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Dynamic coordination in multi-robots aims to achieve autonomous navigation with 

an effective obstacle avoidance mechanism. One of the main challenges associated 

with multi-robot coordination is handling the changes in the unknown 

environments. It is important to design an efficient coordination system which can 

provide reliable and safe path planning for a multi-robot system in a dynamic 

environment. This research presents an advanced approach for multi-robot 

coordination using nonlinear model predictive control (NLMPC) framework. 

Unlike linear MPCs, NLMPCs are highly effective in controlling nonlinear 

dynamics such as input/output constraints and robot parameters. In this research, 

the NLMPC strategy is used to train the robots to find targets and reach the 

destination by avoiding obstacles in the dynamic environment. The coordination 

mechanism and path planning approach employed in this research enables the 

robots to successfully search for the target and navigate through the obstacles. The 

proposed coordination approach follows a specific trajectory and adjusts the vehicle 

control parameters such as acceleration, and steering angle in order to stay on the 

specified path. Simulation is conducted to visualize the motion of the multi-robot 

vehicle through different trajectories. Results of the simulation show that the 

proposed strategy exhibits excellent acceleration and steering control and 

successfully avoids obstacles. 

Keywords: Multi-Robot Vehicle, Dynamic coordination, Nonlinear Model 

Predictive Controllers, Nonlinear Optimization, Obstacle Avoidance, Path 

Planning 
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1. INTRODUCTION 

The growing significance of the automotive industry has resulted in the increased deployment of autonomous robots 

for carrying out various tasks [1]. Gradually, autonomous robots are becoming one of the prominent aspects of daily 

life. These robots are extensively used in smart industrial and manufacturing processes such as self-driving, navigation 

assistance, rescue operations etc [2-4]. In order to leverage the advantages of robotic vehicles, it is crucial to make 

effective path planning along with a robust coordination strategy. In general, there are two types of path planning 

techniques namely local motion planning (LMP) and global motion planning (GMP) [5]. The LMP collects real-time 

information from local surroundings such as the outdoor environment to design an appropriate executable path. On 

the other hand, the GMP strategy utilizes the previous map data for exploring the motion path [6]. However, it is a 

challenging and complex task to obtain an optimal path for robots is a highly complicated task in robotics. One of the 

main constraints to design an effective path planning in robots is its ability to detect obstacles and avoid collisions, 

especially in dynamic environments [7]. Majority of the path planning techniques in robot vehicles are designed to 

achieve optimal performance in both static and dynamic environments [8]. In comparison to a static environment, it 

is difficult to design planning and coordination strategies for the robots in dynamic environments. This is mainly due 

to the fact that it is easy to assess the details related to the static environment for avoiding collision. In addition, the 

objects in the static environment are already predefined and this helps in easy navigation. However, in the dynamic 

environment the objects keep changing continuously and this increases the complexity for the researchers to design a 

path planning and coordination strategy wherein the robots can automatically adapt to the changes in such 

environments [9-10]. Although robots are designed to navigate through obstacles and make decisions based on the 

dynamic changes in their surroundings, it is not an easy task to avoid all possible collisions. To overcome these 

drawbacks, several coordination strategies are designed using different controlling mechanisms. Local navigation 

techniques have been proposed for interpreting the sensor data and thereby avoiding collision in dynamic 

environments. However, these techniques do not achieve desired performance in terms of accuracy of collision 

avoidance [11].. In this context, there is a great demand for an effective framework which can assist the robots to 

discover a safe and secure path for avoiding collision. Considering these aspects, it can be inferred that there is a great 

need for an efficient and productive controlling strategy. One such efficient controlling strategy is the deployment of 

