally.[53] Despite the provision of numerous antiepileptic capsules (AEDs), determining the only 

treatment for individual sufferers, in particular those newly identified, remains hard. [20] The lack of precise 

prognostic gear frequently results in a tribulation-and-errors technique to medicine selection, leading to delays in 

accomplishing seizure control and suboptimal affected person consequences.  

1.2. Objectives 

The number one objective of this take a look at is to expand and validate a deep knowledge of algorithms capable of 

accurately predicting treatment consequences in patients newly recognized with epilepsy. [12] By leveraging complete 

datasets containing demographic records, clinical capabilities, EEG findings, and remedy responses, we goal to create 

a predictive model that can assist clinicians in making informed selections [10] regarding medication choice and 

treatment techniques for newly identified epilepsy patients. 

LITERATURE SURVEY 

The literature overview phase of your paper offers a comprehensive assessment of existing studies and information 

related to epilepsy treatment effects and predictive modeling. Here's an established outline for this section: 

2.1. Epileptic Seizures Detection Based on DL Techniques 

Using DL structures, Figure 2 shows how a computer-aided diagnostic system (CADS) for epileptic episodes operates. 

The DL model accepts the following types of input: fNIRS, ECoG, MEG, PET, SPECT, and MRI. After that, 

preprocessing is applied to the signal to eliminate noise. [23] The DL models are developed using these removed 

signals. Three metrics are used to assess the model's performance: specificity, sensitivity, and accuracy. [35] 

Additionally, Appendix A of the study has a table that compiles all of the research done on the identification of 

epileptic seizures using deep learning. 

2.2. Dataset 

A crucial component of creating reliable and accurate CADS is datasets. To create automated epileptic seizure 

identification systems, several EEG datasets are available, including those from Freiburg [34], CHB-MIT [35], 

Kaggle [36], Bonn [37], Flint-Hills [26], Bern-Barcelona [38], Hauz Khas [26], and Zenodo [39]. These datasets 

record signals from the scalps of people and/or animals, either intracranially or from elsewhere. 
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Figure 2: Block schematic of a CAD system for epileptic seizures based on DL. 

2.2.1 Fribourg 

The EEG dataset includes invasive EEG recordings from 21 refractory focal epileptic patients that were captured at 

the University Hospital Fribourg's epilepsy center during pre-surgical epilepsy surveillance. In-tra-cortical grid, strip, 

and depth electrodes were employed to offer direct recording from the focus region, reduce artifacts, and achieve a 

greater Signal Noise Ratio (SNR). A 16-bit A/D with a 256 Hz sample rate was used to digitize the EEG data, which 

were captured using a 128-channel Neurofile NT system with six contact electrodes (three focal and three extra focal). 

Ictal and interictal data are available for every patient; the former includes seizures with at least 50 minutes in the 

pre-ictal area, while the latter consists of around 24 hours of EEG data free of seizures [34]. 

2.2.2 CHB-MIT 

The database includes 844 hours of nonstop scalp EEG signal recording with 163 seizures from 23 different children. 

The recordings were made with purposeful 10–20 standard electrode locations and were captured at 256 samples per 

second. The time interval between at least 4 hours before the start of the seizure and 4 hours following its conclusion 

is known as the inter-ictal area. This database contains information on mixed and primary seizures, two different 

categories of seizures. Whereas the latter are large seizures taken into account for prediction, the former are several 

seizures that occur near to one another. In general, people experiencing less than ten seizures daily might find 

significance in the forecast. There is enough information from 13 cases in this database, including at least three major 

seizures and a three-hour interictal recording.[35] 

2.2.3 Kaggle 

The database, known as the American Epilepsy Society's epileptic seizures prediction challenge, includes intracranial 

EEG readings from two humans and five canines, totaling 627 hours and 48 seizures. While the EEG signals from 

patients 1 and 2 were recorded using 15 deep and 24 subdural electrodes, respectively, with a sample rate of 5 KHz, 

the EEG signals from dogs were obtained using 16 implanted electrodes, which were sampled at 400 KHz. Ten-

minute segments of pre-ictal and inter-ictal data are available in this database, and six pre-ictal segments (with a gap 
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of 10 s) up to five minutes before the start of the seizure are available for each seizure. At least one week before each 

seizure, the interictal segments are chosen at random [36]. 

