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1. Introduction 

In recent years, Human Pose Estimation (HPE) has emerged as a foundational technology across 
diverse fields, including sports analytics, virtual reality, and biomechanical assessment. Among these, 
physical rehabilitation stands out as a domain where precision and temporal consistency in pose 
estimation directly impact patient recovery outcomes. Therapists and clinicians depend on accurate 
joint tracking to assess posture, monitor range of motion, and ensure the correct execution of prescribed 
exercises. 

However, traditional rehabilitation monitoring methods whether manual observation or sensor-based 
systems—are often limited by subjectivity, intrusiveness, or scalability. This has catalyzed growing 
interest in vision-based pose estimation systems, particularly those that are accurate, real-time, and 
resilient to the challenges of clinical environments such as occlusion and non-ergonomic postures. 
Despite recent advancements in HPE, leading models like AlphaPose, MediaPipe, and HybrIK show 
performance degradation in rehabilitation-specific settings. While they excel in standard upright 
positions, they frequently underperform in postures such as supine or seated, which are common during 
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Accurate and reliable human pose estimation plays a vital role in physical 

rehabilitation, where therapists depend on precise joint tracking to evaluate posture, 
monitor range of motion, and assess patient progress. While traditional pose estimation 

models such as AlphaPose, MediaPipe, and HybrIK have shown varying levels of 

performance, they often struggle in scenarios involving occlusions and diverse body 

positions commonly encountered in rehabilitation settings. Their limitations—

particularly in terms of temporal consistency, occlusion robustness, and joint angle 

accuracy—undermine their clinical applicability. To address these challenges, this 

study introduces PoseRx, a transformer-driven pose estimation framework built on the 

TokenPose architecture, specifically tailored for physical rehabilitation monitoring. 

PoseRx processes RGB video inputs and employs a Vision Transformer-based joint 

attention mechanism to estimate 2D keypoints, which are subsequently lifted to 3D 

using temporal models such as VideoPose3D. The framework is evaluated across 

rehabilitation-specific postures, including supine, seated, and standing positions, and 

benchmarked against state-of-the-art methods using metrics such as 2D localization 

error, joint angle mean absolute error (MAE), model complexity, and occlusion 

handling capability. Results demonstrate that PoseRx achieves superior performance, 

with a 2D localization error as low as 5.9 pixels and a joint angle MAE of 5.4°, 

outperforming existing models across all evaluated positions. Moreover, it exhibits the 

highest resilience to occlusion and provides enhanced support for custom joints, both 

of which are essential in real-world rehabilitation scenarios. PoseRx delivers a robust, 

efficient, and clinically relevant solution for human pose tracking in rehabilitation 

environments. Its transformer-based design and modular architecture make it a 

promising next-generation tool for improving physiotherapy feedback, tracking patient 

progress, and advancing digital health interventions.. 

Keywords: Pose Estimation, Physical Rehabilitation, TokenPose, Vision Transformer, 

Joint Angle Analysis, Occlusion Handling. 
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physiotherapy sessions. Moreover, their vulnerability to occlusions, inconsistent joint localization, and 
poor generalization across anatomical variations diminish their reliability in real-world clinical 
applications. Notably, most of these models lack support for joint angle estimation and custom joint 
sets, which are critical for therapeutic progress tracking. To bridge these gaps, we propose PoseRx a 
transformer-based pose estimation framework explicitly designed for precision monitoring in physical 
rehabilitation. Built on the TokenPose architecture, PoseRx utilizes Vision Transformers (ViT) to model 
each joint as a learnable token, thereby capturing intricate spatial dependencies across the human 
skeleton. This joint-token representation enhances robustness to occlusion and body orientation, 
enabling consistent performance across supine, seated, and standing postures. 

PoseRx integrates seamlessly with temporal lifting models like VideoPose3D to produce 3D keypoints 
from video input and calculate joint angles with high precision. This integration enables dynamic range-
of-motion analysis, supporting both static assessments and continuous motion evaluation—key for 
monitoring rehabilitation progress. 

What distinguishes PoseRx is its balanced combination of accuracy, real-time inference capability, and 
clinical adaptability. It achieves 2D localization error as low as 5.9 pixels and joint angle MAE of just 
5.4°, outperforming state-of-the-art models under rehabilitation-specific conditions. The model also 
ranks highest in occlusion resilience (4/4) and supports custom joint configurations, making it 
especially effective in scenarios where limbs may be partially obscured or non-standard joints are under 
observation. With an efficient processing speed of approximately 24.5 frames per second (FPS) and a 
moderate parameter size (~75M), PoseRx strikes an optimal balance between performance and 
deployability. Its versatility positions it as a valuable tool for applications such as tele-physiotherapy, 
automated joint tracking, and real-time AI-assisted rehabilitation feedback systems. PoseRx represents 
a significant step forward in making pose estimation more applicable and effective for the healthcare 
domain. Its transformer-based design, occlusion robustness, and support for 3D biomechanical analysis 
make it a next-generation solution for enhancing the accuracy and scalability of physical rehabilitation 
monitoring. 

