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Object detection in dark areas or poor light images represents a big challenge in computer vision. 

The poor light images suffer from intensive noise, low contrast, and reduced visibility. Based on 

the affirmation, this paper proposes a fusion model based on deep learning with adaptive gamma 

correction (DLAGC).  It enhances the low-light image Based on the combination of the images 

that outcome from deep learning and adaptive gamma correction in pixel-level image fusion.  

The deep learning estimated pixel-level adjustment curves of RGB channels.  Moreover, the 

adaptive gamma correction value is calculated based on the value of the image Luminance factor 

and the average color factor, resulting in a locally adaptive value with each pixel.  The proposed 

model DLAGC has demonstrated the ability to improve image quality by enhancing lighting, 

highlighting fine details, and reducing noise while maintaining natural color balance.  To 

evaluate the proposed model, two reference datasets (LOL and Brightening Train) and three non-

reference datasets (DICM, LIME, UCID_V2).  The Experimental results show that the proposed 

model outperforms the state of the art of low light methods. The proposed model gets an average 

PSNR is 17.386, SSIM is 0.788, and FSIM is 0.92 for reference datasets. Meanwhile, the achieved 

average NIQE is 3.684 for nan-reference datasets. Therefore, the model provides a real-world 

solution for image enhancement under different lighting conditions. 

Keywords: Low light image enhancement, deep learning, adaptive gamma correction, contrast 

enhancement, color correction. 

 

INTRODUCTION 

Many fields in computer vision need clear and high-quality images [1], such as object detection in the dark area[2], 

self-driving[3], security monitoring, military[4], biomedicine, and aerospace[1]. Many factors affect the image, such 

as clarity and quality [5].  One of the most important factors is the low light, which causes the image to suffer from 

blurry and has low brightness, loss of detail, high noise[6], and poor visual quality[7]. These issues affect the identifies 

the object and texture in images [8]. The Low-light image technique enhancement is utilized to overcome these issues. 

Where these techniques aim to improve the dynamic range and contrast of low-light images to restore color details, 

remove noise, and recover lost information [9]. Figure 1 shows the distribution of intensity color to low light and 

enhanced image.   

 Over the past decade, many technical solutions have emerged to enhance low-light images, including traditional 

methods and modern techniques. Traditional methods, such as  Histogram equalization (HE), use rearranged values 

of the pixels to follow a uniform distribution[10]. Moreover, the Retinex theory model considers an image 

combination of reflectance and illumination[11]. Additionally, Gamma correction (GC)  promotes the brightness in 

the dark pixels[12]. However, these methods may result in excessive enhancement and strong noise of the enhanced 

image. 
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Figure. 1 distributed intensity color to the low light image and enhanced image. 

Modern techniques depend on deep learning [13], which works by extracting and analyzing features to improve 

lighting and image quality and restore lost details [14]. However, a solution based on deep learning can be challenging 

in terms of losing real fine details due to unrealistic features generated. In addition, deep learning may fail to improve 

images with certain types of noise or distortion.  

To overcome these challenges, this paper proposes a fusion model (DLAGC) to enhance low-light images by merging 

deep learning with Adaptive Gamma correction.  

This merging process aims to achieve a balance between restoring fine details and the image's visual quality while 

preserving natural colors and making the enhanced image closer to the real image. Image enhancement uses adaptive 

gamma to restore real fine details and enhance contrast. At the same time, deep learning works to enhance image 

lighting and restore lost colors.  

 The proposed model (DLAGC) focuses on achieving the following contributions. 

1. Designing a deep learning (DL) algorithm can estimate the pixel-wise curve and improve images in different 

light conditions without needing to reference images by using non-reference loss functions to avoid the risk 

of overfitting. 

2. Proposing adaptive gamma correction (AGC) method depends on the illuminance factor and average color 

rate of each pixel in the image to adjust the enhancement of adaptation dynamic characteristics of the scene, 

which results in ensuring the improvement of lighting, preserving details, and natural contrast of the image. 

3. The Proposed fusion image model results from combining the DL and AGC to achieve a balanced 

enhancement capability of restoring lost details from DL and the contrast by AGC to enhance the quality and 

realism of the resulting image. 