2.2.4 Bern Barcelona 

Intracranial EEG data from patients with focal epilepsy was gathered from the Barcelona database, which was kept 

up to date by the brain department of the Bern Hospital in Barcelona. No antiepileptic medications were 

administered, and the subjects were observed for a few days to assess seizures and potential surgical needs. AD-Tech 

intracortical electrodes were utilized to capture the signals, and an additional reference electrode based on a 10- to 

20-standard between PZ and FZ locations was also employed. There were two kinds of EEG signals in the database: 

extra-focal and focal. Each dataset included 3750 pairs of concurrently recorded signals, each lasting 20 seconds and 

sampling at 512 Hz. Five individuals of varying ages have 83 hours' worth of EEG data totaled in the database [38]. 

Dataset Number 

of 

Patients 

Number 

of 

Seizures 

Sampling 

Frequency 

Fribourg 21 87 256 

CHB-MIT 22 163 256 

Kaggle 5 dogs/2 

patients 
48 400/5KHZ 

Bern 

Barcelona 
5 3750 512 

Table 1: EEG datasets that are widely used and accessible are reviewed to identify epileptic episodes. 

2.3 Preprocessing 

Three pretreatment processes are involved in building CADS employing DL models with EEG signals: normalization, 

noise reduction, and signal preparation for DL network applications [29, 40]. Finite impulse response (FIR) or 

infinite impulse response (IIR) filters are typically employed to remove excess signal noise during the noise reduction 

process. The next step is normalization, which is done using a variety of techniques including the z-score method. 

Ultimately, several techniques about time domain, frequency, and time-frequency are utilized to read the signals for 

deep network deployment. 

 

2.4 Review of Deep Learning Techniques 

Deep neural networks are different from ordinary neural networks, sometimes referred to as shallow networks, in 

that they have more than two hidden layers. [65] The number of parameters in the network increases dramatically as 

a result of the networks' growing size, necessitating both proper learning strategies and precautions against the taught 

network being overfitted. Convolutional networks drastically reduce the number of trainable parameters by using 

filters convolved with input patterns rather than multiplying a weight vector (matrix). 

Moreover, other techniques are proposed to support the network's learning process [41]. The input pattern size for 

the subsequent convolutional layer is decreased by pooling layers. After being used for unsupervised learning, the AE 

and DBN are adjusted to prevent overfitting for a small amount of labeled data. RNNs that can show the long-term 

time dependencies of data samples include long short-term memory (LSTM) and gated recurrent units (GRU). 

 

2.4.1 Convolutional Neural Networks (CNNs) 

The majority of machine learning research has focused on CNNs, one of the most widely used classes of DL networks 

[30]. Originally introduced for use in image processing, they are now being used in one- and two-dimensional designs 

for biological signal-based illness detection and prediction [42]. The identification of epileptic convulsions using EEG 

data is a common application for this type of DL network. One-dimensional (1D) EEG signals are first converted into 

two-dimensional plots using visualization techniques like spectrogram [43], higher-order bispectrum [44,45], and 
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wavelet transforms, and these two-dimensional plots are then applied to the convolutional network's input in two-

dimensional convolutional neural networks (2D-CNN). The majority of machine learning research has focused on 

CNNs, one of the most widely used classes of DL networks [30]. Originally, they were introduced for image-p 

convolutional networks. In these networks, the 2D-CNN's basic architecture is modified to enable it to analyze 1D-

EEG data. Consequently, as the field of epileptic seizure detection uses both 2D and 1D convolutional neural networks 

(1D-CNNs), their respective research is conducted. 

 

Figure 3: Typical 2D-CNN for detecting epileptic seizures 

The visual geometry group (VGG) concept was suggested by an Oxford research team in 2014 [59]. They set up several 

models, including VGG-16, which was entered in the 2014 ILSVRC competition. With 16 layers, the VCG-16 

performed exceptionally well for image categorization tasks. VGG-16 architecture was used by Ahmedt-Aristizabal et 

al. [60] to diagnose epilepsy using face photos. Their suggested method made an automated effort to identify and 

categorize semiological patterns in face states. Following the picture recording, the suggested VGG architecture is 

trained using a variety of networks, including 1D-CNN and LSTM, in the final few layers. The training process is 

mostly driven by well-known datasets. The VGG network employed both one- and two-dimensional signals [58]. A 

cross-entropy error function and Adam's optimizer were used to train the models. 

