
Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

432 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Harnessing Big Data Analytics and Deep Learning for 

Predictive Bug Finding and Test Automation in Complex 

Embedded Software Systems  
 

Tayar Yerramsetty1, Mohammed Moazzam Moinuddin2, Kishore Ranjan3, Ian Pranandi4, V M Gobinath5, Kalpesh 

Rasiklal Rakholia6 

1Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur District, 522502, 

Andhra Pradesh, India. Email ID: tayaryerramsetty@kluniversity.in 
2Associate Professor, Electronics and Communication Engineering, Maulana Azad National Urdu University Polytechnic Bangalore, India. 

Email ID: moazzam_95@yahoo.com 
3ACM SIGBED, SEMI, Trumbull, Connecticut, USA. Email ID: kishoreranjan@gmail.com 

4Department of Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia. 

Email ID: ian.pranandi@atmajaya.ac.id 
5Department of Mechanical, Rajalakshmi Institute of Technology, Chennai, India, Email ID : vmgobinath@gmail.com  

6Assistant Professor, PIET-IT, Parul University-Vadodara, Gujarat, India, Email ID: kraykholiya@gmail.com 

 

 

ARTICLE INFO ABSTRACT 

Received: 18 Dec 2024 

Revised: 10 Feb 2025 

Accepted: 28 Feb 2025 

Deep learning and data large analytics form a powerful combination for predictive prediction of bugs 

in the complicated embedded systems and for automated test. We confirm that such approaches can 

achieve good accuracy and efficiency in comparison with conventional methods. This work is based 

on the finding of which is to encourage adoption of AI driven testing strategies that form a foundation 

for future software reliability and intelligent defect management innovations in safety critical and 

larger scale embedded applications. 
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Introduction 

Embedded systems rapidly becoming more complex and ensuring the reliability of software and high rate of testing 

is increasingly important. Traditional solutions for bug detection and validation are not suitable under these 

demands. In this research, whether big data analytics and deep learning can be used to revolutionize the deployment 

and predictive bug detection, as well as the test automation activities is tested. The study shows how intelligent 

systems can improve efficiency, reduce defects and speed up delivery of embedded software on the basis of machine 

learning on historical data. 

Related Works 

Over the recent past, there has been convergence of big data analytics, deep learning, and the embedded software 

testing. As the embedded systems become more complex and require rapid and reliable software release, intelligently 

automating and modelling predict world has become indispensable.  

Existing literature shows wide methodological and variegated approaches in attempting quality of software, system 

testing efficiency and precision in detecting bugs especially with the use of machine learning (ML) and deep learning 

(DL). 

Predictive Analytics  

In his work, Al Hanash (2023) demonstrates how predictive data analytics is a transformative tool in industrial 

application particularly for embedded software testing environment. With the use of supervised ML models like – 

support vector machines, and random forests; gradient boosting; and Multi-Layer Perceptron; organizations can 

predict failures and defects before they happen.  
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Figure 1 Multi-layer Perceptron (Al Hanash, 2023) 

In the second case, such models utilize the structured data and are evaluated with metrics such as recall, precision, 

F1 score, and ROC AUC to gauge their effectiveness. In addition to supporting predictive maintenance, this approach 

also provides for reinforcing test systems with data driven intelligence. Integrating Predictive Analytics into 

Embedded Systems that require Failure prediction in real-time is set up as a precedent. 

Bug Characteristics 

Islam et al. (2019) stated common defect pattern and bug root causes in popular DL frameworks are investigated. 

According to their empirical analysis, improper arrangements of parameters and poor design of structures are major 

causes of bugs in deep learning code. Stages demonstrating particularly high levels of bug proneness show that the 

model construction and training stages are interestingly.  

Additionally, common DL anti pattern such as improper API use or incorrect layer ordering indicate the need for 

automated validation. They suggest the development of specific debugging tools aimed at the domain of deep learning 

to tackle errors that are otherwise hard to be spotted manually because DL pipelines are basically abstract. 

Automated Testing  

Nama (2023) states that ML improves test case generation and defect prediction. ML models analyzing historical 

data and software metrics can facilitate focusing and reducing the testing to accurately find the regions that most 

likely cause the bugs. Unlike the manual, the automated test case generation approach has a broader coverage with 

less manual effort, compared to the traditional test case generation.  

 

Figure 2 Machine Learning system (Nama, 2023) 
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This also translates to higher accuracy of identifying hidden defects. Specifically, this is a strong approach in agile 

and DevOps environments on account of the time-to-market pressures that call for a more efficient testing strategy. 