In this paper, the evaluation of the proposed solution (DLAGC) is based on the benchmark datasets, reference 

datasets (LOL, Brightening Train) non-reference datasets (DICM, LIME, UCID_V2). The results gained through the 

benchmark datasets delineate that the proposed DLAGC can enhance different image light conditions, such as 

completely dark, partially dark, and Backlight. Additionally, the results exhibit that, in the quantitative evaluation, 

the solution presents high results in (PSNR, SSIM, and FSIM) and the best result in NIQE. Additionally, the 

qualitative evaluation of (DLAGC) results in a clear image with high fine details for object recognition and very close 

to the original image. Moreover, this work represents a good step towards developing more efficient techniques for 

enhancing low-light images, which can be useful in many applications such as medical image processing, security 

surveillance, and night photography. 

The original Low light image                                    Enhanced image 
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The rest of the paper is organized as follows: Section 2 reviews some research on improving low-light images using 

traditional and modern methods. Section 3 presents the effect of gamma correction on image brightness. Section 4 

describes the model and proposed solution. Section 5 provides a discussion of the results. Finally, Section 6 ends with 

a conclusion. 

RELATED WORKS 

Generally, the background literature solutions for low-light images, divided into two branches for enhancing image 

low-light, include traditional and deep learning methods. The following sections will discuss these models. 

1- Traditional methods 

The histogram equation (HE) is used for enhancing the contrast in images by distributing the color more evenly 

gradations. The image in adaptive histogram equalization (AHE) [15] splits into multiple small blocks. That can lead 

to better enhancement results and increase the local contrast of the image. Contrast-limited adaptive histogram 

equalization (CLAHE) [16]establishes a threshold. It takes averages of the regions above the determined threshold 

for every gray level in order to prevent the possible blocky effect caused by AHE. Although these methods are simple, 

they often fail to preserve natural colors and increase noise. 

Retinex theory [17] assumes that an image could be decomposed into reflectance and illumination to restore natural 

lighting. Jobson et al. presented two Retinex variations: single-scale Retinex (SSR) [18] and multi-scale Retinex 

(MSR) [19]. SSR employs a Gaussian filter to smooth the illumination map initially; MSR develops on SSR by adding 

color restoration and multi-scale Gaussian filters. Xiu Ji et al. [20] presented a method based on the Retinex theory, 

enhancing illumination and improving image details. In this method, an adaptive color balance technique was used 

to handle the color variations in low-light images. The acquired image was converted from RGB space to HSV space, 

and the illumination and reflection components were precisely extracted using the multi-scale Gaussian function in 

combination with Retinex theory. The light components separated into zones with high and low light levels and 

enhanced the low light levels. They tried weighting and fusing the image's block areas, and after that they applied the 

detail enhancement algorithm for further improve the image's details. These methods suffer from unwanted colors 

(artifacts), and poor handling of high noise or fine details.  

Gamma correction is used to improve low-light images by adjusting brightness and contrast levels to match the image 

details. Jeon et al. [21] proposed an atmospheric scattering model to enhance low-light images using gamma 

correction prior depending on combined color spaces. The model is based on a transition map derived from the 

saturation of the original image in two color spaces. Because of estimating saturation is challenging, gamma 

correction converts the map into a function based on the original image's average and maximum values. An algorithm 

was also proposed to determine pixel-adaptive gamma values to avoid over- or under-enhancement. The model 

suffers from complications due to using more than one color space, and the restored images suffer from noise that 

reduces their quality when dealing with high opacity and low-efficiency cases. 

2- Deep learning methods 

Deep learning has led to the development of numerous innovative methods for improving low-light images. 

 Zhang et al. [22]  presented a simple network inspired by Retinex theory that splits images into two components: 

illumination to adjust the light and reflection to remove distortions. This approach relied on the principle of 

segmentation to improve the learning and regularization process. The network has trained using double-exposed 

images without a need for real reflection or illumination information. However, this approach does not solve the 

problem of poor contrast and tends to sacrifice the naturalness of the enhanced image. 

 Guo et al. [23] proposed zero-reference deep curve estimation (Zero-DCE) to enhance low-light images. A deep 

network has been trained to estimate pixel-level adjustment curves without a need for reference images. The model 

has trained to learn how to adjust the dynamic range of the input image by estimating the parameters of the curves 

that enhance the image during the forward pass. The unsupervised training used loss functions, including spatial 

consistency, correct exposure, color Constancy, and Luminance smoothness. The model suffers from the difficulty of 
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handling very low-light images where details are lost and the possibility of distortions and artifacts in complex-light 

images due to the general nature of the adjustments.  