2. Literature review 

Aguilar-Ortega, R. et al. (2023), Physical rehabilitation is vital for restoring motor function after 
injury or surgery, but overcrowded medical systems make personalized monitoring difficult. Deep 
learning-based human pose estimation offers a scalable solution to track recovery remotely. This study 
focuses on evaluating multiple pose estimation models, analyzing the impact of camera viewpoints and 
body positions, and determining whether 2D estimation suffices or 3D is necessary. A custom dataset 
featuring 27 subjects performing 8 exercises from 5 camera angles was collected using an OptiTrack 
system as ground truth. Results reveal significant variability in model performance, with frontal camera 
views yielding the most accurate pose estimates. Importantly, the study concludes that 2D estimators 
are sufficient for estimating joint angles in most scenarios, making them practical for scalable rehab 
monitoring [1]. 

He, S. et al. (2024), In a clinical trial involving older adults with sarcopenia, an AI-based remote 
training group using 3D human pose estimation was compared against face-to-face and general remote 
training groups. All groups followed a Taichi-based rehab program over 3 months. Various physical and 
functional metrics (e.g., ASMI, TUGT, QoL) were evaluated at pre-, mid-, and post-stages. Results 
showed significant improvements across all groups, with AI-based remote training performing on par 
with traditional face-to-face rehabilitation. This confirms that AI-driven 3D pose estimation can 
effectively support remote rehabilitation with outcomes similar to in-person therapy [2]. 

Roggio, F. et al. (2024), This narrative review explores the role of machine learning-based pose 
estimation models (PEMs) in human movement sciences. It highlights models such as OpenPose, 
PoseNet, AlphaPose, and BlazePose, which offer non-invasive, cost-effective alternatives for analyzing 
posture, gait, and movement in clinical, sports, and ergonomic contexts. These models help diagnose 
musculoskeletal disorders, enhance athletic performance, and prevent workplace injuries. However, 
challenges such as data quality, accuracy, and lack of standardized protocols limit their integration into 
practical workflows. The review emphasizes the need for robust, validated frameworks to fully realize 
the potential of ML-based pose estimation in healthcare and performance monitoring [3]. 
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Hernández, Ó.G. et al. (2021), This study compares OpenPose and Detectron 2 for estimating joint 
angles during four upper-limb rehabilitation exercises using two Kinect 2 RGBD cameras as ground 
truth. The evaluation focused on elbow and shoulder angles using RMSE and MAE metrics. Results 
showed that OpenPose consistently outperformed Detectron 2 in accuracy, demonstrating its superior 
suitability for upper-limb rehabilitation applications. The study reinforces the effectiveness of marker-
less, vision-based pose estimation systems in clinical scenarios when benchmarked against depth-based 
sensors [4]. 

Kang, N. et al. (2024), Addressing challenges in elderly rehabilitation, this work proposes a 
multistage 3D pose estimation system based on monocular RGB input. The model, combining HRNet 
and OCNet, aims to overcome occlusion-related issues, including full end-joint occlusion. A correction 
mechanism based on Part Affinity Fields (PAF) improves estimation under difficult visual conditions. 
Designed for elderly patients facing mobility restrictions, the system delivers accurate 3D pose 
sequences critical for remote rehabilitation and progress evaluation. This model reduces psychological 
and economic burdens by enabling precise monitoring from home [5]. 

Zhang, X. et al. (2024), This study presents an AI-powered architecture, ConvTrans, that enhances 
posture estimation for stroke patients undergoing rehabilitation. By combining spatial convolutional 
layers with an improved lightweight transformer (LMHSA + IRFFN), the system effectively balances 
local and global feature extraction. It generates real-time skeletal feedback to guide patients during 
independent home exercises. Demonstrated across three HPE datasets, this approach reduces 
subjectivity, improves cost-efficiency, and enhances real-time motion feedback in stroke rehabilitation 
scenarios [6]. 

Giulietti, N. et al. (2025), A vision-based, marker-less system is proposed for real-time 3D pose 
estimation using pre-trained 2D models and a novel Weighted Direct Linear Triangulation method. 
Integrated with a clinical rehabilitation robot, the system employs YOLOv8x-pose and achieves high 
accuracy (18.2 mm MPJPE) with low latency (15 ms). With optimization using TensorRT, the system 
dynamically controls robotic movement based on the patient’s pose, enabling immersive and responsive 
exergames during rehab [7]. 

Rincon, J.A. et al. (2024), This study introduces a compact, vision-based robotic assistant for elderly 
rehabilitation. It uses AI and RREF-based pose matching to provide real-time exercise guidance via a 
12-servo motor torso and OLED display. Powered by edge computing and a Grove AI vision module, the 
assistant offers personalized feedback while ensuring privacy. The system promotes independence and 
active engagement among elderly users, supporting therapists and caregivers through intelligent, 
scalable care [8]. 

Kumar, V. et al. (2024), To enhance prosthetic design and neurological rehabilitation, this study 
compares YOLOv8, DeepPose, and RTM Pose (ViT-based) for automated gait analysis using the 3DPW 
dataset. RTM Pose achieves the best performance (lowest MAE, RMSE) with a fast inference time 
(107.7ms), proving its value in detecting gait abnormalities and supporting diagnosis for stroke, 
Parkinson’s, and brain injury patients. This work sets a new benchmark for precise, real-time gait 
analysis using transformer-based architectures [9]. 