Nonlinear Model Predictive Control (NLMPC) which can handle the nonlinear dynamics [12]. The NLMPC based 

controlling strategy can make the robot sense and interpret the information collected from the external environment 

and use it for determining its position, movement, and target [13]. By deploying an appropriate coordination 

mechanism, the robots can be trained to carry out activities by selecting optimal paths, avoiding obstacles without 

depending on manual intervention. The formulation of robot path planning encompasses the attainment of diverse 

objectives, incorporating various operational constraints such as the determination of specific trajectories, avoidance 

of obstacles, and adherence to speed limits. In the process of trajectory creation, obtaining essential information, 

including the current position, is crucial for making necessary decisions in the execution of desired tasks. Designing 

path planning criteria involves addressing numerous challenges such as identification of an optimized strategy to 

efficiently reach the target while ensuring feasibility and reliability. Various existing literary works have introduced 

different path planning and coordination strategies for multi-robot vehicles [14-16]. These strategies are designed to 

obtain an optimal path with shorter distance and high obstacle detection accuracy for robots. However, these strategies 

often struggle to achieve desired performance due to the presence of high uncertainties and nonlinearities in dynamic 

environments. Despite the availability of these techniques, there is still a lack of an effective approach which can 

effectively address the problems associated with path planning and obstacle avoidance in a dynamic environment. 

This research presents a robust controlling strategy for a multi-robot vehicle system using optimal path planning and 

dynamic coordination mechanism. The main objective is to design a robotic framework for assisting the robots to 

navigate and avoid collision in dynamic environments. The main contributions of this research are outlined as follows: 

● A NLMPC strategy is designed in this research for an autonomous robot  vehicle driving system which 

focuses on planning the vehicle's path using the dynamic coordinate system. 
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● The data for training the robot vehicle is collected from different sources such as Li DAR, cameras, GPS, and IMU to 

understand and interpret the vehicle’s environment in dynamic surroundings. 

● The sensor data is used to localize the vehicle within the trajectory  and a path planning algorithm is deployed to 

define the start and goal position within the dynamic coordinate system. 

● The NLMPC controller is optimized to adjust the acceleration and  steering angle and to update its control inputs 

based on the latest  measurements from the vehicle. In this way, the vehicle is trained  to react to 

unforeseen disturbances or changes in the environment  and avoid possible collisions. 

The manuscript is further organized as follows. Section 2 provides an overview of existing works related to path 

planning and coordination of robots. Section 3 provides a brief description of the proposed research methodology 

which includes the description of the NLMPC strategy along with the steps involved in the implementation stages. 

Section 4 provides the performance evaluation details along with the simulation details. Section 5 outlines the 

observations obtained from the existing works as conclusion and highlights the potential directions for future scope. 

2. RELATED WORKS 

A significant amount of research work has been dedicated to path planning and coordination in multi-robot vehicles. 

Fundamental path planning techniques that are used in robots require a detailed description of the environment. These 

techniques rely on the map that provides the details about the surrounding environment. Some of the most commonly 

employed maps include point cloud map, diagram map, grid map describing the occupancy and Euclidean signed 

distance fields [17-19]. These maps use four main techniques namely discrete path searching, trajectory generation 

and optimization, trajectory tracking, and local planning. However, the effectiveness of the path planning process 

depends on the accuracy and reliability of these maps. This is one of the critical drawbacks of map-based techniques 

since it is not only challenging but also practically not feasible to customize the maps for a dynamic environment. The 

works presented in [20-22]. Few works have also emphasized on the application of different motion control techniques 

such as model predictive controls (MPC), adaptive neuro-fuzzy inference (ANFIS) techniques, and fuzzy logic 

controllers (FLC) [23-26]. However, these strategies are characterized by their highly complex behavior, which 

restricts the adaptability of these techniques. Several research works have also used navigation algorithms which are 

designed to plan desired paths and provide important instructions to the robots [27-28]. The work presented in [29] 

designed an optimal coordination strategy for multi-robots. The study focused on designing a trajectory planning and 

tracking strategy for achieving effective coordination in multi-robots. Initially, a method for planning a secure 

reference trajectory is designed which involves projecting the unsafe segment of the current distributed optimization 

trajectory onto the outer boundary of the obstacle region in real-time. Subsequently, a distributed back stepping 

tracking control scheme is introduced, utilizing a novel multiplicity-integral-type Barrier-Lyapunov function. The 

proof establishes that all robot systems can steer clear of unforeseen equilibriums, ultimately reaching the global 

optimal position while effectively avoiding collisions with dynamic obstacles. A novel approach for a robot kinematic 

model is presented in [30] for path planning and collision avoidance. A novel bidirectional alternating jump point 

search A* algorithm (BAJPSA*) is proposed in this study for finding an optimized path for the robot to traverse. A 

kinematic model is designed in this research for robots utilizing the dynamic window approach (DWA). This research 

presents an adaptive navigation strategy and introduces a novel path tracking evaluation function to enhance accuracy 

and optimality in path tracking. In order to enhance obstacle avoidance security, we modify the decision rules and 

obstacle avoidance rules for individual robots and augment the decision avoidance capability of multi-robot systems. 