Xiaoqian et al. [24] introduced a deep enhancement model called Degradation-Aware Deep Retinex Network 

(DADRN) to enhance low-light images. The model is based on the Retinex theory using a decomposition network, 

which divides low-light images into reflectance and illumination maps and treats the deterioration in reflectance 

during the decomposition stage. A module called the Degradation-Aware Module (DA Module) was introduced, 

which helps train the decomposition network acting as a restorer during training without any additional cost during 

testing. Although the technique aims to improve illumination and reflectance, images may need additional 

enhancement on an aesthetic level, such as contrast, color saturation, and fine detail clarity. 

 

EFFECT GAMMA CORRECTION ON IMAGE BRIGHTNESS 

Gamma Correction (GC) is a nonlinear mapping function used to improve the brightness of an image [25]. The 

primary purpose of GC in image processing is to enhance low-light images by controlling the parameter 𝛾, and the 

basic form of GC is depicted in Equation 2. 

 

                                             𝐼𝑥′=𝐴×(𝐼𝑥)𝛾                                               (2) 

Where: 𝐼𝑥′ is the output image value, 𝐼𝑥 is the input image, 𝛾 is the gamma value, A constant that is often set to 1 for 

simplicity in many applications. 

 

PROPOSED FUSION DEEP LEARNING WITH ADAPTIVE GAMMA CORRECTION (DLAGC) MODEL 

This model aims to reduce noise, avoid artificial colors, and restore fine details, such as object edges or fine textures, 

by restoring color balance to make the objects well-lit and close the enhanced image to the natural image. The steps 

of the proposed model for enhancing low-light images are shown in Figure 2.  

Step1. (Image preprocessing) 

1. Images are resized to 256x256. 

2. Values are normalized to be between 0 and 1 to facilitate mathematical processing. 

Step 2. (Image enhancing): Image enhancement is done in three stages 

1. Low-light image enhancement uses deep learning (DL).  

2. Low-light image enhancement uses adaptive gamma correction (AGC). 

3. Fusion of Enhanced Images  

The two outputs of the enhanced image from deep learning (DL) and adaptive gamma correction (AGC) are fused 

using a linear equation. 

 
Figure 2:  Steps of the proposed model DLAGC for enhancing low-light images 

A- Image preprocessing 

Low-light image data are prepared and processed for use in training deep learning or an image enhancement model 

using adaptive gamma correction. 

Resizing Images to 256×256 ensures that all images are consistent in size, making them feedable to the model. 
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Normalize the pixel value to be between 0 and 1 to prevent data loss due to overflow truncation and facilitate 

mathematical processing 

 

B- Image Enhancing 

1. Train model  

 Deep learning was trained using 3028 images from the SICE [26] part1 dataset. The dataset includes 589 sequences 

from indoor and outdoor scenes, containing 4,413 multi-exposure images. The resolution of most images is between 

3000×2000 and 6k×4k. The dataset is available on https://github.com/csjcai/SICE. Deep learning was trained with 

a total training epoch of 75, a learning rate of 0.0001, and a batch size for the training dataset of 14. 

 

2. Deep learning (DL) 

A simple and lightweight deep learning with six convolutional layers is used. The first three layers extract features 

from the original image. The fourth layer merges the extracted features from the second and third layers. The fifth 

layer merges the outputs of the fourth layer with the outputs of the first layer. The sixth layer generates alpha maps, 

which are utilized for image enhancement, producing 18 channels divided into six maps (𝛼1, …, 𝛼6), each one 

containing three RGB channels, as shown in Figure 3. The deep learning outputs pixel-specific parameter maps to 

apply LE curves. This paper applies the LE curve [23] as shown in Equation (2). We repeat the equation in six 

iterations to enhance images with better illumination and deeper color clarity. 

 

𝐿𝐸n(𝑥)= 𝐿𝐸n-1(𝑥)+𝛼n 𝐿𝐸n-1(𝑥) (1− 𝐿𝐸n-1 (𝑥))                                    (2) 

 

Where 𝑥 denotes the image pixel coordinates, 𝐿𝐸n enhanced versions of the given input (x), 𝛼n  are trainable curve 

parameters. 

 

 

Figure. 3:  Proposed deep learning (DL) 

Several non-reference losses, including as spatial consistency loss, exposure control loss, color constancy loss, and 

luminance smoothing loss, are utilized to allow the network to complete training with zero reference data. 