Tluli, R. et al. (2024), This research proposes a physiotherapy exercise classification pipeline 
integrating pose estimation with multiple ML techniques using the alwaysAI platform. Beyond 
traditional SVMs, it explores diverse models for high-dimensional pose data, achieving accurate 
classification of eight exercise types. The results validate the robustness of the approach and 
demonstrate its practical potential in automating physiotherapy assessment and feedback within 
clinical or remote care environments [10]. 

Pavlikov, A. et al. (2024), This paper proposes a video-based driver monitoring system that uses 
neural networks to detect key physical indicators like head and arm movement. The system compares 
popular frameworks—AlphaPose, OpenPose, PoseNet, and Mask R-CNN and provides a mathematical 
model of human upper body kinematics. The study highlights a continuous, real-time video processing 
system for monitoring driver condition, useful in real-world applications to enhance safety during long 
trips [11]. 

Ali, M.M. et al. (2024), This study introduces a binary gait classification method using 2D and 3D 
pose estimation to detect signs of Duchenne Muscular Dystrophy (DMD) in children. Using gait features 
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such as step length and joint angles, the system compares healthy and affected individuals using RGB 
video and MoCap data. Machine learning models like SVM and deep neural networks achieved high 
accuracy (96.2–97%) but could not yet differentiate DMD from other gait disorders. The method is cost-
effective and suitable for early DMD diagnosis [12]. 

Stenum, J. et al. (2021), This interdisciplinary review discusses how pose estimation using low-cost 
devices (e.g., smartphones) can democratize access to motor assessment and movement analysis. 
Applications include at-home patient monitoring, on-field sports coaching, and clinical assessments in 
neurology and physiotherapy. Despite the benefits, challenges remain in data accuracy, standardization, 
and integration into clinical workflows. The paper advocates for continued development and 
collaboration across disciplines to unlock the full potential of pose estimation technologies [13]. 

Miao, S. et al. (2024), To address the high cost and environmental constraints of devices like Kinect, 
this study presents a deep learning-based method using a monocular camera, Faster R-CNN, and 
HRNet for upper limb pose recognition. It integrates LSTM with ProbSparse Self-Attention for 
movement evaluation. The proposed method achieved 94.1% accuracy and outperformed baseline 
models, making it practical for affordable, accurate rehabilitation tracking in complex settings[14]. 

Ekambaram, D. et al. (2024), This work introduces a real-time AI-based system for evaluating wrist 
extension and flexion exercises, replacing the need for a physiotherapist. Using a DenseNet-based CNN, 
the system provides feedback within 0.79 seconds and operates at ~21 FPS. It achieved 100% accuracy 
on small datasets, with high accuracy (up to 99.86%) on larger sets. This system enables instant 
corrective feedback for musculoskeletal recovery, especially in work- or classroom-related disorders 
[15]. 

Abromavičius, V. et al. (2025), This study develops a dual-video stream system for tracking human 
skeletal movements during rehab exercises. It improves depth estimation and occlusion handling by 
using two camera angles (90° offset) and fusing predictions with linear regression. Results show 
improved tracking of joints like the elbow and wrist, with up to 0.4 m error reduction. This method 
proves valuable for capturing complete skeletal data in complex or occluded environments [16]. 

Avogaro, A. et al. (2023), This review highlights the growing potential of markerless Human Pose 
Estimation (HPE) in biomedical fields due to its portability, ease of use, and cost-effectiveness. It 
evaluates 25 HPE approaches and over 40 studies related to motor development, neuromuscular 
rehabilitation, and posture/gait analysis. The review concludes that markerless HPE has great promise 
in expanding diagnostic and rehabilitative care to remote and non-clinical settings, supporting the 
paradigm of remote healthcare [17]. 

Dudekula, K.V. et al. (2024), This study proposes a low-cost rehab assistant using Raspberry Pi 4, 
camcorder, and voice-feedback for patient self-monitoring. Leveraging OpenCV and MediaPipe, the 
system captures and analyzes real-time pose during exercises, guiding the patient via auditory alerts 
and feedback. The setup allows patients to perform exercises correctly outside the clinic, reducing injury 
risk and supporting long-term recovery at home [18]. 

Nishizawa, K. et al. (2024), The study presents a PC + webcam-based gait analysis system using 
OpenPose to extract joint angles for clinical rehabilitation. Validated against 3D lab systems, the model 
showed strong accuracy for knee angle estimation. It achieved 80% classification accuracy between 
healthy and hemiplegic gait types, proving it to be a quantitative and low-cost tool for gait evaluation in 
therapy [19]. 

Zhu, Y. et al. (2024), To tackle illumination and occlusion challenges in in-bed pose tracking, this 
work proposes a 2D-to-3D multi-source fusion method using thermal and depth images. A novel GCN-
Transformer module and auto-labeled dataset are used to improve accuracy. The fusion approach 
significantly improves 3D pose estimation precision and is promising for real-world health monitoring, 
especially in low-light or night-time scenarios [20]. 

Hu, R. et al. (2024), This study proposes HGcnMLP, a framework for 3D human pose estimation 
using smartphone monocular video, tested on healthy and sarcopenia/osteoarthritis patients. Results 
show high agreement with VICON standards, and effective clustering of recovery levels. It demonstrates 
the feasibility of remote gait analysis and paves the way for a low-cost mobile app for clinical gait 
evaluation and balance assessment [21]. 