Additionally, this research employs the mainstream prioritization method to coordinate local dynamic path planning 

in the multi-robot systems, resolving collision conflicts and simplifying the algorithm's obstacle avoidance 

complexity. Experimental results demonstrate that the proposed distributed multi-mobile robot motion planning 

method performs effectively in providing superior navigation and obstacle avoidance strategies within complex 

dynamic environments. This method serves as a valuable technical reference for practical applications. As observed 
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from the existing works, most of these algorithms have focused on identifying the shortest path and obstacle avoidance. 

Few studies have concentrated on avoiding dynamic obstacles without considering the degree of smoothness of the 

trajectory. Besides, these techniques consider inexplicit representation of the obstacle since the obstacles occupy only 

a smaller area of the environment. This reduces the flexibility of the path planning techniques in dynamic 

environments. These drawbacks motivate this research to develop an efficient dynamic coordination technique by 

leveraging the ability of NLMPCs to handle nonlinear dynamics. A brief overview of the proposed approach is 

presented in the research methodology section. 

3. PROPOSED RESEARCH METHODOLOGY 

The proposed research intends to find an optimized path for multi-robots in both static and dynamic environments. 

An autonomous robot vehicle driving system is designed in this research using MATLAB that involves several key 

components and steps. This system focuses on planning the vehicle's path using the dynamic coordinate system, which 

simplifies the complex task of path planning in a dynamic and continuous environment. The work of the proposed 

approach is illustrated in figure 3.1 and the steps involved in the implementation process are discussed in below 

subsections: 

 

 

Figure 3.1 Workflow of the proposed approach 
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3.1 Designing a Coordinate System 

The autonomous robot vehicle driving system is designed using a dynamic coordinate system which is a mathematical 

representation of a vehicle's position on a road, defined by the road's reference line (center line). It uses two 

coordinates: 's' (longitudinal) and 'd' (lateral). 's' represents the distance along the reference line, while 'd' represents 

the lateral distance from the reference line. The coordination in multi-robots is considered as a motion-planning 

problem which is formulated as a distributed coordination problem which aims to identify collision-free trajectories 

for the robots. The preliminary objective of considering a distributed coordination problem is to eliminate the necessity 

for a central coordinator and enable scalability of the problem with the increasing number of robots, allowing them to 

coordinate and independently address smaller sub-problems simultaneously. In centralized coordination, the 

constraints defined for collision avoidance establish interconnections among the robots. This centralization is avoided 

in this work by opting for distributed coordination which allows the robots to coordinate with other vehicles and solve 

smaller sub-problems in parallel. This reduces the computational time and reduces the complexity. The variables used 

in the distributed coordination are optimized using the NLMPC algorithm, which only optimizes the state variables 

and keeps the state variables fixed. The optimization problem is formulated in the NLMPC framework as follows: 

For each time instance ‘t’, the robot ‘i’ determines the trajectory on its own represented as z i based on the variables 

provided over the horizon. The variables are denoted as follows: [λij (1), …., λij (N)], [λji (1), …., λji (N)] and [sij 

(1),....., sij (N)]. For each robot i ∈ v, j ∈ Ni, the optimization using NLMPC is given in equation 1: 

minui (.|t) Ji (zi, ui) ….. (1) 

Subjected to the constraints: zi (k + 1|t) = f (zi (k|t), ui (k|t)) ….1(a) 

zi (0|t) = zi (t) ….. 1 (b) 

zi (k|t) ∈ Z, ui (k|t) ∈ U …. 1 (c) 

Where, the ui (·|t) represents the sequence of control inputs over the NLMPC planning horizon N for i th robot, zi (k|t) 

and ui (k|t) are the variables of the robot at step k are predicted at time t. The optimized trajectory is then computed 

along with collision avoidance wherein the collision avoidance problem is optimized as shown in equation 2. 

