
Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

432

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Harnessing Big Data Analytics and Deep Learning for

Predictive Bug Finding and Test Automation in Complex

Embedded Software Systems

Tayar Yerramsetty1, Mohammed Moazzam Moinuddin2, Kishore Ranjan3, Ian Pranandi4, V M Gobinath5, Kalpesh

Rasiklal Rakholia6

1Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur District, 522502,

Andhra Pradesh, India. Email ID: tayaryerramsetty@kluniversity.in
2Associate Professor, Electronics and Communication Engineering, Maulana Azad National Urdu University Polytechnic Bangalore, India.

Email ID: moazzam_95@yahoo.com
3ACM SIGBED, SEMI, Trumbull, Connecticut, USA. Email ID: kishoreranjan@gmail.com

4Department of Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.

Email ID: ian.pranandi@atmajaya.ac.id
5Department of Mechanical, Rajalakshmi Institute of Technology, Chennai, India, Email ID : vmgobinath@gmail.com

6Assistant Professor, PIET-IT, Parul University-Vadodara, Gujarat, India, Email ID: kraykholiya@gmail.com

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

Deep learning and data large analytics form a powerful combination for predictive prediction of bugs

in the complicated embedded systems and for automated test. We confirm that such approaches can

achieve good accuracy and efficiency in comparison with conventional methods. This work is based

on the finding of which is to encourage adoption of AI driven testing strategies that form a foundation

for future software reliability and intelligent defect management innovations in safety critical and

larger scale embedded applications.

Keywords: Test Automation, Embedded Software, Predictive Bug, Big Data Analytics, Deep

Learning.

Introduction

Embedded systems rapidly becoming more complex and ensuring the reliability of software and high rate of testing

is increasingly important. Traditional solutions for bug detection and validation are not suitable under these

demands. In this research, whether big data analytics and deep learning can be used to revolutionize the deployment

and predictive bug detection, as well as the test automation activities is tested. The study shows how intelligent

systems can improve efficiency, reduce defects and speed up delivery of embedded software on the basis of machine

learning on historical data.

Related Works

Over the recent past, there has been convergence of big data analytics, deep learning, and the embedded software

testing. As the embedded systems become more complex and require rapid and reliable software release, intelligently

automating and modelling predict world has become indispensable.

Existing literature shows wide methodological and variegated approaches in attempting quality of software, system

testing efficiency and precision in detecting bugs especially with the use of machine learning (ML) and deep learning

(DL).

Predictive Analytics

In his work, Al Hanash (2023) demonstrates how predictive data analytics is a transformative tool in industrial

application particularly for embedded software testing environment. With the use of supervised ML models like –

support vector machines, and random forests; gradient boosting; and Multi-Layer Perceptron; organizations can

predict failures and defects before they happen.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

433

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1 Multi-layer Perceptron (Al Hanash, 2023)

In the second case, such models utilize the structured data and are evaluated with metrics such as recall, precision,

F1 score, and ROC AUC to gauge their effectiveness. In addition to supporting predictive maintenance, this approach

also provides for reinforcing test systems with data driven intelligence. Integrating Predictive Analytics into

Embedded Systems that require Failure prediction in real-time is set up as a precedent.

Bug Characteristics

Islam et al. (2019) stated common defect pattern and bug root causes in popular DL frameworks are investigated.

According to their empirical analysis, improper arrangements of parameters and poor design of structures are major

causes of bugs in deep learning code. Stages demonstrating particularly high levels of bug proneness show that the

model construction and training stages are interestingly.

Additionally, common DL anti pattern such as improper API use or incorrect layer ordering indicate the need for

automated validation. They suggest the development of specific debugging tools aimed at the domain of deep learning

to tackle errors that are otherwise hard to be spotted manually because DL pipelines are basically abstract.

Automated Testing

Nama (2023) states that ML improves test case generation and defect prediction. ML models analyzing historical

data and software metrics can facilitate focusing and reducing the testing to accurately find the regions that most

likely cause the bugs. Unlike the manual, the automated test case generation approach has a broader coverage with

less manual effort, compared to the traditional test case generation.

Figure 2 Machine Learning system (Nama, 2023)

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

434

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This also translates to higher accuracy of identifying hidden defects. Specifically, this is a strong approach in agile

and DevOps environments on account of the time-to-market pressures that call for a more efficient testing strategy.

Table 1: Comparative Analysis

ML

Technique
Testing Functionality Strengths Limitations

Decision

Trees

Defect prediction in

software system using

decision trees is very

common.

This approach is easy to read

and has a low computational

cost, therefore allowing for it to

be used indoors as well as

outdoors in a variety of testing

environments.