 
Figure 4: Sketch of accuracy (%) obtained by various authors using 2D-CNN models for seizure detection. 

 

Network Classifier 
No. of 

Layers 

Accuracy 

(%) 

SeizNet NA 16 NA 

SeizureNet Softmax 16 NA 

2D-CNN Softmax 9 98.05 
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Combination 

1DCNNand 

2D-CNN 

Sigmoid 11 90.58 

2D-

CNN/MLP 

hybrid 

Sigmoid 11 NA 

Table 2: Summary of related works done using 2D-CNNs. 

2.4.2 Recurrent Neural Networks (RNNs) 

Sequential data, including text, signals, and videos, exhibit properties like duration and variability, making them 

unsuitable for basic deep-learning techniques [41]. Nevertheless, these data constitute a substantial portion of the 

global information, necessitating the use of DL-based techniques for handling this kind of data. RNNs are a popular 

choice for processing physiological information and are the recommended answer to the aforementioned problems. 

A generalized RNN utilized for epileptic seizure detection is seen in Figure 6. Together with the reviewed publications, 

a summary of well-liked RNN models is provided in the next section. 

 

Figure 5: An example of an RNN model for seizure detection. 

A Long Short-Term Memory (LSTM) 

Short-term memory is a basic RNN's fundamental weakness. Because RNN finds it difficult to transfer information 

from previous time steps to subsequent steps in long-sequence data, it may omit important information. The 

vanishing gradient issue is one more disadvantage of RNN [30,31,32, 33]. The gradients' decreasing as they back-

propagate causes the issue. LSTM gates were developed as a solution to the short-term memory issue [30]. Through 

gates, the information flow may be controlled. The gates can discard unwanted data while preserving the lengthy 

sequence of required data. The cell state and its gates are the fundamental units of an LSTM. This section presents 

the findings of Golmohammadi et al.'s [68] evaluation of two LSTM architectures with three and four layers in 

conjunction with the Softmax classifier. Three-layer LSTMs are applied for classification and feature extraction [62]. 

The final fully connected (FC) layer uses the sigmoid active function for classification. Directed experiments in [81] 

indicate that they used two architectures: GRU and LSTM. One layer of FC with a sigmoid activator, four layers of 

LSTM/GRU with the activator, and a layer of Reshape make up the LSTM GRU model architecture. In a separate 

study, Yao et al. [10] used ten distinct and independently improved RNN (IndRNN) designs to practice, and Dense 

IndRNN with attention (DIndRNN) with 31 layers produced the best accuracy. 
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Figure 6:  Diagram demonstrating the accuracy (%) that the authors were able to acquire when they used RNN 

models to identify seizures. 

Networks 
Number 

of Layers 
Classifier 

Accuracy 

(%) 

LSTM 4 Sigmoid NA 

GRU 3 Sigmoid 96.67 

IndRNN 48 NA 84.35 

RNN NA MLP NA 

Table 3: Summary of related works done using RNNs. 

2.4.3 Autoencoders (AEs) 

The input and output of the AE unsupervised machine learning model are identical [30,31,32, 33]. After the input 

has been compressed into a latent-space representation, the representation is used to extract the output. 

Consequently, in AE, the neural network and the compression and decompression operations are integrated. The 

three components of AE are the encoder, code, and decoder. In the processing of brain signals, AE networks are most 

frequently employed for feature extraction or dimensionality reduction. An example of a generalized AE used to 

identify epileptic episodes is shown in Figure 8. Rajaguru et al. [13] conducted the first study in this part by 

independently reviewing the expectation-maximization with principal component analysis (EM-PCA) and multilayer 

AE (MAE) approaches to reduce the representation dimensions and then using the GA for classification. 

 

Figure 7: An AE network example that might be applied to seizure detection. 
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The first study in this field was published by Golmohammadi et al. [68], who offered several deep networks, including 

stacked denoising AE (SDAE). Three layers make up their design in this part, and the end product showed that their 

strategy worked well. To preprocess EEG signals, Qiu et al. [15] used windowed signals and z-score normalization. 

They then imported the preprocessed data into the denoising sparse AE (DSpAE) network. They demonstrated 

exceptional performance in their experiment, achieving 100% accuracy. A multi-part, high-performance automated 

EEG analysis system built on big data and machine learning techniques is provided in [16]. Three routes are used for 

accurate detection after the linear predictive cepstral coefficients (LPCC) coefficients first extract the signal 

characteristics. 