Ai (zi (k|t))T λji
* (k|t) + sij

* (k|t) = 0 …. (2) 

Where Ai is the constant value for the ith robot and is the function of zi. The variables λij, λji, and sij are the known 

values used for collision avoidance along with the planning horizon. It was observed during the computation that in 

comparison to the centralized formulation, the distributed coordination optimizes only the decision variable using 

NMPC optimization for the ith robot state zi. In this case, the number of decision variables in the formulation of the 

coordination and collision avoidance problem is maintained constant. 

3.2 Data Collection 

The data for designing the path planning and coordination system is collected from various sensors, such as Li DAR, 

cameras, GPS, and IMU, to perceive the vehicle's environment. A high-definition map of the road network is obtained 

which provides all coordination related details, including lane information and reference lines. 

3.3 Localization 

The data collected from the sensors is utilized to localize the vehicle within the map. Further, the coordinates of the 

vehicle 's' and 'd' are defined within the dynamic system based on its position on the road. This localization map is 

used to develop adaptive path planning and the motion is controlled using two aspects namely an actuator and a 

command. These two aspects help the model to move swiftly in the optimized path. In this research, target localization 

for the multi-robots is achieved in a distributed manner wherein the robots act based on the local information obtained 
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by the sensors. Besides, in this work, localization is not achieved by the centralized module which uses a centralized 

system such as vision modules to instruct the robots. The mutual localization method employed in this research is 

exploited for localizing both robots and targets to overcome the drawbacks such as limited range, blind spots, and 

anisotropy. This validates the fact that the proposed approach is suitable for handling dynamic environmental 

constraints wherein each robot anticipates the trajectories based on the local information obtained from the sensors. 

3.4 Path Planning using Rapidly Exploring Random Trees Algorithm 

For path planning, a start and goal position is defined in the initial stages within the dynamic coordinate system. 

Further, a path is planned from the start to the goal using a path planning algorithm. The path planning algorithm is 

designed in such a way that it considers the constraints of the vehicle's kinematic, traffic rules, and obstacle avoidance. 

Path planning in multi-robots can be challenging considering the dynamics of robotic architecture. For mobile robot 

vehicles, the objective of path planning and construction is to find an optimized path in dynamic and static 

environments, in such a way that the path begins at a starting point (S) and ends at a target point (T). The environment 

where the robot is operating is considered as a two dimensional space and path is constructed for local and global path 

planning scenarios. In global path planning cases, the paths are constructed in known environments and the position 

of the objects/obstacles must be known beforehand. This is also known as a static environment. For global paths, the 

model of the environment where the robot is placed is defined accurately and the path is constructed based on the 

previous information. This improves the convergence towards the target point. Hence, computation time in this 

scenario is not emphasized and quality of path is focused more. In local path planning, the path is constructed where 

the environment is not known. In such cases, sensors are used to detect the surrounding objects to avoid the possible 

collision. This research uses a RRT (Rapidly-Exploring Random Trees) algorithm for path planning. The RRT planner 

is executed on an occupancy map which defines the start and goal states for the robot's path. The algorithm further 

plans a path from the start to the goal, visualizes the map, and shows the computed path for the robots to traverse in 

dynamic environments. The RRT is a sampling-based algorithm used for path planning in robotics. The principle 

behind the design of the RRT algorithm is to construct a tree incrementally by randomly sampling the configuration 

space and connecting these samples to existing nodes in the tree. The process involved in the computation of the RRT 

algorithm can be explained using mathematical terms as follows: 

Initially, a state space is created for the RRT algorithm wherein X represents the configuration space (in this case, a 

3D space for position and a 4D space for orientation). The terms X-start and X-goal represent the start state and goal 

state with position and orientation respectively. The algorithm involves manipulating states in the state space wherein 

it continuously checks for collisions, and constructs a tree structure. The key components are: State space ‘X’, tree 

‘T’ consisting of nodes and edges, sampling module which randomly selects the states x- rand in X. The algorithm 

finds the nearest nodes x- nearest in T and creates respective edges. Mathematically, the RRT algorithm uses various 

distance metrics (like Euclidean distance) to measure distances between states and determine the nearest nodes. 

