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I. Introduction 

Vowel recognition is a critical component in speech recognition systems, playing a significant role in 

both language understanding and accent recognition [1], [2]. While mainstream languages benefit from 

abundant resources for training robust systems, several under-resourced languages—such as the 

Mishing language—face challenges in automated speech processing. Speech recognition has evolved 

from feature extraction techniques like MFCCs in the 1980s to auditory-inspired PLP analysis in the 

1990s, robust HMM applications in the 2000s, and NN based advancements in the 2010s. This 

progression highlights decades of innovation leading to modern, deep learning-driven systems [3], [4], 

[5].  

The Mishing language, spoken primarily in regions of Northeast India, is an under studied and low 

resource language compared to more widely spoken languages in India. The Mishing language is the 

native language of Mishing community, an ethnic community residing Indian states of Assam and some 

parts of Arunachal Pradesh. As per the Census of India, 2011, there are 629,954 speakers. By creating a 

vowel pronunciation dataset for Mishing and developing a hybrid LSTM-CNN architecture to extract 

meaningful temporal and spectral features from vowel sounds, this study laying the groundwork for 

more advanced speech-based applications for this language. This study focus on a fundamental 

linguistic unit vowel. Vowel pronunciation is a logical first step in acoustic phonetics and speech 

recognition. Vowels are core elements of speech and their accurate identification is essential. The 
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This paper proposes a hybrid deep learning architecture that combines Long 

Short-Term Memory (LSTM) networks and Convolutional Neural Networks 

(CNNs) to enhance vowel recognition in the Mishing language, an under-

resourced Tibeto-Burman language of Northeast India. The model leverages 

temporal features extracted from Mel Frequency Cepstral Coefficients (MFCC) 

via an LSTM branch and spatial features obtained from Mel Spectrograms via 

a CNN branch. Experiments on a Mishing language vowel dataset demonstrate 

performance with a test accuracy of 95%, precision of 0.94, recall of 0.94, and 

F1-score of 0.94. Visualizations including training curves, precision/recall 

trends, and a confusion matrix validate the effectiveness of the proposed 

model. Our comprehensive experimental study highlights potential 

improvements in Mishing vowel recognition accuracy and provides a pathway 

for future research in Mishing speech recognition. 
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creation of an audio dataset, even if focused on vowels, is a significant contribution in itself for a low-

resource language like Mishing. This dataset can serve as a foundation for future research. 

Traditional approaches based on Gaussian Mixture Models (GMMs) and Hidden Markov Models 

(HMMs) have been outperformed by end-to-end deep learning methods, particularly in challenging 

acoustic scenarios [6], [7], [8]. Recent studies have shown that fusing different feature representations 

such as MFCCs and Mel Spectrograms can significantly improve recognition accuracy [10]. In this work, 

we focus on vowel cognition in the Mishing language by employing a dual-branch network where one 

branch processes MFCC inputs with LSTM units and the other processes Mel Spectrogram inputs with 

CNN layers. The model is evaluated on a dataset of approximately 7,000 vowel sounds, aiming to 

contribute both to speech recognition technology and to the digital preservation of the Mishing 

language. Feature extraction plays a pivotal role in modern speech recognition systems. While Mel 

Frequency Cepstral Coefficients (MFCCs) have been a staple, offering a compact representation of 

speech signals [12].  

Mishing, alternatively designated Mising or Miri, constitutes a language within the Eastern Tani branch 

of the Sino-Tibetan language family. It serves as the primary language of the Mishing ethnic group, 

concentrated predominantly in the Indian states of Assam and, to a lesser extent, Arunachal Pradesh. 

The 2011 Census of India recorded approximately 630,000 native speakers. Geographically, the 

language's distribution encompasses districts within Assam, including Dhemaji, Lakhimpur, 

Dibrugarh, Sibsagar, Jorhat, Majuli, Golaghat, and Tinsukia, as well as regions within Arunachal 

Pradesh, notably East Siang and Lower Dibang Valley [32]. 