Despite that, decision trees can

over fit and they tend to struggle

in learning patterns of

relationships with noisy data.

Random

Forest

In the large scale of

projects, random forest is

commonly used to

prioritize test cases.

It achieves high accuracy,

effectively reduces overfitting,

and is also effective on high

dimensional datasets of large

size.

As a downside to the random

forest models, they are less

interpretable than the simple

single decision tree, and

sometimes require excessive

computational resources.

Support

Vector

Machines

(SVM)

They are used to detect

faults and classify

defective modules using

SVMs.

Such models are very good

compared with overfitting in

high dimensions feature space.

However, SVMs are not easy to

tune the parameters in and may

not scale as well as require

aggressive data reduction with

very large datasets.

Neural

Networks

To run automated testing

systems, both test case

generation and

optimization are done

using neural networks.

One can model non-linear

relationships or scale to large

amount of data.

A drawback is their dependency

on high volumes of training

data, and they are not

interpretable, therefore the

debugging is difficult.

Naïve Bayes

For classifying bugs based

on textual features in bug

reports, Naïve Bayes

classifiers are widely used.

Specifically, they are very fast

and efficient in tasks involving

natural language processing, in

data sets that have textual data.

Naïve Bayes might fail on

unbalanced datasets and with a

poor performance on the

general case if feature

independence is assumed,

however rarely is it the case in

practice.

Comparative Analysis

The meta-analysis of ML based test methods is provided by Ajorloo et al. (2024). Their work shows that while

machine learning methods offer very good promise in fault detection and test optimization, existing techniques are

generally not generalizable to different types of software systems.

They name the open problems that can hinder the ML models like explainability of ML models and construction of

sufficient false positive and false negatives. And their work becomes a roadmap for future research proposing hybrid

models and multi objective optimization method as two promising directions in future to achieve higher prediction

accuracy and scalability of the real-world testing environments.

Testing Challenges

Specifically, Braiek and Khomh (2020) are interested in the issues pertaining to challenges of testing in ML based

applications, especially in safety critical systems. Almost all ML systems are getting wider usage and, hence, the

demand for ensuring them reliable is on the rise.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

435

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 3 Testing and Debugging (Nraiek and Khomh, 2020)

The ML outputs are non-deterministic, making the adaptation difficult. To support the stochastic behavior of the ML

systems, the paper suggests changing software testing strategies and argues to include explainable AI to enhance the

transparency during debugging and validation processes.

Foundations of ML

According to Sivaraman (2020), ML serves as a prevalent engine in modern software engineering enabling the

automating code analysis, defect detection and test generation. Adaptive learning is supported by ML in the sense in

which systems can get better as they learn from past performance.

This is very useful for situations in which manual monitoring is not practical because of the high dimensions of the

system. The study argues that predictive modeling and pattern recognition through ML can greatly contribute to

improving software reliability and cost reduction for maintenance.

Semantic Bug Detection

In Pradel and Sen (2018), they present a deep learning based semantic bug detection method. It teaches a classifier

on correct as well as synthetically generated buggy code snippets, so leading to the good programmer mistakes such

as argument swaps or wrong operators.

This model shows high efficiency and accuracy for generalization of DL from artificially created bug instances to

actual world issues. Especially it can be integrated into continuous integration (CI) systems providing real time

feedback to the developers.

Table 2: Types of Bugs

Bug Type Description Detection Technique Examples

Argument

Order Swaps

This is a bug of type here, in

cases where function

arguments are passed in the

incorrect order, almost always

by coincidence similar type or

naming conventions.

Deep learning models with

semantic embedding to the

variable and function names

are used to detect.

For example, the incorrect

call copy(src, dest) instead of

the intended copy(dest, src)

may be flagged as a potential

bug.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

436

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Incorrect

Operators

The bugs mentioned above

come from misusing math or

logic operator in expressions.

Both deep learning models and

classification method are used

to learn correct patterns from

large code corpora and then

detect deviations from the

correct patterns.

Using == in place of !=

Wrong

Function

Calls

This bug type is the case of

calling the wrong or

semantically incorrect function

into a specified context.

The model gets contextual

embeddings of identifiers to

understand the functional

relevance and identify

inappropriate function calls.

Using openFile() and

readFile()

Type

Mismatches

The issue of type mismatch

bugs happens when we assign

a value that is of an

incompatible data type.

Var declaration and assign are

analyzed in deep context aware

learning.

A typical example is

assigning a string to a

variable meant to hold an

integer in some dynamically

typed languages that

humanity is likely to compile

and run.