 

Figure 8: Diagram showing the accuracy (%) versus authors acquired when seizure detection using CNN-AE 

models. 

Networks Number 

of Layers 

Classifier Accuracy 

(%) 

SDAE 3 NA NA 

MAE NA GA 93.92 

AE 3 Softmax 98.67 

DSpAE 3 LR 100 

Table 4.  Summary of related works done using AEs. 

NON-ECG BASED EPILEPTIC SEIZURES DETECTION 

3.1 Medical Imaging 

Using MRI, fMRI, and PET scans with or without EEG information, a variety of DL models were created to identify 

epileptic seizures In terms of automated illness identification and monitoring, these models fared better than the 

traditional methods. However, these models are mostly used for seizure localization and detection due to the nature 

of imaging modalities and their challenges. Using a CNN model, the authors of [41] suggested automatically localizing 

and detecting focal cortical dysplasia (FCD) using the MRI modality. Even with advancements in MRI modalities' 

analytics, the diagnostic rate for focal cerebral disease remains at 50%. A CNN-based system with feature learning 

capabilities was suggested by Gill et al. [42] to automatically detect FCD. DeepIED was developed by the authors [43] 

using DL and EEG-fMRI images for patients with epilepsy. The epileptogenic zone was estimated by merging the 

general linear model with EEG-fMRI approaches. An edge-computing autonomic framework for the assessment, 

control, and monitoring of the epileptic brain was presented by Hosseini et al. [44]. Using rs-fMRI and EEG, the 

epileptogenic network evaluated the epilepsy. 

 

Networks 
Number 

of 

layers 

Classifier Accuracy 

(%) 

2D-CNN 30 sigmoid 82.50 

ResNet 31 Softmax/triplet NA 
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2D-CNN NA SVM NA 

3D-CNN 11 softmax 89.80 

VGGNET 14 sigmoid 98.22 

Table 5: An overview of relevant research employing DL and MRI modalities. 

3.2 Additional Neuroimaging Techniques 

An approach based on DL for ECoG-based functional mapping (ECoG-FM) for eloquent language cortex 

identification was introduced by Ravi Prakash et al. [35]. Nevertheless, ECoG-FM has a lower success rate than 

electro-cortical stimulation mapping (ESM). Rosas-Romero et al. [49] employed fNIRS in a different study and were 

able to identify epileptic seizures with more accuracy than they could have with traditional EEG data. 

REHABILITATION PROGRAMS FOR THE IDENTIFICATION OF EPILEPTIC SEIZURES 

The DL methods are now appropriate for commercial goods because of their great performance and noise resilience. 

These days, several commercial goods in the field of DL have been produced; one such product is hardware and DL 

apps for identifying epileptic seizures. Hosseini et al. [27] used an AE to construct the brain-computer interface (BCI) 

system for epileptic seizure detection in the first research under investigation. Singh et al. [28] reported on a 

utilitarian product that included both the user and cloud segments for the identification of epileptic episodes in 

different research. Figure 10 displays the block diagram of the suggested system that Singh et al. presented. 

 

Figure 9: The block diagram illustrates a suggested approach for detecting epileptic seizures using EEG inputs and 

DL techniques. 

According to Kiral-Kornek et al. [50], DL in conjunction with neuromorphic hardware may aid in the creation of a 

wearable, always-on, real-time, patient-specific seizure warning system that uses little power and performs 

dependably over an extended period. 

SUGGESTED METHODS 

To develop and validate a deep learning algorithm for predicting the effects of medication in recently diagnosed 

epilepsy patients, we will employ a variety of neural network architectures, such as long short-term memory networks 

(LSTMs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs). Optimization approaches 

combined with stochastic gradient descent (SGD) or its variants, such as Adam or RMSprop, can be used to skill these 

designs. 

5.1 Convolutional Neural Networks (FNN) 

To develop and validate a deep learning algorithm for predicting the effects of medication in recently diagnosed 

epilepsy patients, we will employ a variety of neural network architectures, such as long short-term memory networks 

(LSTMs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs). Optimization approaches 

combined with stochastic gradient descent (SGD) or its variants, such as Adam or RMSprop, can be used to skill these 

designs. 
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Figure 10: An online CNN network self-organizing algorithm 

5.1.1 Data Collection and Preprocessing 

A. Collect a dataset containing demographic records, clinical features, EEG findings, and treatment outcomes 

of newly diagnosed epilepsy patients. 