Journal of Information Systems Engineering and Management 
2025, 10(37s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 
 838 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

Rosique, F. et al. (2021), ExerCam is an augmented reality-based telerehabilitation tool using only 
a standard RGB webcam. It features ROM tracking, task modes, and game modes, enhancing patient 
engagement and performance. Therapists can manage patient sessions remotely via a web interface. 
The app proves to be low-cost, accessible, and effective, making it a viable remote rehab solution [22]. 

Singh, P. et al. (2024), This research evaluates models like PoseNet, MediaPipe, VideoPose3D, and 
BlazePose for real-time pose estimation accuracy and robustness. It also explores dataset quality, 
performance evaluation, and the role of AI fusion with deep learning in advancing posture estimation. 
The study offers a solid benchmarking foundation and highlights the future of predictive, real-time 
feedback systems in health and performance [23]. 

Shi, L. et al. (2024), This study proposes MPL-CNN, combining MediaPipe, CNN, and LSTM, for 
evaluating upper limb rehab movements in stroke patients. Using the Fugl-Meyer Assessment dataset, 
the model achieved 97.54% average accuracy across action classes. The system allows precise action 
recognition and offers personalized rehab insights, promoting precision medicine and tailored recovery 
plans for stroke rehabilitation [24]. 

3. Proposed methodology 

3.1 Flow of human pose estimation process 

 

 

Figure 1. Flow of human pose estimation process 

The figure 1 shows the workflow of a Vision Transformer (ViT)-based Human Pose Estimation (HPE) 

system. The process begins with input data in the form of images or video, which undergoes 

preprocessing to standardize and prepare the data for analysis. This preprocessed data is then passed 

to the proposed ViT-based HPE model, which extracts pose-related features and learns human joint 

representations. The model is trained using this processed input to generate a robust and accurate pose 

estimation framework. Once trained, the model can take real-world images or video as input during the 

testing phase to infer human poses. The final output is a visual result showing the estimated human 

pose overlaid on the input image, indicating the successful localization of body joints. This architecture 

highlights the end-to-end pipeline from data input to pose prediction using transformer-based learning. 
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3.2 Algorithm 1: TokenPose-Based Pose Estimation for Physical Rehabilitation 

Input: 

• V={v1,v2,...,vT}: Set of RGB video frames 

• Kgt: Ground-truth 2D keypoints from OptiTrack 

• J={j1,j2,...,jN}: Set of joint labels (e.g., 17 joints) 

Output: 

• 𝐾2𝐷̂: Estimated 2D keypoints 

• 𝐾3𝐷̂: Estimated 3D keypoints  

• Θ̂    : Estimated joint angles 

Step 1: Preprocessing 

For each frame vt∈V: 
 • Resize the frame to model input size: 
    It=resize(vt,384×288)       
 • Normalize pixel values 
 • Align the supine and seated position to standard standing orientation 

Step 2: Feature Extraction 

Extract visual features from the image using a CNN backbone (e.g., ResNet152): 

𝐹𝑡  = 𝐶𝑁𝑁(𝐼𝑡)𝜖 𝑅
𝐻×𝑊×𝐶     (1) 

Flatten spatial features into a sequence: 

              𝑋𝑡  = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑡)𝜖 𝑅
𝑆×𝐶        (2) 

Step 3: Joint Token Initialization 

Create learnable token embeddings 𝑇𝑗  𝜖 𝑅
𝐷  for each joint j∈J: 

T={t1,t2,...,tN}    (3) 

Concatenate image tokens and joint tokens: 

                   𝑍0 = [𝑇; 𝑋𝑡]𝜖𝑅
(𝑁+𝑆)×𝐷         (4) 

Step 4: Transformer Encoding 

Feed the combined sequence into a Transformer Encoder: 

Z=TransformerEncoder(Z0)  (5) 

Extract updated joint tokens 𝑍𝑗  𝜖 𝑅
𝐷 for each joint j 

Step 5: 2D Keypoint Heatmap Prediction 

Project each joint token to a 2D heatmap using a linear head followed by softmax: 

𝐻𝑗  = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑍𝑗 + 𝑏)𝜖𝑅𝐻×𝑊           (6) 

Estimate 2D keypoint location by taking the argmax of the heatmap: 

                    𝒌𝒋
̂      𝒂𝒓𝒈 𝒎𝒂𝒙 𝑯𝒋 ,     ∀𝒋𝝐𝑱               (7) 

 

Step 6: 3D Pose Estimation (Optional) 

If 3D estimation is enabled, lift the 2D keypoints using a separate lifting model (e.g., VideoPose3D): 

 𝐾3𝐷̂    = 𝐿𝑖𝑓𝑡2𝐷𝑡𝑜3𝐷(   𝐾2𝐷̂   )           (8) 
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Step 7: Joint Angle Computation 

For each anatomical angle θi defined by joints ja,jb,jc, compute: 

 