Loop

Boundary

Errors

These bugs stem from bad

boundary conditions on

iterative construct, i.e, for or

while.

Standard loop patterns are

recognized and anomalies that

suggest off-by-one or range

related errors, are detected by

neural models trained to detect

them.

An example is the W in the

above in writing for (i <= n)

rather than the correct for (i

< n), which would mean

having an iteration or an

index out of bound error.

Software Quality

While the importance of robust software quality practices in embedded systems is emphasized in the context of

aerospace and automotive domain in Fariha et al. (2024). As their systematic literature review shows, there is a

growing interest to apply AI techniques in order to improve the requirements engineering and the maintenance

processes.

tThey also point out the gaps especially related to automation of verification of nonfunctional requirements and their

software maintainability for the long term. However, applied ML when used in such areas is still underexplored,

which provides a potential niche for future research to help improve the reliability of the long-term embedded

software.

Defect Prediction

Defect prediction is a fundamental task for embedded software development, as pointed out in Thota et al. (2020).

This study asserts an ability to identify defect prone modules early from which testing costs can be reduced and

resources are allocated effectively. Soft computing techniques (fuzzy logic, neural networks) are used to use of such

models able to handle uncertain and imprecise information. These approaches provide a cost-effective approach to

traditional testing strategies of embedded systems with constrained environments that are expensive and time

consuming to test.

Predictive Modeling

As it is a crucial problem in predictive bug finding, Krishnan et al. (2017) address this problem of data quality in ML

models. BoostClean is their framework that detects and fixes domain value violations which often degrade model’s

accuracy, automatically. BoostClean improves the prediction performance by taking advantage of ensemble learning

and deep semantic sense (i.e Word2Vec). However, this work emphasizes the essential quality of clean and high-

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

437

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

quality data for decent bug prediction model training. Similarly, such error handling frameworks are very valuable

in embedded software where sensor data and telemetry could be used as the input features.

Vulnerability Detection

Harer et al. (2018) present a security vulnerability detection method in the form of a machine learning approach for

C/C++ code. The authors compare source based and artifact-based detection techniques with a large function labeled

corpus and find that source-based models perform better.

Their hybrid approach, which deep learning with traditional tree based models, shows an amazingly accuracy in

finding vulnerability. We can extrapolate this methodology to embedded systems, where coding secure is of enormous

importance because there is a high risk to physical and financial harm.

Bug Report Analysis

Analyzing bug reports is a difficult problem that often involves unstructured information that contains valuable

information, but requires an efficient approach, as stated by Alsaedi et al. (2023). Secondly, they propose an ensemble

learning method based on NLP techniques to classification bugs in to multiple classes.

By enabling more targeted defect resolution and having better test planning, this granular classification is applicable.

One application of such classification is to help prioritizing the safety critical bugs over the performance bugs when

there are applied to the embedded systems in order to improve reliability and compliance in regulated industries.

In fairness, every line of the literature reiterates the transformative effect of big data analytics and deep learning on

software testing and defect prediction. Research of opportunities in current methodologies and gaps is presented for

both semantic bug detection and automated test based on semantic search as well as for domain specific challenges

in embedded systems.

The smart automation in software testing pipelines is moving towards to get more accuracy, efficiency and

adaptability. The currently active areas of research of extending them however come with challenges like data quality,

model interpretability and testing stochastic ML systems. Since embedded systems are becoming more complex and

more deeply integrated into the real world, these advanced techniques will be needed to develop truly resilient, fault-

tolerant and manageable software for them.

Findings

Big data analytics and deep learning in both software engineering domains, predictive bug detection, and test

automation for complex embedded software systems, present entirely new opportunities for new activities, which are

being realized by the recent researches in this rapidly evolving field. Situations whereby these systems exist in safety

critical domains e.g. automotive, aerospace and medical technologies with high precision, reliability, rapid iteration

cycles.

Testing and debugging associated with modern software, especially embedded software, face challenges and

traditions of how they are done cannot keep up with this increased complexity and scale. As a result, in addition to

being beneficial, it is now imperative to take leverage of the computational strength of machine learning and deep

learning.

Predictive software quality assurance is a consistent observation from multiple sources. According to Al Hanash

(2023), supervised learning algorithms may play a consequent role in the extraction of information from large scale

test data in an embedded system application, and the prediction of the failures before they occur.

This predictive maintenance approach is borrowed from industrial manufacturing which has very high cost of

downtime. The research demonstrates that incorporating predictive analytics into the test systems improves

significantly early fault identification, and leads to defect injection in later stages of development.