Initially, the length of the path for the robots is determined between two consecutive paths and by adding all the 

segments.. For a path p, the two consecutive points ‘pi’ and ‘pi+1’ are represented as pi = (xi, yi) and pi+1 = (xi+1, yi+1). 

The overall line segment can be calculated using the below equation. 

..... (3) 

Since the path incorporates multiple consecutive segments, the overall length with respect to path ‘p’ can be 

determined using equation 4. 

Length (p) = ∑n
i=0

 dis (pi , pi+1) …..(4) 

Where ‘n’ is the number of iterations. While the target point is specified, there is no predefined information regarding 

the position and shape of obstacles. Consequently, prior knowledge of the environment has limited influence in this 
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scenario, and the robot is dynamically guided by data obtained from sensors. Therefore, a local path construction 

framework is deemed more effective for mobile robot swarms in such situations. In this research, the efficacy of the 

path planning is ensured by employing collision-checking functions to ensure the feasibility of newly added nodes 

and edges in the tree. The algorithm aims to iteratively expand the tree towards the goal state while navigating around 

obstacles in the state space. The pseudocode of the RRT algorithm his given below: 

Pseudocode of the RRT Algorithm: 

Initialization: 

Start with a tree T containing only the start node x- start 

Add x start to the tree T 

Iterative Sampling: 

Repeat until a goal is found or a maximum iteration limit is reached: 

Sample a random state x- rand in the state space X. 

Find the nearest node x- nearest in the tree T to x rand. 

Steer from x- nearest toward x -rand within a specified distance. 

If the path from x -nearest to the new state x- new is collision-free: 

Add x- new to the tree T. 

Create an edge between x- nearest and x -new. 

Termination: 

If the goal state x- goal is within a certain threshold distance from a node in the tree T: 

Return the path from x -start to x- goal by tracing back the tree edges. 

End 

3.5 Trajectory Generation 

From the obtained planned path, a continuous trajectory is generated that the multi-robot vehicle must follow. 

Different vehicle dynamics, such as acceleration and curvature constraints are considered, to ensure a smooth and 

feasible trajectory. Further, the trajectory is optimized to minimize jerk, handle the changes in the speed changes, or 

other performance criteria such as steering angle control. The RRT algorithm explores a feasible tool path trajectory 

by performing local optimization and by constructing the optimal path. The adoption of the NLMPC is highly 

beneficial in generating trajectories that account for the dynamic nature of the environment. NLMPC allows robots to 

predict their future states and interactions, optimizing trajectories based on the system's nonlinear dynamics. NLMPC 

is particularly useful when dealing with complex, nonlinear systems, such as vehicles. It can handle situations where 

traditional linear control methods may not be effective. However, it requires a good understanding of the system 

dynamics and a careful selection of the prediction horizon and cost function to achieve the desired control objectives. 

Additionally, real-time computational resources are often required, making it suitable for applications where 

computational power is available. The controlling strategy designed using the NLMPC controller is discussed in the 

next section. 
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3.5 Control using NLMPC 

Implementing a robust control algorithm which can effectively handle nonlinear dynamics is crucial for path planning 

and achieving dynamic coordination in multi-robot vehicles. The control algorithm is not only responsible for 

generating control signals for the robots but it is also responsible for following the generated trajectory and 

continuously adjusting the vehicle parameters such as acceleration, steering, to stay on the planned path. This research 

implements a NLMPC based strategy to control the acceleration and steering angle of the robot in order to achieve the 

good trajectory. NMPCs operate based on nonlinear and non-quadratic constraints for controlling the process and 

optimizing the performance. The formulation of NLMPCs involves developing iterative solutions to address both 

open-loop and closed-loop control challenges, taking into account input constraints and system dynamics. A key 

strength of NLMPC lies in its capacity to manage dynamic system constraints, encompassing variables that may 

pertain to inputs or states. The principle of NLMPC revolve around three primary principles: (a) Utilizing a nonlinear 

model within the system model to dynamically predict future processes in real-time applications, (b) employing an 

optimal control law for real-time computations by utilizing an optimal control sequence to enhance system 

performance and attain desired outcomes, and (c) implementing a receding horizon approach where the initial value 

of the control sequence is applied, followed by a shift in the horizon by one instance, leading to the calculation of new 

sequences based on this adjusted perspective. In this research, the NLMPC involves developing a predictive model 

for the multi-robot vehicle and optimizing a control sequence over a finite prediction horizon to minimize a cost 

function. 