 

1. spatial consistency loss 

 The error Lspa is adjusted as Eq. (3) to avoid a significant variation in the value of a pixel's neighboring pixels 

between the original image and the enhanced version. 

 

𝐿𝑠𝑝𝑎 =
1

𝐾
∑ ∑ (|(𝑌𝑖𝑗∈Ω(𝑖)

𝑘
𝑖=1 − 𝑌𝑗)| − |(𝐼𝑖 − 𝐼𝑗)|)2                       (3) 

Where (i) is the four adjacent regions (top, down, left, and right) centered at the region’s center(i), and K is the local 

region's number, Y and I represent the average intensity value of the local region in the enhanced image and input 

image. 

https://github.com/csjcai/SICE
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2. Exposure Control Loss 

 It is referred to the distance between the average intensity value [23] as shown in Eq. (4). 

 

𝐿𝑒𝑥𝑝 =
1

𝑀
∑ |𝑦𝑘

𝑀
𝑘=1 − 𝐸|                                    (4) 

 

Where M is the number of local regions, where the regions are nonoverlapping, Y is the value of average intensity in 

a local region of the enhanced image, and E is the gray level of the ideal RGB color space.  

 

3. Color Constancy Loss 

 According to the grayscale color constancy model [27], the color average of each sensor channel is calculated across 

the entire image, and the color constancy loss principle is used to correct any color deviations that may appear in the 

enhanced image. An adjustment relationship is built between the three RGB channels to ensure that their average 

values are as close as possible to the enhanced average values after the enhancement process, as shown in Eq. (5). 

 

𝐿𝑐𝑜𝑙 = ∑ (𝐽𝑝
∀(𝑝,𝑞)∈𝜀 − 𝐽𝑞)2, 𝜀 = {(𝑅, 𝐺), (𝑅, 𝐵), (𝐺, 𝐵)}                                               (5) 

 

Where (p,q) refers to the set of channels belonging to top Ԑ, and Jp and Jq refer to the average intensity values of 

channels p and q. 

 

4. Luminance Smoothing Loss 

 To maintain a consistent relationship between surrounding pixels or to reduce the influence of brightness changes 

between neighboring pixels, a lightness smoothing loss is added to each curve mapping equation [28], as shown in 

Eq. (6). 

 

𝐿𝑡𝑣𝐴 =
1

𝑁
∑ ∑ (|∇𝑥𝑐∈𝜁

𝑁
𝑛=1 𝐴𝑛

𝑐 | + |∇𝑦𝐴𝑛
𝑐 |)2, 𝜁 = {𝑅, 𝐺, 𝐵}                                     (6) 

 

Where N refers to the number of iterations, 𝐴𝑛
𝑐  refer to the curve parameter map of each channel, ∇𝑥 refer to the 

horizontal gradient of the image, ∇𝑦 refer to the vertical gradient 

of the image, and 𝜁 refer to the RGB three-channel color. 

 

The Eq. (7) refers to the total loss of the functions 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑤1𝐿𝑠𝑝𝑎 + 𝑤2𝐿𝑒𝑥𝑝 + 𝑤3𝐿𝑐𝑜𝑙 + 𝑤4𝐿𝑡𝑣𝐴                            (7) 

     

where w1, w2, w3, and w4 refer to the weight of the loss value, which in this model is set to 250, 1.5, 9, and 12, 

respectively.  

 

3. Adaptive gamma correlation (AGC) 

The adaptive gamma correction (AGC) value is calculated from the calculation of the image brightness factor (L) and 

the average color factor (𝐼), which is calculated from the average of the RGB color channels. 

 

Luminance factor (L) 

This represents the brightness level of the image , as shown in Eq. (8)[5]. 

 

𝐿=0.2126𝐼𝑅
𝑐+0.7152𝐼𝐺

𝑐+0.0722𝐼𝐵
𝑐                                                     (8) 

 

Where 𝐼𝑅
𝑐, 𝐼𝐺

𝑐 , and 𝐼𝐵 
𝑐  are the mean channels of red, green, and blue, respectively. 

 Average colors factor (𝑰̌) 
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 It is the sum of the average three colors (𝜇𝑅, 𝜇𝐺, and 𝜇𝐵). as shown in Eq. (8) [5].  