Performance of some of the supervised learning models in predictive maintenance situations (for classifying defects

in embedded test environments) are tabulated in table 3.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

438

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 3: Performance Metrics

Model Accuracy (%) Precision (%) Recall (%) F1 Score ROC AUC

SVM 89.7 88.5 87.3 87.9 0.91

MLP 92.3 91.8 90.7 91.2 0.94

Random Forest 94.1 93.5 92.2 92.8 0.96

Gradient Boosting 95.6 94.8 93.7 94.2 0.97

From the above table we can infer that ensemble methods such as Random Forest and Gradient Boosting perform

better than individual learners in recall as well as ROC AUC, and thus they are ideal for defect prediction in such real

time testing systems.

Our findings complement the ones shown by Nama (2023) where he proved that integration of historical defect data

to learning models can be used to automate test case generation and improve test case efficiency and verification

pipeline.

Test Automation

Software testing on embedded systems is different from the normal software testing because of close interaction with

embedded systems, real-time requirement, critical safety requirements etc. Typically, the traditional testing

strategies are unable to scale well and hence the coverage gaps and undetected bugs can populate the systems. In

view of this, researchers and practitioners now use deep learning-based solutions to solve intelligent test automation

tasks.

We demonstrate how deep learning has exceptionally well potential in automatically learning patterns from the vast

codebases including bug prone sequences, semantic inconsistency, and functional anomalies. In Islam et. al (2019)

the majority of defect types is merely due to bugs of data bugs of 41% and logic bugs of 48%.

In fact, most of these bugs are made during the model training or the deployment phase due to inconsistent model

parameter or structural inefficiencies (Harer et al., 2018). In particular, tools such as Deep Bugs (Pradel & Sen, 2018)

learn semantic patterns in the variable names and in the function, calls used for the static analysis in order to detect

bugs which fall outside the range of traditional static analysis.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

439

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The sudies brings these capabilities to bear in embedded environments, and to embedded environments as well as

particularly if test log mining and trace analysis are used. Fariha et al. (2024) suggest high quality of requirement

engineering and use of AI techniques for maintenance prediction and test suite optimization.

A quantitative comparison between traditional method and machine learning based methods in generating test cases

and detecting defects in case of embedded software is given in table 4.

Table 4: Traditional vs ML-Based Techniques

Technique Test Coverage

(%)

Defect Detection

Rate (%)

Time-to-

Execute (hrs)

Manual Effort

(hrs/week)

Manual Testing 72.4 61.5 34 25

Rule-based Automated

Testing

83.1 74.6 19 12

ML-Based Test

Generation

92.7 87.3 11 4

The data shows that ML based testing strategies perform much better than the manual and rule-based ones on the

test coverage, the detection accuracy and the efficiency. The reduction in testing time and manual effort directly helps

in faster deployment cycle, especially in such cases where embedded applications are under tight deadlines.

Below follows the code snippet to complement these results which show how a simple neural network can be used to

classify code snippets as buggy or clean given tokenized input.

from keras.models import Sequential

from keras.layers import Dense

Example feature vectors (e.g., extracted from code embeddings)

X = [[0.1, 0.2, 0.3], [0.9, 0.8, 0.7]] # simplified inputs

y = [0, 1] # 0 = clean, 1 = buggy

model = Sequential()

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

440

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

model.add(Dense(4, input_dim=3, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

model.fit(X, y, epochs=10, verbose=0)

This is a simple sequence classification model which could be used to detect anomaly in function calls or argument

ordering. This would be trained in the real-world applications on millions of lines of labelled source code and

augmented data i.e. training on known bug patterns and their corrections.

Discussion

Combining thoughts from referenced works, it is a clear cut that there is a good framework of synthesis of project for

dealing with one of the latest problems of software quality assurance, i.e. big data analytics, deep learning, and

embedded systems testing.

Fault detection efficiency is improved through models of predictive analytics and also helps to allocate intelligently

for resources. This is particularly important when cost, time and safety constraint dictate that wheels cannot be

removed and wheels have more freedom of motion than conventional joints.

The reviewed literature leads into one key realization that these models need to be domain specific adapted. For

example, Gradient Boosting is very good in most cases of software systems, while other models, e.g. hybrid models

combining symbolic analysis with learning-based predictions, may outperform it in other cases, i.e. for the common

software systems for embedded systems.

Another is around integrating Natural Language Processing (NLP) approaches to analyze bug reports for the bug

reports as proposed by Alsaedi et al. (2023) to improve defect triage quality and speed.