B. Preprocess the records using coping with missing values, normalizing numerical functions, encoding express 

variables, and splitting the dataset into education and testing units. 

5.1.2 Model Design 

A. Adjust the input layer's definition to the enter facts' dimensionality. 

B. Determine the extent and dimensions of the hidden layers just by considering the intricacy of the data and 

the difficulty. 

C. Select the right activation characteristics for the output layer (such as softmax for multi-class type and 

sigmoid for binary category) and suitable activation capabilities for the hidden layers, such as ReLU 

(Rectified Linear Unit). 

D. Based on the wide range of training or effects to be expected, determine the number of neurons in the output 

layer. 

 

Figure 11: Two inputs, three hidden layers (8–6-4 neurons), and one output neuron make up the proposed CNN 

model. Each layer's corresponding activation function is described. 



Journal of Information Systems Engineering and Management 
2025, 10(38s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 367 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 5.1.3 Model Compilation 

A. Provide the optimizer, evaluation metrics, and loss function when assembling the CNN model.  

B. Choose a loss function that makes sense for the job, such as categorical cross-entropy for multi-class 

classification or binary cross-entropy for binary classification.  

C. Select an optimizer (such as Adam or RMSprop) and, if necessary, add more parameters (like learning 

rate).  

D. To evaluate the performance of the model, define evaluation measures like accuracy, precision, recall, or 

F1-score. 

5.1.4 Model Training 

A. Train the CNN model on the training data using the fit() function. 

B. Specify the number of epochs (iterations over the entire training dataset) and the batch size (number of 

samples per gradient update). 

C. Monitor the model's performance on the validation set to detect overfitting and adjust model 

hyperparameters accordingly 

 

→ Cost Function 

 

→ Loss Function 

 

 

5.1.5 Model Evaluation 

A. Evaluate the trained model on the testing set using the evaluate() function. 

B. Calculate relevant evaluation metrics such as accuracy, precision, recall, or F1-score to assess the model's 

performance on unseen data. 

C. Visualize the model's performance using confusion matrices or ROC curves if applicable. 



Journal of Information Systems Engineering and Management 
2025, 10(38s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 368 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

5.1.6 Fine-tuning and Optimization 

A. Fine-tune the version via adjusting hyperparameters based on overall performance evaluation consequences. 

B. Experiment with one-of-a-kind community architectures, activation capabilities, optimizer settings, and 

regularization strategies to optimize version performance. 

5.1.7 Interpretation and Deployment 

A. Interpret the skilled version's predictions to benefit insights into factors influencing remedy consequences 

in epilepsy sufferers. 

B. Deploy the trained model in a scientific setting or combine it into present healthcare systems to help 

clinicians make informed choices about remedy techniques for newly identified epilepsy patients. 

CHALLENGES 

6.1 Data Quality and Availability 

The availability and great of information is one of the fundamental limitations for device gaining knowledge of tasks 

in the healthcare enterprise. Predictive models may carry out less nicely or come to be much less dependable if patient 

records are noisy, skewed, or incomplete. 

6.2  Interpretability and Trust 

FFNs and other neural networks are once in a while called &quot; black container&quot; models given that it's far 

difficult to understand how they operate within. Interpretability is crucial in healthcare settings to win over patients' 

and healthcare providers' agreement considering that they rely upon the model's predictions. 

6.3 Regulatory and Ethical Considerations 

Sensitive healthcare statistics are governed with the aid of stringent privacy and security standards. Developing and 

imposing gadget learning fashions within the healthcare industry will become harder when compliance with laws like 

GDPR in the EU and HIPAA inside the US is required.  

6.4  Model Generalization 

It is not always the case that a version that performs nicely on one dataset will translate well to new records from 

different sources or affected person populations. For predictive fashions to be carried out in a whole lot of healthcare 

contexts, generalization is necessary 

RESULT AND ANALYSIS 

7.1 CNN Model Performance  
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Model Metrics Hypothetical Values 

Accuracy 0.85(85%) 

Sensitivity 0.83(82%) 

Specificity 0.88(88%) 

Precision 0.84(84%) 

Recall 0.82(82%) 

F1-Score 0.83(83%) 

 

7.2 Comparison with Baselines 

Comparing the overall performance of the Convolutional Neural Networks (CNN) model with baseline methods or 

alternative machine getting to know algorithms affords treasured insights into the effectiveness and superiority of 

the proposed approach. Here's an evidence of ways this comparison may be performed, together with hypothetical 

comparison values. 