The Mishing language has a phonological system of twenty-nine phonemes, fifteen of which are 

consonants and fourteen vowels. Mishing language, in absence of its own script uses the Roman script 

for its lexicographical determinants. Therefore, there is a difference between the spoken form and the 

written form. The vowels are categorized in two group- short vowels (Gomug Mukdeng in Mishing 

language) and long vowels (Gomug Mukyar in Mishing language) [33].  

Short 

vowels  

/o/ /a/ /i/ /u/ /e/ /é/ /í/ 

Long 

vowels 

/o:/ /a:/ /i:/ /u:/ /e:/ /é:/ /í:/ 

Table 1: Mishing Vowels 

The remainder of this paper is organized as follows: Section II examines related works, Section III 

presents the methodology and model architecture. Section IV illustrates the experimental outcomes, 

Section V offers a discussion on findings in the context of speech recognition on low resource languages, 

and Section VI concludes with future directions. 

II. Related Work 

Vowel recognition has been extensively studied in signal processing and speech recognition literature. 

Early foundational work by Rabiner and Juang [1] and Davis and Mermelstein [2] introduced effective 

techniques for extracting spectral features. The development of MFCC features [35] laid the 

groundwork for subsequent robust acoustic modeling. 

Hybrid systems that integrate deep neural networks have become a focus for recent research in speech 

processing [6]. CNNs have demonstrated exceptional ability to capture spatial features from 

spectrograms [7], while LSTM networks have been effectively used to harness temporal dynamics in 

sequential data [9]. Several studies have investigated the combination of CNN and LSTM networks in 

speech recognition tasks, achieving impressive results in speech recognition systems [16], [18]. 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 719 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Specialized studies targeting under-resourced languages are emerging. In particular, work by Weiss et 

al. [23] and Li and Deng [18] emphasizes the importance of adapting deep architectures to limited-data 

scenarios, such as those encountered in the Mishing language. Additional research has highlighted 

techniques for data augmentation for speech dataset [30], [31] in low-resource contexts [34]. Recent 

surveys [15], [18], [23] collectively indicate that hybrid models are an effective strategy in voice 

recognition. Their findings indicate that integrating various neural network architectures with deep 

learning enhances the accuracy and robustness of conventional statistical models. These investigations   

demonstrate that this concept is effective for both general speech recognition and the specific goal of 

vowel recognition. 

III. Methodology 

A. Dataset and Preprocessing 

The initial dataset comprises 4,200 recordings of vowel sounds from 10 native Mashing speakers, 300 

recording for each vowel in wav format. The Mashing language has 14 vowels. Each file is annotated 

with the corresponding vowel label. Audio signals are resampled at 41,000 Hz, and robust 

preprocessing is performed using the Librosa library [11]. To ensure consistency, each audio signal is 

either truncated or zero-padded to obtain a fixed sequence length of 100 frames. Data augmentation 

techniques used are time stretching, pitch shifting and noise adding [30], [31]. Pitch shifting essential 

for applications like voice recognition, allowing models to learn from variations in tone and intonation. 

Noise adding enhances model resilience to environmental interference, such as crowd or traffic noise. 

After augmentation the final dataset size is 5600 having 400 samples per vowel. Considering this small 

dataset, 15% of samples are used as test data.   

B. Hybrid LSTM-CNN Architecture 

This hybrid CNN-LSTM model employs two inputs, MFCC coefficients and mel spectrogram. They are 

extracted from the audio signal, which are then fed into the LSTM and CNN models, respectively.  

The use of thirty-nine coefficients of the Mel Frequency Cepstral Coefficients (MFCC) in the domain of 

speech recognition is a highly recognized and established methodology. This process involves the 

extraction of 12 Mel Cepstrum Coefficients, Log Energy, Delta (first-order derivative) coefficients, and 

Acceleration (second-order derivative) coefficients, which together form 39 coefficients. This 

methodology is extensively employed in emotion recognition, speaker identification, language 

processing and other various speech-related applications. Its efficacy has been examined across a 

diverse array of languages and datasets, establishing it as a conventional selection within the discipline. 