Table 1: Comparative Analysis 

ML 

Technique 
Testing Functionality Strengths Limitations 

Decision 

Trees 

Defect prediction in 

software system using 

decision trees is very 

common. 

This approach is easy to read 

and has a low computational 

cost, therefore allowing for it to 

be used indoors as well as 

outdoors in a variety of testing 

environments. 

Despite that, decision trees can 

over fit and they tend to struggle 

in learning patterns of 

relationships with noisy data. 

Random 

Forest 

In the large scale of 

projects, random forest is 

commonly used to 

prioritize test cases. 

It achieves high accuracy, 

effectively reduces overfitting, 

and is also effective on high 

dimensional datasets of large 

size. 

As a downside to the random 

forest models, they are less 

interpretable than the simple 

single decision tree, and 

sometimes require excessive 

computational resources. 

Support 

Vector 

Machines 

(SVM) 

They are used to detect 

faults and classify 

defective modules using 

SVMs. 

Such models are very good 

compared with overfitting in 

high dimensions feature space. 

However, SVMs are not easy to 

tune the parameters in and may 

not scale as well as require 

aggressive data reduction with 

very large datasets. 

Neural 

Networks 

To run automated testing 

systems, both test case 

generation and 

optimization are done 

using neural networks. 

One can model non-linear 

relationships or scale to large 

amount of data. 

A drawback is their dependency 

on high volumes of training 

data, and they are not 

interpretable, therefore the 

debugging is difficult. 

Naïve Bayes 

For classifying bugs based 

on textual features in bug 

reports, Naïve Bayes 

classifiers are widely used. 

Specifically, they are very fast 

and efficient in tasks involving 

natural language processing, in 

data sets that have textual data. 

Naïve Bayes might fail on 

unbalanced datasets and with a 

poor performance on the 

general case if feature 

independence is assumed, 

however rarely is it the case in 

practice. 

 

Comparative Analysis  

The meta-analysis of ML based test methods is provided by Ajorloo et al. (2024). Their work shows that while 

machine learning methods offer very good promise in fault detection and test optimization, existing techniques are 

generally not generalizable to different types of software systems.  

They name the open problems that can hinder the ML models like explainability of ML models and construction of 

sufficient false positive and false negatives. And their work becomes a roadmap for future research proposing hybrid 

models and multi objective optimization method as two promising directions in future to achieve higher prediction 

accuracy and scalability of the real-world testing environments. 

Testing Challenges  

Specifically, Braiek and Khomh (2020) are interested in the issues pertaining to challenges of testing in ML based 

applications, especially in safety critical systems. Almost all ML systems are getting wider usage and, hence, the 

demand for ensuring them reliable is on the rise.  
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Figure 3 Testing and Debugging (Nraiek and Khomh, 2020) 

The ML outputs are non-deterministic, making the adaptation difficult. To support the stochastic behavior of the ML 

systems, the paper suggests changing software testing strategies and argues to include explainable AI to enhance the 

transparency during debugging and validation processes. 

Foundations of ML  

According to Sivaraman (2020), ML serves as a prevalent engine in modern software engineering enabling the 

automating code analysis, defect detection and test generation. Adaptive learning is supported by ML in the sense in 

which systems can get better as they learn from past performance.  

This is very useful for situations in which manual monitoring is not practical because of the high dimensions of the 

system. The study argues that predictive modeling and pattern recognition through ML can greatly contribute to 

improving software reliability and cost reduction for maintenance. 

Semantic Bug Detection  

In Pradel and Sen (2018), they present a deep learning based semantic bug detection method. It teaches a classifier 

on correct as well as synthetically generated buggy code snippets, so leading to the good programmer mistakes such 

as argument swaps or wrong operators.  

This model shows high efficiency and accuracy for generalization of DL from artificially created bug instances to 

actual world issues. Especially it can be integrated into continuous integration (CI) systems providing real time 

feedback to the developers. 

Table 2: Types of Bugs 

Bug Type Description Detection Technique Examples 

Argument 

Order Swaps 

This is a bug of type here, in 

cases where function 

arguments are passed in the 

incorrect order, almost always 

by coincidence similar type or 

naming conventions. 

Deep learning models with 

semantic embedding to the 

variable and function names 

are used to detect. 

For example, the incorrect 

call copy(src, dest) instead of 

the intended copy(dest, src) 

may be flagged as a potential 

bug. 
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Incorrect 

Operators 

The bugs mentioned above 

come from misusing math or 

logic operator in expressions. 

Both deep learning models and 

classification method are used 

to learn correct patterns from 

large code corpora and then 

detect deviations from the 

correct patterns. 

Using == in place of != 

Wrong 

Function 

Calls 

This bug type is the case of 

calling the wrong or 

semantically incorrect function 

into a specified context. 