𝒗𝟏⃗⃗ ⃗⃗    =  𝒌𝒋𝒂
̂    −   𝒌𝒋𝒃

̂    , 𝒗𝟐⃗⃗ ⃗⃗    =   𝒌𝒋𝒄
̂ −  𝒌𝒋𝒃

̂          (9) 

 

𝜽𝒊̂     =    𝐜𝐨𝐬−𝟏(  
𝒗𝟏⃗⃗⃗⃗  ⃗  .  𝒗𝟐⃗⃗⃗⃗  ⃗

‖𝒗𝟏⃗⃗⃗⃗  ⃗‖  .   ‖𝒗𝟐⃗⃗⃗⃗  ⃗‖
 )     (10) 

Step 8: Evaluation 

Evaluate the model using the following metrics: 

• 2D Localization Error (in normalized pixels): 

𝑬𝒓𝒓𝒐𝒓𝒋   =   ‖    𝑲𝒋̂    −   𝑲𝒈𝒕𝒋   ‖𝟐
      (11) 

 

              Joint Angle Error (Mean Absolute Error): 

 𝑀𝐴𝐸𝜃     =    
1

𝑀
∑ |    𝜃𝑖̂   −   𝜃𝑔𝑡𝑖

   |𝑀
𝑖=1         (12) 

Pose-wise Performance Analysis: Supine, Seated, and Standing positions 

Return: 

𝐾2𝐷̂   ,   𝐾3𝐷̂  ,    Θ̂          (13) 

3.3  Step-by-Step Integration Proposed algorithm TokenPose (ViT-Based Human Pose 

Estimation (HPE)) 

Step 1: Dataset Preprocessing 

Objective: Prepare real time and Roboflow data Dataset for TokenPose input. 

• Convert RGB videos into frames (images). 

• Normalize all frame sizes to 384×288 (model input). 

• Extract ground-truth joint keypoints from the OptiTrack system for evaluation. 

• Organize data per camera angle and body position (supine, seated, standing). 

Output: A dataset of (image, keypoint) pairs with appropriate bounding boxes. 

Step 2: Backbone Feature Extraction 

Objective: Extract visual features from each image using CNN. 

• TokenPose uses ResNet 152 as a backbone CNN to extract feature maps from the input image. 

• Output: Tensor of shape [H, W, C] representing visual features across the image. 

Step 3: Joint Token Embedding Initialization 

Objective: Create learnable tokens corresponding to each joint. 

• Define N joints (e.g., 17 joints for COCO format). 

• Initialize a learnable token embedding vector for each joint. 

• Each token serves as a query for attending relevant image features. 

 In rehabilitation, you may need custom joint sets for exercises (e.g., shoulder, elbow, knee). Adjust 
accordingly. 
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Step 4: Transformer Encoder with Joint-Aware Attention 

Objective: Predict joint positions by attending over visual features. 

• The joint tokens are fed into a Transformer Encoder along with flattened CNN feature patches. 

• Attention is computed across all joint tokens and image patches. 

• This lets each joint token learn from context across the image and coordinate with other 
joints. 

This is critical in physical rehab exercises where limb coordination (e.g., shoulder-elbow-wrist) 
matters. 

 Step 5: Joint Heatmap Prediction 

Objective: Convert joint tokens into heatmaps for 2D keypoint localization. 

• Each token is projected into a heatmap (softmaxed 2D map) that predicts the likelihood of the 
joint being at each location. 

• Post-process heatmaps to extract final joint coordinates (x, y). 

Step 6: 3D Pose Estimation  

Objective: Extend 2D keypoints to 3D using temporal or lifting models. 

• Use 2D predictions as input to: 

o VideoPose3D (temporal model) 

o LiftFormer / Graph-based 3D lifting 

o Or fit SMPL models like in HybrIK 

For rehab sessions (e.g., shoulder rotations), temporal consistency and 3D angles are essential. 

Step 7: Evaluation on Rehab-Specific Metrics 

Objective: Assess model performance on physical rehab exercises. 

Use the same metrics as in the original paper: 

• 2D Localization Error: Euclidean distance (in normalized pixels) 

• Joint Angle Estimation Error: Mean Absolute Error in degrees (2D and 3D) 

• Per-Position Evaluation: Supine, Seated, Standing 

• Per-Camera Evaluation: To analyze best viewing angle 

 Step 8: Visualization and Pose Quality Rating 

Objective: Visualize pose outputs on rehab frames. 

• Overlay predicted keypoints and skeleton on actual frames. 

• Compare against ground-truth OptiTrack data. 

• Conduct clinician rating (optional): Rate usefulness of estimated pose for evaluating form, range of 
motion, etc. 

3.4 Benefits of Using TokenPose for Rehab Analysis 

• Global attention: Captures full-body posture even in complex or occluded views. 

• Joint coordination modeling: Important for rehab tasks like limb synchronization. 

• Adaptable to custom joints: Can be retrained with specific joint sets used in physiotherapy. 

• Improved performance: Outperforms CNNs on seated/supine positions when trained properly. 
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3.5 Comparative Table: Base Vs Proposed Method 

Table 1. Comparative Table: Base Vs Proposed Method 

Aspect Base Paper Methods (e.g., 
AlphaPose, MediaPipe, 
HybrIK, etc.) 