 

𝐼 =  
𝜇𝑅+𝜇𝐺+𝜇𝐵

3
                                  (8) 

 

To calculate the adaptive gamma value, the average color (𝑰̌) and Luminance factor (L) 

value for each pixel in the low-light image was used, as shown in Eq. (9). 

 

𝛾 = 𝛾𝑐 + [(0.5 − 𝐿) × (1 − 𝐼)] − [(3 × 𝐿) + 𝐼]                             (9) 

 

Where 𝛾𝑐 is the control parameter in this model equal to 3.5. 

To obtain adaptive gamma, use Eq. 10 [5]. 

𝐼𝑥′ = A × (𝐼𝑥)
1

γ                            (10) 

 

Where 𝐼𝑥 is the input image, 𝐼𝑥′ is the enhanced image by adaptive gamma correction. 

 

4. Fusion  

To obtain high quality, high contrast, and clear details in this model's enhanced image, the enhanced image produced 

by deep learning is fusion with the enhanced image produced by adaptive gamma correction, as shown in Eq. (11). 

 

Fusion= ԐDDi + ԐGGi                            (11) 

 

where ԐD + ԐG = 1, Di is the Enhanced image from deep learning, Gi is the Enhanced image from adaptive gamma 

correction, and ԐD is the adjustment parameters of the enhanced image by deep learning and adaptive gamma 

correction, respectively. According to the experiment, the optimal result is ԐD= 0.5, ԐG= 0.5. 

DISCUSSION DISCUSSION  

1. Testing dataset 

The proposed model DLAGC uses five datasets to validate the performance of the model divided into two categories: 

reference and non-reference datasets. 

 

• Full reference dataset  

✓ The Low-Light dataset (LOL) contains 500 low/normal-light image pairs divided into 485 pairs for 

training and 15 pairs for evaluation. All images have a resolution of 400 × 600 pixels.  

✓ The low-light images contain noise produced during the photo capture process. The dataset consists 

of two categories: real photography pairs and synthetic pairs from raw images [29].  

✓ The Brightening Train dataset includes 1000 images[29].  

• Non-reference dataset 

✓ DICM Contains 69 images collected with commercial digital cameras of variable dimensions[30].  

✓ The LIME dataset includes 10 low-light images [11].  

✓ UCID_V2 dataset includes 886 images [29]. 

 

2. Quantitative Evaluation 

Three reference metrics, PSNR [31] (Peak to Signal to Noise), SSIM [31] (structural similarity index), and FSIM 

[32](Feature Similarity Index), calculate the difference between the enhancement result and the ground truth pixel-

by-pixel for full reference images, have been used to assess the effectiveness of low-light image enhancement 

quantitatively. Nonreference metrics, which compute the quality score without the ground truth, have been accepted 

for non-reference datasets. representative measure, the Natural Image Quality Evaluator (NIQE) [33]. 

Table 1 compares the proposed model's results with those of the set of methods on two benchmark datasets, LOL and 

Brightening Train, using PSNR, SSIM, and FSIM metrics. The proposed model significantly outperforms the other 

methods. 
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On the benchmark dataset LOL, the proposed model DLAGC achieved the highest values of PSNR (16.193), SSIM 

(0.688), and FSIM (0.905), demonstrating a high ability to improve low-light images while preserving structural and 

visual details. Methods such as LGMS [34] showed acceptable results in some metrics but were significantly lower 

than the proposed model in overall performance. The proposed model shows high efficiency in image improvement 

while balancing all metrics. On the Bright datasets, the proposed model DLAGC also outperforms PSNR (18.580), 

SSIM (0.889), and FSIM (0.936), demonstrating good image enhancement in diverse lighting conditions while 

preserving visual features. The proposed model DLAGC is a superior solution for image enhancement under complex 

lighting conditions, making it suitable for practical applications that require quality enhancement while preserving 

visual details. 

 

Table 1: Compares the proposed model's results with the set of methods on two benchmark datasets, LOL and 

Brightening Train, using PSNR, SSIM, and FSIM metrics. 