This comprehensive set of features is designed to capture important spectral components, which are 

essential for distinguishing between different phonemes, including vowels. [27]. In this process, first, 

the audio signal undergoes normalization and noise reduction to ensures that the signal is clean and 

consistent for feature extraction [24].  The signal is further divided into small frames, and a Hamming 

window is applied to each frame to minimize spectral leakage [25]. The short-time Fourier transform is 

applied to each frame to convert the time-domain signal into the frequency domain. The Mel filter bank 

is then used to scale the frequency spectrum according to the human ear's perception, emphasizing 

frequencies that are more relevant to human hearing [25], [26]. The logarithm of the Mel-scaled power 

spectrum is taken, and the discrete cosine transform (DCT) is applied to obtain the cepstral coefficients. 

Typically, the first 13 coefficients are extracted, representing the static features of the signal [26]. The 

core of the MFCC feature set consists of 12 coefficients that represent the short-term power spectrum 

of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of 

frequency. These coefficients are crucial for capturing the timbral texture of the speech signal. The log 

energy component captures the overall energy in the speech signal, which is important for 

distinguishing between voiced and unvoiced sounds. It is often included as the 13th coefficient. The 
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delta coefficients are the first-order derivatives of the static MFCCs, capturing the rate of change of the 

cepstral coefficients over time [23]. They provide dynamic information about the speech signal, which 

is essential for recognizing speech patterns and transitions. The acceleration coefficient, also known as 

delta-delta coefficients, are the second-order derivatives of the static MFCCs. They further enhance the 

dynamic representation of the speech signal by capturing the acceleration of the cepstral coefficients 

[27]. The inclusion of dynamic features such as delta and acceleration coefficients significantly improves 

the recognition accuracy of speech recognition systems. These features help in capturing the temporal 

dynamics of speech, which are crucial for distinguishing between similar-sounding phonemes [27], [28] 

In speech recognition using CNN model, Mel spectrogram is a preferred feature representation 

technique over MFCC. Mel spectrogram have several advantages, particularly in terms of capturing rich 

spectral features, better classification accuracy and improving robustness in various speech processing 

tasks. The time-frequency representations of Mel spectrogram match with human auditory perception. 

it is beneficial for tasks like emotion recognition and accent classification [29], [30]. For example, 

models using mel-scale amplitude spectrograms have achieved high classification results in accent 

classification, outperforming those using MFCCs [29]. In speaker recognition, CNNs trained on mel 

spectrograms, have shown higher accuracy compared to MFCCs [38]. In the case of music genre 

classification, Mel spectrograms have been used to capture complex genre-specific characteristics which 

shows high accuracy rates [31]. Compared to traditional spectrograms, Mel spectrogram provides a 

quasi-logarithmic frequency scale that mimics the human ear's perception. This advantage outperforms 

traditional spectrograms in classification accuracy [32]. 

Extracting mel spectrograms from audio signals is an important step in speech recognition task. This 

process involves converting audio signals into a visual representation as CNN is excel in image 

processing. Audio signals are often divided into overlapping segments to preserve the temporal 

information is preserved and to increase the training data. In case of speech emotion recognition where 

temporal dependencies are significant, these overlapping segments are important [33]. Then the audio 

signals are normalized for consistent amplitude levels across all data samples that also helps in reducing 

the impact of varying recording conditions [34]. For creating a mel spectrogram, Short Time Fourier 

Transform (STFT) is apply to the audio signal. This converts the time-domain signal into a frequency-

domain representation. This keep the track how the frequency of the signal changes over time [35]. 

Then this frequency-domain representation is passed through a mel filter bank. This mapping the 

frequencies to the mel scale. This step is essential as it matches the frequency representation with 

human auditory perception [35], [36]. To improve the representation of lower amplitude frequencies, 

the amplitude of the mel spectrogram is normally converted to a logarithmic scale which replicate the 

human ear's response to sound intensity [38]. 

In this study, the Mel Spectrogram utilizing 64 Mel bands and converted to decibel units, serves as a 

crucial feature extraction method in audio processing for Convolutional Neural Networks (CNNs). This 

approach enhances the representation of audio signals, making them more suitable for classification 

tasks. The normalization and reshaping of the spectrogram to include a channel dimension is essential 

for preparing the data for CNN input, facilitating effective learning and pattern recognition [32]. 