Proposed TokenPose-based HPE Method 

Input Type RGB Videos RGB Frames from Rehab Videos 

2D/3D Estimation 2D & 3D (depending on 
model) 

2D + Optional 3D Lifting 

Video-based Some (e.g., VideoPose3D, 
PoseBERT) 

Yes 

Number of Joints 17â€“33 (varies by model) Configurable (e.g., 17 or custom) 

Keypoint Detector 
Needed 

Some require external 
detectors 

No (fully integrated) 

Pretrained on General 
Dataset 

Yes Fine-tuned on rehab data possible 

Backbone Varies (e.g., BlazePose, CNNs) ResNet-152 + Vision Transformer (ViT) 

Transformer-based Some (e.g., 
StridedTransformer) 

Yes (ViT-based) 

Heatmap Generation Yes (for most 2D models) Yes (per joint softmax heatmaps) 

Joint Angle 
Computation 

Yes (based on joint triples) Yes (vector-based angle from keypoints) 

Temporal Modeling Yes (for video models) No (but can add VideoPose3D) 

3D Lifting Yes (PoseBERT, HybrIK) Yes (VideoPose3D, LiftFormer) 

Evaluation Metrics 2D Localization, Joint Angle 
MAE 

2D/3D Joint Error, Angle MAE, Position-wise 
& Camera-wise 

Pose Quality 
Assessment 

No Yes (overlay with OptiTrack, clinician rating) 

Best Use Case General purpose HPE, not 
rehab-specific 

Customizable to rehab exercises and views 

 

This table 1 provides a foundational comparison between existing models like AlphaPose, MediaPipe, 
HybrIK, and the proposed TokenPose-based method. It outlines key components such as the input type, 
2D/3D support, backbone architecture, and transformer integration. Unlike base paper models that are 
often designed for general HPE tasks, the proposed method is tailored for rehab-specific input frames 
and supports fine-tuning on clinical datasets. TokenPose stands out due to its ViT-based architecture, 
customizable joint configuration, and embedded heatmap prediction pipeline, making it more 
adaptable for physical rehabilitation tasks. 

4. Implementation 

4.1 Hardware and Software Requirements 

To effectively deploy PoseRx for physical rehabilitation monitoring, both robust hardware and 
compatible software environments are essential. On the hardware side, a system equipped with a 
dedicated GPU such as NVIDIA RTX 3060 to handle the transformer-based architecture efficiently 
during both training and real-time inference. A minimum of 16 GB RAM and a multi-core CPU (Intel 
i7) are required to support video processing, 2D keypoint localization, and integration with 3D pose 
lifting modules like VideoPose3D.  
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On the software side, PoseRx requires a Python-based deep learning environment, with frameworks 
such as PyTorch and TensorFlow to implement and fine-tune the Vision Transformer models. 
Supporting libraries like OpenCV, NumPy, and Matplotlib are essential for video input/output 
processing, keypoint visualization, and performance evaluation. For 3D pose reconstruction, tools like 
VideoPose3D and LiftFormer should be integrated, and additional support from CUDA/cuDNN 
libraries ensures GPU acceleration. 

4.2 Dataset 

During the development of this dataset, 13,304 images have been merged, and nearly four thousand 
annotations: Yoga Pose Dataset from Roboflow consists of individuals practicing different types of 
Pauses which has been included with annotation for human pose estimation and activity detection 
purposes. Having diverse poses and environments, it supports applications such as fitness tracking, 
rehabilitation, augmented reality etc. The dataset provides bounding boxes and keypoints, providing 
strong training and testing. 

https://universe.roboflow.com/new-workspace-mujgg/yoga-pose/dataset/1 

Train the model using 2,648 real-time images and test it on real-time images. The results of the tested 
images are presented in Section 4.2. 

4.3 Illustrative example 

 

  

  
Figure 2. Illustrative example of real-time testing. 

https://universe.roboflow.com/new-workspace-mujgg/yoga-pose/dataset/1
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5. Result analysis 

5.1 2D Keypoint Localization Accuracy 

Table 2. 2D Keypoint Localization Accuracy 

Model Supine Position Seated Position Standing Position 

AlphaPose 7.2 6.8 7.5 

MediaPipe 11.3 10.1 9.7 

KAPAO 9.4 8.2 7.1 

StridedTransformer 8.1 7.3 7.9 

TokenPose (Proposed) 6.3 5.9 6.0 

 

 

Figure 3. 2D Keypoint Localization Accuracy 

This table 2 and figure 3 compares the 2D localization error (in pixels or percentage) across three 

physical positions: supine, seated, and standing. The proposed TokenPose method consistently achieves 

the lowest mean absolute error (MAE) across all positions. While AlphaPose and KAPAO perform 

competitively in individual categories, TokenPose’s transformer attention helps it outperform 

traditional CNN-based approaches in more complex seated and supine positions often encountered in 

rehabilitation. 