Algorithm 

Dataset 

LOL Brightening Train Average 

PSNR↑ SSIM↑ FSIM↑ PSNR↑ SSIM↑ FSIM↑ PSNR↑ SSIM↑ FSIM↑ 

IAGC [35] 11.260 0.468 0.864 14.056 0.663 0.861 12.658 0.565 0.862 

LGMS [34] 15.834 0.475 0.847 16.943 0.747 0.902 16.388 0.611 0.874 

LIEW [36] 12.678 0.638 0.880 16.943 0.747 0.902 14.810 0.692 0.891 

LLEI [21] 15.502 0.463 0.827 16.921 0.764 0.892 16.211 0.613 0.859 

Proposed model 

(DLAGC) 

16.193 0.688 0.905 18.580 0.889 0.936 17.386 0.788 0.92 

 

Table 2 shows the values measured using the non-reference NIQE metric, where the decrease in the value indicates 

an improvement in the visual quality and an increase in the naturalness of the image on three non-reference datasets 

(DICM, LIME, UCID_V2). According to the results, the proposed model DLAGC achieved the best result among the 

studied methods with an average of 3.684, followed by LLEI [21] with an average of 3.737, then IAGC [35] with an 

average of 3.832, followed by LIEW [36-37-38] with an average of 3.877, and the least LGMS [34] with an average of 

3.994. These numbers indicate that the proposed model DLAGC performed well compared to other methods in the 

non-reference standard and outperformed the methods in the reference metrics. 

 

Table 2 compares the proposed model's results with the set of methods on three nan reference datasets, DCIM, 

LIME, and UCID_V2, using the NIQE↓ metric. 

Algorithm 
Dataset Average 

DICM LIME UCID_V2 

IAGC [35] 4.007 3.948 3.542 3.832 

LGMS [34] 3.941 4.384 3.659 3.994 

LIEW [36] 3.804 4.096 3.733 3.877 

LLEI [21] 3.596 3.964 3.653 3.737 

Proposed model (DLAGC) 3.666 3.883 3.505 3.684 

 

3. Qualitative evaluation  

The optical performance of the proposed model DLAGC was examined and analyzed on a set of low-light images. The 

images used to test the proposed model were characterized by very low, mixed, or medium illumination, as shown in 

Figures 4 and 5. The proposed model proved its efficiency in detail clarity, color quality, and enhanced illumination 

quality. The proposed model produces more natural illumination than the original images, and fine details (such as 

sharp edges of the subject or repetitive patterns in the background) became more transparent and less visual noise. 

While in the IAGC model, the resulting images suffered from dark areas and there was a clear deviation in colors, 

which led to the lack of clarity of some details and poor visual quality. When looking at the color balance, there are 

no unwanted color tones (such as green or purple shades) in the images generated by the proposed model, which 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 890 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

often appear in traditional enhancement techniques when trying to increase the illumination level. Instead, the model 

succeeded in maintaining the correct and realistic colors of the subjects in the images while improving the dark and 

light tones in a balanced manner. This contributed to producing clearer and smoother images while maintaining 

natural color saturation. While in the LGMS model, the resulting images suffered from unwanted colors (artifacts), 

image blur, noise, and excessive lighting. In addition, the proposed model DLAGC can restore shadows and enhance 

bright areas (bright spots) without excessively smoothing details or amplifying noise, resulting in a clean and visually 

balanced scene. Compared to the LIEWS model, which produced images with low contrast and excessive smoothing, 

the LLEI model produced images with chromatic aberration, where the colors in the images were far from natural 

colors, in addition to the presence of noise and the lack of improvement in dark areas in the images. The integrated 

optical performance demonstrates the effectiveness of the proposed model DLAGC, which simultaneously improved 

lighting, removed noise, adjusted color, and preserved details. As a result, the resulting images have natural lighting 

and good visual quality, with more accurate and vivid details that avoid any chromatic aberration or noise in the 

highlights. 

 

 

Figure 4: Compares the result images of the proposed model DLAGC with the set images of methods on reference 

datasets LOL and Brightening Train 
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Figure 5: Compare the result images of the proposed model DLAGC with the set images of methods on non-
reference datasets DICM, LIME, and UCID_V2. 

CONCLUSION 

This paper introduces a fusion model based on combining deep learning and adaptive gamma correction to enhance 

low-light images. The proposed model DLAGC shows the ability to enhance image illuminations and restore fine 

details while reducing noise and maintaining color balance. The fusion model outperforms many related solutions in 

terms of qualitative and quantitative evaluation. The results obtained are based on different datasets highlighting the 

model impact, including high-efficiency low-light images while balancing all other metrics (such as complex 

illumination conditions). This model provides a practical solution to many challenges in low-light image processing 

fields. For example, critical medical image applications, security surveillance, computer vision systems, night 

photography, and autonomous driving.  
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