A diagram of the architecture is provided below: 
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Fig. 1: Two branch hybrid architecture of LSTM- CNN model 

C. Training Procedure 

The performance of LSTM-CNN hybrid models in speech recognition tasks is based on the choice of 

optimizer used. Among the popular optimizer, Adam is widely used due to its adaptive learning rate, 

ease of use in deep learning models [39]. In noisy environments, Adam achieved high accuracy rate in 

speaker classification tasks [40]. This hybrid model is trained using the Adam optimizer with categorical 

cross-entropy loss over 30 epochs and a batch size of 32. A custom callback monitors precision and 

recall on a held-out test set after each epoch, providing detailed insights into the model’s performance 

evolution [41]. Training and validation metrics (accuracy and loss) are plotted to diagnose convergence 

and potential overfitting. 

IV. Results 

A. Quantitative Metrics 

The test set evaluation yielded the following performance: 

Test Accuracy: 95% 

Precision: 0.94 (macro-averaged) 

Recall: 0.94 (macro-averaged) 

F1-Score: 0.94 (macro-averaged) 

These metrics indicate robust performance in vowel classification, with particularly high precision and 

recall across vowel classes, particularly given the challenges posed by a low-resource language such as 

Mishing. 
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Table II. Quantitative Evaluation Metrics 

 

B. Training Dynamics and Visualizations 

Figure 2 illustrates the training and validation accuracy and loss trends over the epochs. The curves 

demonstrate steady convergence with minimal overfitting, attributable to the dropout layers and 

balanced regularization techniques. Figure 3 presents the evolution of precision and recall across 

epochs as measured by the custom callback, while Figure 4 shows the confusion matrix that identifies 

class-specific misclassifications. 

 

Fig. 2- Accuracy/loss curves. 
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Fig.  3- Precision/recall curves. 

 

Fig. 4 - Confusion matrix. 

V. Discussion 

The high overall accuracy and balanced precision/recall values suggest that this hybrid LSTM-CNN 

model effectively leverages both temporal and spectral features. The confusion matrix indicates minor 

confusions between similar vowel sounds, which is consistent with the inherent acoustic similarities 

among certain vowels. These results are in line with recent advances in deep hybrid networks for speech 

recognition [7], [15], [42]. 

The experimental results demonstrate that fusing MFCC and Mel Spectrogram features via a hybrid 

LSTM-CNN architecture can yield high accuracy in vowel recognition accuracy. This study’s findings 

are comparable with earlier reports in the literature [43], [44]. However, the limited dataset size may 

influence the generalization capacity of the model, and future studies should explore larger datasets and 

more diverse vowel samples. 

Limitations of the current work include the dataset’s limited size and the challenges of real-world 

acoustic variability. Addressing these issues is expected to further enhance performance and 

applicability in practical speech processing systems.  

Performance of a simple hybrid LSTM model in speech recognition tasks can be improved through 

various techniques. These techniques enhance both the model architecture and the training process. 

These techniques include Data augmentation techniques [45] [47], use of attention mechanisms with 
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CNN biLSTM [46], techniques like noise injection, speed perturbation, and pitch perturbation [47] etc. 

For low resource language Synthetic Data Generation approached can be used [48]. 

VI. Conclusion 

In this paper, we presented a hybrid LSTM-CNN model for vowel recognition that effectively integrates 

MFCC and Mel Spectrogram features. The experimental results indicate that the proposed model 

achieves high accuracy and robust performance across multiple standard evaluation metrics. Future 

work will focus on expanding the dataset, exploring alternative hybrid architectures, and extending the 

approach to larger-scale speech recognition tasks. Also, using techniques like attention mechanisms 

and transfer learning from pre-trained audio models can be implemented to enhance performance, 

especially in low-resource settings. Real-time deployment and evaluation on speaker variations will also 

be considered to improve generalizability and practical applicability. 
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