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This study investigates how precision agriculture and crop production predictions may be 

improved using Quantum Machine Learning (QML) models, namely the Variational Quantum 

Circuit (VQC). The VQC outperformed traditional linear regression and other quantum models 

such as Quantum Neural Networks (QNN) and Quantum Convolutional Neural Networks 

(QCNN) by using quantum computing's ability to analyze high-dimensional agricultural data. 

With the lowest Mean Squared Error (MSE: 28.00), Mean Absolute Error (MAE: 3.8), and 

greatest R-squared (R2: 0.97), the VQC successfully identified intricate relationships between 

input variables such as acreage, rainfall, and fertilizer usage. Classical models, on the other 

hand, had more prediction errors and showed serious limits. This work opens the door for 

further research and the use of quantum technologies in agricultural systems by demonstrating 

the revolutionary potential of QML, particularly VQC, in tackling issues in agriculture, 

including food security, resource sustainability, and climate resilience. 

Keywords: Smart Farming, Quantum Machine Learning, Agricultural Productivity 
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INTRODUCTION 

The rapidly growing global population presents challenges to agriculture, including drought, diminished crop 

quality, decreased productivity, and lower yields. The Food and Agriculture Organization projects that the world 

population will almost double to around 9.6 billion by 2050, escalating the need for food while necessitating 

production methods that minimize environmental effects and promote judicious use of natural resources [1]. 

Climate change impacts the production of agriculture via common and severe weather events, modified 

germination timelines, heightened drought occurrences, and increased flooding. Enhanced yield is essential for 

optimal resource usage, cost reduction, and population sustainability. These approaches are time-consuming and 

involve strenuous effort [2]. 

Nevertheless, agriculture is transforming in gathering and using data to facilitate informed agricultural 

choices. The projection of crop output was derived from the previous year's experiences. Accurate historical crop 

yield data is essential before any agricultural risk management decision-making [3]. Data analytics and algorithms 

can forecast agricultural Production using these strategies. Contemporary technology is essential in addressing the 

increasing food demands among the expanding global population.  

Smart farming is an innovative approach that utilizes Information and Communication Technology (ICT) and 

data analysis to enhance sustainable food production. This technology offers advantages such as increased crop 

yield, reduced pesticide and fertilizer use, and decreased water consumption [4]. Smart farming advocates for 

sustainable agriculture methods that prohibit the introduction of hazardous pollutants into waterways and the 

atmosphere. [5]. It enables customers to use the correct instruments at the optimal moment for agricultural 

harvesting, resulting in favourable yields. 

Machine learning can be applied to farming in various ways to optimize processes, increase efficiency, and 
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improve outcomes. Here are several ways machine learning can be used in farming: 

• Crop monitoring and management 

• Predictive analytics for yield optimization 

• Precision agriculture 

• Livestock monitoring and management: 

• Supply chain optimization 

• Crop disease detection and management 

• Market forecasting price prediction 

The evolution of technology has revolutionized daily lives, enabling to access information at any time and 

position with a simple smartphone or computer. This is because of the growing number of small, inexpensive 

devices connected to the internet, which can collect crucial information. This has caused the creation of wireless 

sensor network (WSN) has made Internet of Things (IoT) successful. WSNs collect environmental data by 

measuring external factors, including conductivity, temperature, salinity, humidity, and soil moisture. Machine 

learning applications in agriculture include predicting soil characteristics, crop production forecasting, disease and 

weed identification, and species discovery[6]. 

Organization of the paper 

Remaining paper is organized as: An evaluation of the body of research on machine learning in agriculture and 

smart agricultural technology is provided in Section 2. Section 3 discusses adaptive quantum machine learning 

models and smart farming. Section 4 describes the model's development techniques, assessment criteria, and tools. 

Section 5 gives experimental data, examines model performance, and addresses limits. Section 6 summarizes the 

work and suggests further adaptive quantum-based smart farming research [7]. The global pressure on agricultural 

food production has increased due to urbanization, population growth, and climate change. This has led to 

challenges in sustainable development. Smart Farming advancements are transforms agricultural production and 

enabling the 3rd Green Revolution. [8]. Smart farming uses modern technology such robotics, gene editing, 

artificial intelligence (AI), and the Internet of Things (IoT) to improve the sustainability, efficiency, and global food 

security of agricultural production. It has increased crop yields and reduced environmental footprints [9]. Use 

smart technologies in agricultural, including cloud computing, AI, machine learning, and the Internet of Things. It 

included the impact of climate change on agriculture as well as the use of smart farming in post-harvest and crop 

and animal production [10]. The "smart farming" just incorporating various forms of ICT into traditional farming 

methods. It replaces traditional farming practices, like GPS-controlled robots, autonomous vehicles, intelligent 

apps, fertilizers, pesticides, herbicides, irrigation, and harvesting [11]  analyzed smart farming solutions by 

categorizing devices into sensors, actuators, gateways, power supplies, networking, data storage, processing, and 

information delivery. It identifies commonly used devices and discusses their utilization [12]. The growing global 

population demands innovative food production methods, and IoT technology has significantly impacted 

agriculture.  