The model gets contextual 

embeddings of identifiers to 

understand the functional 

relevance and identify 

inappropriate function calls. 

Using openFile() and 

readFile()  

Type 

Mismatches 

The issue of type mismatch 

bugs happens when we assign 

a value that is of an 

incompatible data type. 

Var declaration and assign are 

analyzed in deep context aware 

learning. 

A typical example is 

assigning a string to a 

variable meant to hold an 

integer in some dynamically 

typed languages that 

humanity is likely to compile 

and run. 

Loop 

Boundary 

Errors 

These bugs stem from bad 

boundary conditions on 

iterative construct, i.e, for or 

while. 

Standard loop patterns are 

recognized and anomalies that 

suggest off-by-one or range 

related errors, are detected by 

neural models trained to detect 

them. 

An example is the W in the 

above in writing for (i <= n) 

rather than the correct for (i 

< n), which would mean 

having an iteration or an 

index out of bound error. 

 

Software Quality  

While the importance of robust software quality practices in embedded systems is emphasized in the context of 

aerospace and automotive domain in Fariha et al. (2024). As their systematic literature review shows, there is a 

growing interest to apply AI techniques in order to improve the requirements engineering and the maintenance 

processes.  

tThey also point out the gaps especially related to automation of verification of nonfunctional requirements and their 

software maintainability for the long term. However, applied ML when used in such areas is still underexplored, 

which provides a potential niche for future research to help improve the reliability of the long-term embedded 

software. 

Defect Prediction  

Defect prediction is a fundamental task for embedded software development, as pointed out in Thota et al. (2020). 

This study asserts an ability to identify defect prone modules early from which testing costs can be reduced and 

resources are allocated effectively. Soft computing techniques (fuzzy logic, neural networks) are used to use of such 

models able to handle uncertain and imprecise information. These approaches provide a cost-effective approach to 

traditional testing strategies of embedded systems with constrained environments that are expensive and time 

consuming to test. 

Predictive Modeling 

As it is a crucial problem in predictive bug finding, Krishnan et al. (2017) address this problem of data quality in ML 

models. BoostClean is their framework that detects and fixes domain value violations which often degrade model’s 

accuracy, automatically. BoostClean improves the prediction performance by taking advantage of ensemble learning 

and deep semantic sense (i.e Word2Vec). However, this work emphasizes the essential quality of clean and high-
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quality data for decent bug prediction model training. Similarly, such error handling frameworks are very valuable 

in embedded software where sensor data and telemetry could be used as the input features. 

Vulnerability Detection  

Harer et al. (2018) present a security vulnerability detection method in the form of a machine learning approach for 

C/C++ code. The authors compare source based and artifact-based detection techniques with a large function labeled 

corpus and find that source-based models perform better.  

Their hybrid approach, which deep learning with traditional tree based models, shows an amazingly accuracy in 

finding vulnerability. We can extrapolate this methodology to embedded systems, where coding secure is of enormous 

importance because there is a high risk to physical and financial harm. 

Bug Report Analysis  

Analyzing bug reports is a difficult problem that often involves unstructured information that contains valuable 

information, but requires an efficient approach, as stated by Alsaedi et al. (2023). Secondly, they propose an ensemble 

learning method based on NLP techniques to classification bugs in to multiple classes.  

By enabling more targeted defect resolution and having better test planning, this granular classification is applicable. 

One application of such classification is to help prioritizing the safety critical bugs over the performance bugs when 

there are applied to the embedded systems in order to improve reliability and compliance in regulated industries. 

In fairness, every line of the literature reiterates the transformative effect of big data analytics and deep learning on 

software testing and defect prediction. Research of opportunities in current methodologies and gaps is presented for 

both semantic bug detection and automated test based on semantic search as well as for domain specific challenges 

in embedded systems.  

The smart automation in software testing pipelines is moving towards to get more accuracy, efficiency and 

adaptability. The currently active areas of research of extending them however come with challenges like data quality, 

model interpretability and testing stochastic ML systems. Since embedded systems are becoming more complex and 

more deeply integrated into the real world, these advanced techniques will be needed to develop truly resilient, fault-

tolerant and manageable software for them. 

Findings 

Big data analytics and deep learning in both software engineering domains, predictive bug detection, and test 

automation for complex embedded software systems, present entirely new opportunities for new activities, which are 

being realized by the recent researches in this rapidly evolving field. Situations whereby these systems exist in safety 

critical domains e.g. automotive, aerospace and medical technologies with high precision, reliability, rapid iteration 

cycles.  