3.5.1 System Modeling 

Initially, a nonlinear model of the vehicle dynamics is assessed and this model captures how the vehicle responds to 

changes in acceleration and steering inputs. Such a model can be quite complex and may include differential equations 

representing the motion of the vehicle. As discussed in the previous section, the primary purpose of employing the 

NLMPC model is to establish the control law governing the system's operation. Ensuring the precision of the model 

is crucial for achieving stable control. The NLMPC model exhibits a high degree of flexibility in its structure and 

operation, allowing for design without strict constraints. When detailed information about the dynamic environment 

is accessible, it can be mathematically expressed in the state space form. Conversely, when only partial information 

is obtainable, a black box model can be employed to represent the system's state. A cost function is defined to quantify 

the performance of the control inputs. For a vehicle, the cost function may include terms related to safety, comfort, 

and efficiency. For instance, to minimize the time taken to reach a destination the cost function is optimized to avoid 

sudden accelerations and maintain a safe following distance from other vehicles. The performance of the NMPC is 

evaluated based on the cost index which is defined as follows: 

.... (5) 

Where, J is the initial term is used for computing the square error between the estimated output yd (k+j) and the 

predicted future output y^ (k + j|k). The output is predicted based on the feedback obtained at an instant k. The feedback 

error is calculated over a specific prediction horizon which lies between N1 and N2 samples. The NLMPC controller 

estimates the dynamic behavior of the control system by assessing the state of the model at time ‘t’. The input state of 

the multi-robot vehicle is determined based on the behavior of the predicted system and is measured as a function of 

different input and state constraints, with an aim to minimize the cost function. The NLMPC predicts the input in an 

open-loop system, it is considered for a finite horizon wherein the input is different from the closed loop system. The 

control problem is formulated over a finite prediction horizon. This means that the controller predicts how the system 

will evolve over a short period into the future, typically a few seconds. For the dynamic coordination system, the 
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NLMPC controller solves an optimization problem at each time step. It searches for the control inputs (acceleration 

and steering) that minimize the cost function over the prediction horizon, subject to the system dynamics and any 

constraints (e.g., physical limits on acceleration and steering). The controller then applies only the first control inputs 

from the optimal sequence to the real system. The optimization process is repeated at the next time step, considering 

the updated system state and predictions. NLMPC is a receding horizon control strategy, which means it continually 

updates its control inputs based on the latest measurements from the vehicle. This allows it to react to unforeseen 

disturbances or changes in the environment. By sensing the changes using the active sensors deployed in the 

autonomous robot vehicle driving system, the NLMPC instructs the robots for detecting obstacles and collision 

avoidance. The sensor-based techniques measure the distance of the object with a limited number of resources and 

hence are quite advantageous. 

4. RESULTS AND DISCUSSION 

This section discusses the details of the simulation analysis and results of performance evaluation. 

4.1 Experimental Details 

For simulation analysis, a multi-robot vehicle scenario is constructed in a dynamic environment for a robot driving 

simulation. Simulation is conducted using a MATLAB environment. For simulation, different vehicle parameters such 

as length, width, lane width, waypoints, and initial configurations are determined. A simulation loop is executed to 

control the robot's behavior. The NLMPC calculates and evaluates various trajectory options considering the current 

state of the robot, other actors, and constraints. Further, the proposed strategy checks for collisions between the robot 

and other objects in the environment and visualizes the scenario with trajectories and updates the robot's position and 

orientation. The NLMPC is designed with 30 prediction horizons, 7 states, and 2 inputs. The sample time of the 

controller object is set to 0.1 seconds and a manipulated variable rate (MVR) is considered to minimize the cost 

function. In this research, the minimum and maximum value of the first manipulated variable (Acceleration) is fixed 

between -2 to 2. Correspondingly, the minimum and maximum value of the second manipulated variable (Steering 

Angle) is fixed between -1.13 to 1.13.The loop is simulated from 1 to 31 (for 31 stages) for optimal trajectory 

generation. Using MATLAB, the stage cost function is specified as vehicleCostFcnLC for each stage which specifies 

the length of the parameter for each stage as 2. The simulation data is obtained from the nonlinear MPC object using 

the function nlobj. The validateFcns function is defined with arguments nlobj, x0, u0, and simdata to validate the 

prediction model functions at an arbitrary operating point. Further, a new optimal trajectory is generated by the 

NLMPC using optimal acceleration and steering angle controls. The optimized trajectory is visualized and 

corresponding control inputs are defined. Based on the visualization, the plots showing acceleration and steering inputs 

are generated over time, before and after optimization. 