Motivation of the study 

Despite significant advancements in smart farming, modern farming has several obstacles, including inefficient 

resource use, uncertain environmental circumstances, and human limits. Monitoring crops in bad weather, 

recognizing illnesses early, and maximizing resource allocation remain challenges. Traditional methods struggle to 

accommodate the growing complexity of agricultural data, including weather, soil, and insect activity. Advanced 

technology must be integrated to solve these problems. Smart farming might be revolutionized by adaptive 

quantum machine learning models analyzing complicated data rapidly and offering real-time, intelligent insights. 

These algorithms examine large-scale sensor, drone, and satellite data to help farmers make accurate judgments. 

This innovative strategy increases output, overcomes human limits, and assures sustainable farming. Recognizing 

the limits of current approaches, this work investigates adaptive quantum machine learning to transform smart 

farming. 
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 METHODOLOGY 

Data Preprocessing 

In smart farming applications, data preparation is an essential step in getting the data ready for models that 

use machine learning. The raw data has to be cleaned and prepared for analysis and model training transformed. 

These are typical preprocessing procedures for data from smart farming. 

 

Figure 1: System architecture 

       Figure 1 represents system architecture. 

Machine Learning Models 

Both conventional and quantum machine learning come after data preparation.models were trained and tested 

for smart farming. This approach evaluates old and novel methods for predicting agricultural productivity. 

Classical Machine Learning   

Model Selection: Linear Regression: The first or most fundamental classical machine learning method used 

was linear regression. The uniqueness of the issue—the goal variable is thought to be linearly dependent on the 

input characteristics, as seen in Figure 1—led to this choice. The approach is appropriate for the first stages of crop 

yield prediction modelling as it works in situations where the relationships are roughly linear. 

 

Figure 2: Baseline Linear Regression for crop yield prediction. 
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        Figure 2 shows Baseline Linear Regression for predicting crop yield. Training the Method: A linear regression 

model is built using the Linear Regression class in the scikit-learn module, a popular Python machine learning 

framework. A general characteristics across every grain manufacturing levels to train the model, including acreage, 

fertilizer use, and annual rainfall datum [13]. Crop yield was the variable of interest in this instance, and the model 

aimed to predict it. Figure 2 illustrates the process for this linear regression approach. Mathematically, The 

following illustrates the linear correlation between crop yield and several input characteristics: 
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Figure 3: Linear Regression mode predicting crop Yield flow diagram 

       Figure 3 shows the Linear Regression mode predicting crop Yield flow diagram. Model Learning: To generate 

the output closest to the target variable, the proper weights (coefficients) for each input attribute were established 

by researchers throughout the training phase of linear regression. These weights, also referred to as coefficients, 

allow the model to generate the necessary forecast from the provided data by describing the contribution of each 

attribute to the anticipated crop output. The mathematical objective of the method is to decrease the cost function. 
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Prediction: Following training, forecasted the concealed data in the model-based test data set. To evaluate the 

model's predictive accuracy crop yields, we therefore contrasted the expected and actual crop yield figures.  

Evaluation Metrics: A few measures used to evaluate the effectiveness of the model for linear regression.  

Mean Squared Error (MSE): The average yield values' squared differences. That was expected, and those were 

obtained. Because the predictions are so near the real values, the model performs better when the MSE results are 

lower. It is described as: 
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R-squared (R²): The model's systematic component, R2, shows how much the model can account for the 

volatility yield of crops, the dependent variable. In statistics, a better fit to the model is indicated by a greater R2., 

which means the model describes the data patterns more accurately.  

Mean Absolute Error (MAE): One statistic that averages the absolute differences. The mean absolute 

difference, or MAE, is the difference between the actual and anticipated values. The forecasts that are produced are 
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more in line with the actual numbers. When the MAE value is smaller, much like the MSE value. It is computed as: 
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Quantum Machine Learning 

The original objective was to increase quantum computing's efficiency and yield predictability potential. 