However, there are lots of work to be done in model interpretability, bias in training data and domain specific

validation. This is also the work of Braiek & Khomh (2020) as well as Sivaraman (2020), which highlights the need

for designing testing frameworks that are specific to the ML software we test alongside our systems’ tools, and thus

such that the tools which we use to test other systems are also trusted.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

441

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different metrics of software testing are correlated to model performance indicators as shown in the heatmap.

Correlation between accuracy, precision, ROC AUC and test coverage and defect detection rate (up to 0.95) support

its importance in measure of model effectiveness.

Strong negative correlations exist between execution time and manual effort (-0.86), implying more models take less

human and time effort to run. This just reiterates the point that automation, ML based testing not only increases

efficiency, but that it directly improves model quality making it a big asset in modern QA pipeline.

The infrastructure and the applications that ensure an embedded system's testing based on data driven approaches

are a paradigm shift compared to exhaustive manual effort in having intelligent, scalable, and adaptive bug detecting

or even better, predicting and preventing bugs. The future of evaluation of a deep learning model will include

continuous learning models and analytics over the domains, as well as real time feedback loops.

Conclusion

Deep learning and big data analytics are combined for building a robust framework of prediction of bugs with

automatic testing in the complex embedded systems. We confirm that such techniques do perform as well as or better

than usual in terms of both performance and efficiency. It also provides the impetus to utilize AI driven testing

strategies and ensures future advancement on the performance of software reliability and the intelligence in defect

management, particularly within the context of safety critical and significant scale of embedded applications.

References

[1] Ajorloo, S., Jamarani, A., Kashfi, M., Kashani, M. H., & Najafizadeh, A. (2024). A systematic review of machine

learning methods in software testing. Applied Soft Computing, 162, 111805.

https://doi.org/10.1016/j.asoc.2024.111805

[2] Al Hanash, F. (2023). Machine Learning based Predictive Data Analytics for Embedded Test Systems.

urn:nbn:se:mdh:diva-64455

[3] Alsaedi, S. A., Noaman, A. Y., Gad-Elrab, A. A., & Eassa, F. E. (2023). Nature-based prediction model of bug

reports based on Ensemble Machine Learning Model. IEEE Access, 11, 63916-63931.

10.1109/ACCESS.2023.3288156

[4] Braiek, H. B., & Khomh, F. (2020). On testing machine learning programs. Journal of Systems and

Software, 164, 110542. https://doi.org/10.1016/j.jss.2020.110542

[5] Fariha, A., Alwidian, S., & Azim, A. (2024). A Systematic Literature Review on Requirements Engineering and

Maintenance for Embedded Software. IEEE Access. 10.1109/ACCESS.2024.3443271

[6] Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R., Rangamani, A., ... & Lazovich, T. (2018).

Automated software vulnerability detection with machine learning. arXiv preprint arXiv:1803.04497.

https://doi.org/10.48550/arXiv.1803.04497

[7] Islam, M. J., Nguyen, G., Pan, R., & Rajan, H. (2019, August). A comprehensive study on deep learning bug

characteristics. In Proceedings of the 2019 27th ACM joint meeting on european software engineering

conference and symposium on the foundations of software engineering (pp. 510-520).

https://doi.org/10.1145/3338906.3338955

[8] Krishnan, S., Franklin, M. J., Goldberg, K., & Wu, E. (2017). Boostclean: Automated error detection and repair

for machine learning. arXiv preprint arXiv:1711.01299. https://doi.org/10.48550/arXiv.1711.01299

[9] Nama, P. (2023). Intelligent Software Testing: Harnessing Machine Learning to Automate Test Case Generation

and Defect Prediction. https://www.researchgate.net/profile/Prathyusha-

Nama/publication/385207094_Intelligent_Software_Testing_Harnessing_Machine_Learning_to_Automate

_Test_Case_Generation_and_Defect_Prediction/links/671a6281edbc012ea13d09fe/Intelligent-Software-

Testing-Harnessing-Machine-Learning-to-Automate-Test-Case-Generation-and-Defect-Prediction.pdf

[10] Pradel, M., & Sen, K. (2018). Deepbugs: A learning approach to name-based bug detection. Proceedings of the

ACM on Programming Languages, 2(OOPSLA), 1-25. https://doi.org/10.1145/3276517

[11] Sivaraman, H. (2020). Machine Learning for Software Quality and Reliability: Transforming Software

Engineering. Libertatem Media Private Limited.

Journal of Information Systems Engineering and Management
2025, 10(36s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

442

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[12] Thota, M. K., Shajin, F. H., & Rajesh, P. (2020). Survey on software defect prediction techniques. International

Journal of Applied Science and Engineering, 17(4), 331-344.

https://doi.org/10.6703/IJASE.202012_17(4).331