The steps involved in the initialization and the scenario setup are discussed as follows: 

Step 1: Initialization 

Clears the workspace, initializes the random number generator, and adds necessary function paths 

Step 2: Creating Robot Driving Scenario 

A scenario is defined for the robot to drive in, including defining the vehicle's dimensions, lane widths, waypoints, 

reference path, trajectory generator, and obstacle geometries. 

Step 3: Trajectory Planning and Collision Avoidance 

The trajectories for the multi-robot vehicle are defined and the terminal states based on cruise control, lane change, 

and vehicle following behaviors are evaluated. In addition, the cost of terminal states are also evaluated which 

eliminates invalid trajectories violating constraints, and updates collision information. 
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Step 4: Visualization 

The scene, trajectories and obstacles are visualized using MATLAB's visualization capabilities. 

Step 5: Optimization using NLMPC 

The NLMPC is used to optimize the acceleration and steering angle of the vehicle. The algorithm updates the 

simulation with optimized control inputs. 

Step 6: Collision Visualization 

The collision states before and after optimization are plotted for avoidance. 

Step 7: Path Planning using RRT 

The RRT algorithm is used to plan a path from a starting point to a goal while avoiding obstacles in the environment. 

The generated path on the map is displayed for the analysis. 

4.2 Simulation Results 

The performance of the proposed approach is simulated in terms of different evaluation metrics such as control outputs 

(acceleration and steering angle control), collision detection, and path planning. The output graphs of the proposed 

approach are illustrated in below figures: 

 

Figure 4.1 Acceleration control using NLMPC 

 

Figure 4.2 Steering angle control using NLMPC 
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It can be observed from figures 4.1 and 4.2 that the proposed NLMPC approach provides an optimal control of both 

acceleration and steering angle. The control of both parameters are significantly improved after employing the 

NLMPC strategy in comparison to before optimization. The successful control of acceleration and steering angle will 

help in avoiding the collisions in the dynamic environment. The performance of the NLMPC in terms of collision 

avoidance before and after optimization are shown in figures 4.3 and 4.4 respectively. 

 

Figure 4.3 Collision avoidance before optimization 

 

Figure 4.4 Collision avoidance after optimization using NLMPC 

As inferred from figure 4.3, the robot vehicle exhibits poor collision avoidance performance which is improved after 

optimization using the NLMPC, which is illustrated in figure 4.4. Correspondingly, the path planning of the RRT 

algorithm is shown in figure 4.5. 

 

Figure 4.5 Path planning using RRT algorithm 
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The RRT algorithm identifies an optimal path for the multi-robot vehicle to reduce the time, avoid obstacles and 

possible collision. 

5. CONCLUSION 

This paper presents an efficient NLMPC approach for path planning and dynamic coordination in multi-robot vehicles 

for obstacle detection and collision avoidance. The proposed dynamic coordination approach overcomes the 

drawbacks of centralized coordination approach and trains the robot to reach the target by avoiding collisions. The 

RRT algorithm selects an optimal path for navigation and finds a fixed trajectory for the robot to navigate. The 

NLMPC approach is designed to control different vehicle parameters such as acceleration, and steering angle to 

maintain the predefined trajectory. A multi-robot vehicle scenario is designed and simulated using the MATLAB 

platform and the scene, trajectories and obstacles are visualized to determine the effectiveness of the proposed 

approach. Simulation results show that the control of acceleration and steering angle is improved after optimization 

using the NLMPC controller. Results validate the efficacy of the proposed approach. For future research, this research 

intends to leverage reinforcement learning mechanisms and evolutionary optimization algorithms for optimizing the 

performance of obstacle detection and collision avoidance in multi-robot vehicles in a dynamic environment. 
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