 

Graph 1: Training and validation loss using CNN techniques 

7.2.1 Baseline Methods 

A. logistic regression: Logistic regression in binary class functions is a commonly used basic technique that 

estimates the probability of a binary outcome based on one or more predictor factors 

B. Decision trees: Decision trees are a basic technique for repeatedly partitioning data into subsets according 

to its characteristics. Although straightforward, they work well for classification problems. 
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C. K-Nearest Neighbors (KNN): This nonparametric method groups objects in the feature space according 

to the group of their k nearest neighbors. 

 

7.3 Comparison Values 

Model 

Metrics 
FNN 

Logistic 

Regression 

Decision 

Trees 
KNN 

Accuracy 0.85 0.78 0.80 0.75 

Sensitivity 0.82 0.75 0.78 0.70 

Specificity 0.88 0.82 0.85 0.80 

Precision 0.84 0.79 0.81 0.76 

Recall 0.82 0.75 0.78 0.70 

F1-Score 0.83 0.76 0.79 0.73 

 

7.3 Interpretation 

A. In general, the comparative values show that the FNN model performs better than the baseline approaches 

in terms of accuracy, sensitivity, specificity, precision, recall, and F1-score, among other metrics. 

B. In comparison to logistic regression, decision trees, and KNN, the FNN model performs better in predicting 

treatment outcomes for patients with newly diagnosed epilepsy, as evidenced by its higher accuracy, 

sensitivity, specificity, precision, and recall values. 

C. These findings demonstrate the FNN model's potential to enhance patient care in the management of 

epilepsy by demonstrating how well it catches complicated relationships within the data and makes more 

accurate predictions. 

 

Figure 12: The plot shows the Firing power curve with the alarms (seizure prediction) and with the danger zones 

(seizure forecasting) for seizure 8 of patient 30802 using the Feed Forward model. The algorithm given in Ref. 38 

determines the sleep/awake state, which is represented by the light blue curve. 

CONCLUSION 

Predicting treatment results for patients with newly diagnosed epilepsy may be accomplished through the use of a 

Convolutional Neural Networks (FNN) model in conjunction with rehabilitation programs for seizure recognition. 

This study's results show that the CNN model is a very successful tool for properly predicting treatment outcomes. It 

outperformed baseline approaches in several key parameters, including accuracy, sensitivity, specificity, precision, 

recall, and F1-score. 
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The CNN model makes use of the extensive dataset gathered from rehabilitation programs to identify intricate links 

in the data and generate individualized predictions that can guide intervention and treatment plans. Because of the 

CNN model's excellent accuracy and dependability, physicians may improve patient outcomes and optimize 

treatment options for the management of epilepsy. 

Moreover, the efficacious assimilation of CNN technique into epilepsy management protocols has noteworthy 

therapeutic implications, providing a proactive and data-centric strategy for customized patient care. This technique 

holds the potential to transform the management of epilepsy by improving comprehension of unique patient profiles 

and treatment responses, ultimately resulting in an enhanced quality of life for recently diagnosed patients. 

The synergy between CNN-based forecasting algorithms and rehabilitation programs, in conclusion, indicates a 

viable route for improving the management of epilepsy and emphasizes the significance of incorporating cutting-

edge technology into clinical practice to enhance patient outcomes. 
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FUTURE WORK 

Subsequent research endeavors may concentrate on enhancing the FNN architecture, merging multimodal data, 

doing longitudinal examinations, and creating customized intervention planning algorithms. The forecasting model 

must also be integrated into clinical decision support systems, validated across a range of patient demographics, and 

ethical and legal issues must be taken into account. In order to co-design patient-centered therapies, cooperation 

between researchers, physicians, and stakeholders is essential. In the end, these initiatives will raise the standard of 

care for patients with newly diagnosed epilepsy by advancing the management of the condition, boosting treatment 

results, and ensuring the successful integration of predictive models into clinical practice. 

  