Therefore, compared to traditional models, QSVM and QML can analyze additional data dimensions, as shown in 

Figure 3. The higher representation density when dealing with multi-dimensional agricultural data makes it 

possible to further generalize associations and provide very precise forecasts. 

Variational Quantum Circuit (VQC) 

This is a hybrid quantum-classical approach, to be a quantum counterpart of multilayer perceptrons, which are 

classical neural networks. To determine the ideal parameters for classification problems, VQC uses the 

parametrized quantum circuit that has been trained under traditional optimization methods. The quantum circuit 

that varies is schematically depicted in Figure 1, which includes preprocessing the data with the help of feature map 

to encode it onto qubits; Ansatz is used to process the final qubit states, measure them, then optimize the circuit 

parameter θ. As a result, the following are the primary  

components of the VQC: 

1. Preprocessing: Before the data are encoded into qubits, they are prepared and preprocessed. 

2. Encoding of Yellow feature maps in the figure: A feature map is used to encode the preprocessed data. 

intoqubits.  

3. The steel-blue graphic depicts Ansatz of a variational quantum circuit: The Ansatz, sometimes referred to as 

variational quantum circuit, is a group of quantum gates and operations processing encoded data.  

4. Measurement (orange in the figure): The probability of various quantum states is obtained by measuring the 

qubits' final state.  

5. Parameter optimization (Optimizer): To enhance the result or classification, by tuning the parameters θ, like 

rotations of certain quantum gates, the variational quantum circuit is optimized. 

 

Figure 4:  Schematic depiction of the variational quantum circuit (VQC) 

       Figure 4 shows the Schematic depiction of the variational quantum circuit (VQC)  

There are some steps in the VQC. Here, used light blue for the phases that resembled traditional neural 

networks and yellow, steel-blue, & orange for the remaining steps [14]. 

Quantum Support Vector Machine (QSVM): Support vector machine is a popular family of machine learning 

methods that include regression and classification for applications. The kernel trick is a mathematical technique for 
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transforming the incoming data into a space with more dimensions. Where the classification issue becomes linearly 

separable, it is carried out using quantum circuits in QSVMs, a quantum variant of SVMs. In certain situations, 

such as when there are few training samples or high-dimensional input data, QSVMs may perform better than 

standard SVMs. 

Quantum Neural Network (QNN): The architecture and operations of Machine learning methods that make 

advantage of the human brain are called neural networks model. QNNs are a quantum variant of neural networks 

that optimize the weight and activate the function using quantum circuits.  

Quantum k-Nearest Neighbors (QkNN): The general concept The quantum K-nearest neighbor technique is 

compatible with the conventional K-nearest neighbor approach. Quantizing the data using the quantum K-nearest 

neighbor approach high time complexity portion of the K-nearest neighbour method. It lowers the algorithm's 

temporal complexity by using quantum computing's inherent parallelism. 

Quantum Boltzmann Machine (QBM): Boltzmann Machines optimizes weights using Markov Chain Monte 

Carlo (MCMC) techniques. Quantum Boltzmann machines, or QBMs, use quantum annealing to determine the 

ideal weights. In certain applications, such as generative modelling and unsupervised learning, QBMs may perform 

better than traditional Boltzmann machines. 

Quantum Convolutional Neural Network (QCNN): An image data processing technique called One method for 

deep learning is Convolutional Neural Networks (CNN). CCN comprises many primary layers, including the 

Convolution, Subsampling, and Fully Connected. Based on quantum computing, the Quantum Convolutional 

Neural Network (QCNN) is an advancement of CNN.  

RESULTS 

Table 1: Model Comparison 

Model MSE MAE R² 

Proposed Model: Variational Quantum Circuit (VQC) 28 3.8 0.97 

Linear Regression 45.12 5.3 0.87 

Quantum Support Vector Machine (QSVM) 38.45 4.85 0.9 

Quantum Neural Network (QNN) 30.1 4 0.95 

Quantum k-Nearest Neighbors (QkNN) 36.75 4.6 0.91 

Quantum Boltzmann Machine (QBM) 39 4.9 0.89 

Quantum Convolutional Neural Network (QCNN) 32.5 4.2 0.94 

 

Table 1 shows  the Model Comparison . The Proposed Model: Variational Quantum Circuit (VQC) has superior 

accuracy compared to all other models for crop production prediction, attaining the minimal Mean Squared Error 

(MSE) of 28.00. This demonstrates that it significantly reduces the prediction error relative to other models, such 

as conventional Linear Regression (MSE: 45.12) and other quantum methodologies like Quantum Neural Network 