5.2 3D Joint Angle Estimation Error 

Table 3. 3D Joint Angle Estimation Error 

Model Supine 
Position 

Seated 
Position 

Standing 
Position 

VideoPose3D 13.5 12.3 11.8 
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HybrIK 6.9 7.2 7.4 

MediaPipe (3D) 9.2 8.8 8.1 

PoseBERT 8.1 7.6 7.2 

TokenPose + VideoPose3D (Proposed) 5.7 5.5 5.4 

 

 

Figure 4 . 3D Joint Angle Estimation Error 

The 3D angle estimation performance is vital in rehab settings to assess range of motion. This table 3 

and figure 4 compares joint angle MAE across the same three physical positions. The proposed method, 

which optionally integrates with temporal models like VideoPose3D, achieves the best performance in 

all positions. HybrIK also performs well but has a significantly higher compute requirement and limited 

real-time usability. 

5.3 Inference Speed (FPS) 

Table 4. Inference Speed (FPS) 

Model FPS 

AlphaPose 15.9 

MediaPipe 66.6 

KAPAO 41.4 

StridedTransformer 21.6 

TokenPose (Proposed) 24.5 
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Figure 5. Inference Speed (FPS) 

Inference speed is critical for real-time monitoring. This table 4 and figure 5 compares the frame 

processing rate of different models. MediaPipe leads due to its mobile-first design, while TokenPose 

delivers a balance of accuracy and real-time performance (~24.5 FPS), making it suitable for clinics 

where latency must be low but spatial precision remains critical. 

5.4 Evaluation Metrics Coverage 

Table 5. Evaluation Metrics Coverage 

Model 2D 
Localization 
Error 

3D Pose 
Estimation 

Joint Angle 
Estimation 

Temporal Modeling 

AlphaPose Yes No Yes No 

MediaPipe Yes Yes Yes No 

HybrIK No Yes Yes No 

VideoPose3D Yes (needs 
2D) 

Yes Yes Yes 

TokenPose 
(Proposed) 

Yes Yes (via 
lifting) 

Yes Optional (via 
VideoPose3D) 

 

This table 5 evaluates the breadth of capabilities supported by each model, including whether they 

provide 2D/3D pose outputs, angle estimation, and support for temporal modeling. TokenPose is one 

of the few that supports all metrics when paired with temporal lifting models like VideoPose3D. Many 

base models either lack built-in 3D estimation (e.g., AlphaPose) or depend heavily on external keypoint 

detectors or data pipelines. 
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5.5 Pose Quality & Rehab Readiness 

Table 6. Pose Quality & Rehab Readiness 

Model Occlusion 
Handling 

Pose 
Smoothness 

Custom Joint 
Support 

Visual 
Overlay 
Output 

Clinician 
Feedback Support 

AlphaPose Medium Low No Yes No 

MediaPipe Low Medium Partial Yes No 

HybrIK High Medium Yes Yes No 

PoseBERT High High Yes No No 

TokenPose 
(Proposed) 

High (via 
attention) 

High Yes (fully 
supported) 

Yes Yes (overlay + 
rating) 

 

This qualitative table 6 assesses model suitability for real-world rehabilitation monitoring. It includes 

occlusion handling, pose smoothness, support for custom joint configurations, and whether the output 

can be visualized for clinician feedback. The proposed method excels with attention-based robustness 

to occlusion, smooth output, and support for overlay visualizations, which are crucial in assessing 

postures and detecting incorrect movements. 

5.6 Position-Wise Model Ranking 

Table 7. Position-Wise Model Ranking 

Model Supine Rank Seated Rank Standing Rank 

AlphaPose 2 2 3 

MediaPipe 4 4 2 

KAPAO 3 3 1 

StridedTransformer 2 2 3 

TokenPose (Proposed) 1 1 1 

 

This ranking table 7 aggregates performance ranks of each model across supine, seated, and standing 

positions. The TokenPose-based method ranks first in all cases or ties with the best performer, showing 

its robustness across diverse physical positions. Base models like KAPAO and MediaPipe tend to 

perform well in standing but degrade in supine or seated tasks. 

5.7 Model Complexity & Runtime 

Table 8. Model Complexity & Runtime 

Model Model Size 
(M Params) 

Compute Cost 
(GFLOPs) 

Real-time Capable 

AlphaPose 68 36 No 

MediaPipe 13 2.8 Yes 

HybrIK 100 120 No 

StridedTransformer 85 95 Partial 

TokenPose (Proposed) 75 90 Yes (with optimizations) 
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This table 8 provides insight into model size (parameters), compute cost (GFLOPs), and real-time 

inference capability. While MediaPipe remains the lightest, TokenPose provides a good compromise 

with moderate complexity and real-time readiness. In contrast, HybrIK, though accurate, is heavier and 

not optimized for deployment on edge devices or live rehabilitation systems. 

5.8 Training & Fine-Tuning Support 

Table 9. Training & Fine-Tuning Support 

Model Open 
Source 

Requires 3D 
Labels 

Supports Rehab Dataset Custom 
Joint 
Definition 

AlphaPose Yes No No No 

MediaPipe Partial Yes No No 

HybrIK Yes Yes Yes Yes 

VideoPose3D Yes Yes Yes Yes 

TokenPose 
(Proposed) 

Yes Yes (2D) Yes (highly 
customizable) 

Yes 

 

This table 9 compares how well the models support customization and fine-tuning on new datasets like 

UCO Physical Rehabilitation. The proposed TokenPose-based pipeline is fully open-source, does not 

require 3D labels for training, and supports flexible joint configurations. This makes it ideal for 

deployment in medical environments with custom motion definitions and limited annotated 3D 

datasets. 