(QNN, MSE: 30.10) and Quantum Convolutional Neural Network (QCNN, MSE: 32.50). The exceptional result 

underscores the promise of quantum machine learning in improving precision agriculture and augmenting crop 

yield forecasts. 
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Figure 5: Model Comparison in MSE 

                 Figure 5 shows the Model Comparison in MSE. The Proposed Model: Variational Quantum Circuit (VQC) 

surpasses all other models for Mean Absolute Error (MAE), attaining the lowest value of 3.8. Classical Linear 

Regression has the greatest Mean Absolute Error (MAE) at 5.3, indicating its inadequate capacity to manage the 

intricacies of agricultural information. Circuit (VQC) with a Mean Absolute Error (MAE) of 4.0, whilst the Quantum 

Convolutional Neural Network (QCNN) exhibits an MAE of 4.2 and the Quantum Support Vector Machine (QSVM) 

presents an MAE of 4.85, all indicating enhanced performance relative to conventional methodologies. The VQC's 

capacity to reduce error further substantiates its promise as the most accurate and efficient model for smart 

farming applications. 

 

Figure 6: Model Comparison in MAE 

Figure 6 displays Model Comparison in MAE. The Proposed Model: Variational Quantum Circuit (VQC) attains 

the maximum R-squared (R^2) 0.97, signifying that it accounts 97% of variation in crop production data, 

establishing it as a most proficient model for predictive accuracy. In contrast, conventional Linear Regression has a 

diminished (R^2) of 0.87, indicating its inadequacy in capturing intricate patterns. Among several quantum 

models, the Quantum Neural Network (QNN) achieves a (R^2) of 0.95, closely followed by about 0.94 for the 

Quantum Convolutional Neural Network (QCNN). Models like Quantum Support Vector Machine (QSVM) and 

Quantum K-Nearest Neighbors (QkNN) get reasonable (R^2) scores of 0.90 and 0.91, respectively. The findings 

underscore the VQC's exceptional capacity to analyze multi-dimensional agricultural datasets and provide accurate 

forecasts in smart farming. 
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Figure 7: Model Comparison in R(Square) 

 DISCUSSION 

Figure 7 shows the Model Comparison in R (Square).  This study's findings unequivocally demonstrate that the 

Variational Quantum Circuit (VQC) is an innovative model in agricultural production prediction. The VQC has 

exceptional performance metrics, attaining 28.00 for the mean squared error (MSE), 3.8 for the mean absolute 

error (MAE), and an R² value of 0.97, indicating its proficiency in making precise forecasts while accounting for 

97% of the variation in crop production data. Conversely, traditional Linear Regression, with an MSE of 45.12 and 

an MAE of 5.3, failed to adequately represent the intricacies of multi-dimensional agricultural datasets. Among 

quantum models, the QNN and QCNN exhibited commendable performance, attaining MSEs of 30.10 and 32.50, 

respectively, although they fell short of the accuracy shown by the VQC. The VQC's efficacy is attributed to its 

hybrid quantum-classical architecture, which effectively optimizes model parameters and encodes high-

dimensional data into quantum states, facilitating the identification of complex patterns. The achievement of the 

VQC paves the way for more investigation and use of quantum computing in practical agricultural systems. 

CONCLUSION 

This research emphasizes the promise of Variational Quantum Circuit (VQC) models for quantum machine 

learning in enhancing precision agriculture and augmenting agricultural output forecasting. The VQC consistently 

surpassed both classical and alternative quantum models, attaining the lowest Average Squared Error and Average 

Absolute Error (MSE: 28.00) (MAE: 3.8), as well as the greatest R-squared ((R^2): 0.97). The findings highlight 

the VQC's proficiency in managing high-dimensional agricultural information and identifying intricate correlations 

among input factors, including rainfall, fertilizer application, and acreage, to provide precise output predictions.  

Classical Linear Regression had considerable limits, shown by elevated prediction errors (MSE: 45.12, MAE: 

5.3, (R^2): 0.87), highlighting its insufficiency in tackling the intricacies of agricultural systems. The Quantum The 

QCNN, or quantum convolutional neural network, and Neural Network (QNN) demonstrated robust performance 

among the assessed quantum models. The hybrid quantum-classical design of the VQC offers a significant benefit 

by facilitating efficient parameter optimization and using quantum computing's capacity to investigate high-

dimensional feature spaces. This study provides a robust basis for using quantum advancements to transform the 

agriculture industry. 
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