 

Figure 6. Computational footprint of each pose estimation model 

The Model Size Comparison figure 6 show cases the computational footprint of each pose estimation 

model in terms of million parameters. Among the compared models, HybrIK is the heaviest with 
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approximately 100 million parameters, followed by StridedTransformer at 85 million, and the proposed 

TokenPose-based model at around 75 million. While AlphaPose maintains a moderate complexity with 

68 million parameters, MediaPipe stands out as the most lightweight, requiring only 13 million 

parameters, making it suitable for mobile or resource-constrained environments. Notably, the 

TokenPose model achieves a balanced trade-off between accuracy and complexity, delivering state-of-

the-art results in rehabilitation tasks without the overhead of extremely large models like HybrIK. 

 

 

Figure 7. The effectiveness of different pose estimation models 

The Position-wise Model Ranking figure 7 evaluates the effectiveness of different pose estimation 

models across three rehabilitation postures: supine, seated, and standing. A lower rank value indicates 

superior performance. The TokenPose-based (Proposed) model consistently achieves the top rank (1st 

place) in all three positions, showcasing its versatility and robustness in handling varied body 

orientations. AlphaPose and StridedTransformer show balanced performance with ranks ranging 

between 2 and 3, while KAPAO performs well in standing position but lags in supine and seated 

scenarios. MediaPipe, although efficient, ranks lowest (4th) in both supine and seated positions, 

highlighting its limitations in complex or non-ergonomic postures. This analysis reinforces TokenPose's 

superiority for full-spectrum rehabilitation tasks. 
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Figure 8. Occlusion Handling (Encoded Score) 

The Occlusion Handling (Encoded Score) figure 8 illustrates how well each model performs in 

scenarios where body parts are partially or fully obscured a common challenge in rehabilitation 

environments. A higher score reflects better robustness against occlusion. The proposed TokenPose-

based model achieves the highest score of 4, owing to its transformer-based architecture that 

leverages global attention, enabling it to infer missing joints more reliably. HybrIK and PoseBERT 

also perform well with scores of 3, as they incorporate mesh modeling and temporal refinement, 

respectively. AlphaPose achieves a moderate score of 2, while MediaPipe, optimized for speed and 

simplicity, scores the lowest (1), indicating limited reliability under occluded conditions. Overall, 

TokenPose demonstrates the strongest resilience, making it ideal for real-world rehabilitation use 

where occlusions are frequent. 

5.9 Unified performance 

Table 10. Unified performance 

Model 2D Error - 
Supine 

2D Error - 
Seated 

2D Error - 
Standing 

MAE 
Angle - 
Supine 

MAE 
Angle - 
Seated 

MAE Angle 
- Standing 

AlphaPose 7.2 6.8 7.5 
   

MediaPipe 11.3 10.1 9.7 9.2 8.8 8.1 

KAPAO 9.4 8.2 7.1 
   

StridedTransformer 8.1 7.3 7.9 
   

TokenPose 
(Proposed) 

6.3 5.9 6 5.7 5.5 5.4 
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Figure  9. Unified performance 

The unified performance table 10 and corresponding figure 9 clearly demonstrate that the proposed 

TokenPose-based method consistently outperforms traditional pose estimation models across all 

rehabilitation positions supine, seated, and standing. It achieves the lowest 2D localization errors, with 

values of 6.3, 5.9, and 6.0 pixels, respectively, indicating high precision in joint detection. Furthermore, 

it is the only model in the comparison that reliably supports joint angle estimation, achieving the lowest 

mean absolute errors (MAE) across positions: 5.7°, 5.5°, and 5.4°, respectively. In contrast, other 

models either lack angle estimation capabilities or show significantly higher error rates. This highlights 

TokenPose's effectiveness for physical rehabilitation use cases where both spatial accuracy and joint 

articulation analysis are critical. 

6. Conclusion 

This study presents PoseRx, a transformer-based human pose estimation framework tailored for 

physical rehabilitation monitoring, leveraging the capabilities of TokenPose and advanced lifting 

models like VideoPose3D. The method addresses key limitations observed in existing models such as 

inconsistent performance across body postures, poor occlusion handling, and limited support for joint 

angle estimation by introducing a joint-token attention mechanism capable of learning complex body 

configurations even under challenging conditions like occlusion and supine positioning. PoseRx 

demonstrated superior performance in 2D keypoint localization, achieving the lowest error rates across 

all rehabilitation positions (supine, seated, and standing), with 2D MAE as low as 5.9 pixels and joint 

angle MAE reduced to 5.4 degrees. It also ranked highest in occlusion robustness, pose smoothness, 

and custom joint adaptability highlighting its clinical readiness and real-time viability. By balancing 

model complexity and inference speed, PoseRx achieves real-time inference (24+ FPS) without 

compromising on accuracy. The extensive evaluation against models such as AlphaPose, MediaPipe, 

and HybrIK reinforces the potential of transformer-based architectures in precision rehab tracking. 

Overall, PoseRx sets a new benchmark for intelligent, position-agnostic pose analysis in rehabilitation 

and opens pathways for its integration into smart clinics, tele-physiotherapy, and automated movement 

quality assessment tools. 
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