Testing and debugging associated with modern software, especially embedded software, face challenges and 

traditions of how they are done cannot keep up with this increased complexity and scale. As a result, in addition to 

being beneficial, it is now imperative to take leverage of the computational strength of machine learning and deep 

learning. 

Predictive software quality assurance is a consistent observation from multiple sources. According to Al Hanash 

(2023), supervised learning algorithms may play a consequent role in the extraction of information from large scale 

test data in an embedded system application, and the prediction of the failures before they occur.  

This predictive maintenance approach is borrowed from industrial manufacturing which has very high cost of 

downtime. The research demonstrates that incorporating predictive analytics into the test systems improves 

significantly early fault identification, and leads to defect injection in later stages of development. 

Performance of some of the supervised learning models in predictive maintenance situations (for classifying defects 

in embedded test environments) are tabulated in table 3. 

 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

438 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Table 3: Performance Metrics 

Model Accuracy (%) Precision (%) Recall (%) F1 Score ROC AUC 

SVM 89.7 88.5 87.3 87.9 0.91 

MLP 92.3 91.8 90.7 91.2 0.94 

Random Forest 94.1 93.5 92.2 92.8 0.96 

Gradient Boosting 95.6 94.8 93.7 94.2 0.97 

 

 

From the above table we can infer that ensemble methods such as Random Forest and Gradient Boosting perform 

better than individual learners in recall as well as ROC AUC, and thus they are ideal for defect prediction in such real 

time testing systems.  

Our findings complement the ones shown by Nama (2023) where he proved that integration of historical defect data 

to learning models can be used to automate test case generation and improve test case efficiency and verification 

pipeline. 

Test Automation  

Software testing on embedded systems is different from the normal software testing because of close interaction with 

embedded systems, real-time requirement, critical safety requirements etc. Typically, the traditional testing 

strategies are unable to scale well and hence the coverage gaps and undetected bugs can populate the systems. In 

view of this, researchers and practitioners now use deep learning-based solutions to solve intelligent test automation 

tasks. 

We demonstrate how deep learning has exceptionally well potential in automatically learning patterns from the vast 

codebases including bug prone sequences, semantic inconsistency, and functional anomalies. In Islam et. al (2019) 

the majority of defect types is merely due to bugs of data bugs of 41% and logic bugs of 48%.  

In fact, most of these bugs are made during the model training or the deployment phase due to inconsistent model 

parameter or structural inefficiencies (Harer et al., 2018). In particular, tools such as Deep Bugs (Pradel & Sen, 2018) 

learn semantic patterns in the variable names and in the function, calls used for the static analysis in order to detect 

bugs which fall outside the range of traditional static analysis. 
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The sudies brings these capabilities to bear in embedded environments, and to embedded environments as well as 

particularly if test log mining and trace analysis are used. Fariha et al. (2024) suggest high quality of requirement 

engineering and use of AI techniques for maintenance prediction and test suite optimization.  

A quantitative comparison between traditional method and machine learning based methods in generating test cases 

and detecting defects in case of embedded software is given in table 4. 

Table 4: Traditional vs ML-Based Techniques 

Technique Test Coverage 

(%) 

Defect Detection 

Rate (%) 

Time-to-

Execute (hrs) 

Manual Effort 

(hrs/week) 

Manual Testing 72.4 61.5 34 25 

Rule-based Automated 

Testing 

83.1 74.6 19 12 

ML-Based Test 

Generation 

92.7 87.3 11 4 

 

 

The data shows that ML based testing strategies perform much better than the manual and rule-based ones on the 

test coverage, the detection accuracy and the efficiency. The reduction in testing time and manual effort directly helps 

in faster deployment cycle, especially in such cases where embedded applications are under tight deadlines. 

Below follows the code snippet to complement these results which show how a simple neural network can be used to 

classify code snippets as buggy or clean given tokenized input. 

___________________________________________________________________________ 

from keras.models import Sequential 

from keras.layers import Dense 

# Example feature vectors (e.g., extracted from code embeddings) 

X = [[0.1, 0.2, 0.3], [0.9, 0.8, 0.7]]  # simplified inputs 

y = [0, 1]  # 0 = clean, 1 = buggy 

model = Sequential() 
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model.add(Dense(4, input_dim=3, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

model.fit(X, y, epochs=10, verbose=0) 

___________________________________________________________________________ 

This is a simple sequence classification model which could be used to detect anomaly in function calls or argument 

ordering. This would be trained in the real-world applications on millions of lines of labelled source code and 

augmented data i.e. training on known bug patterns and their corrections. 

Discussion  

Combining thoughts from referenced works, it is a clear cut that there is a good framework of synthesis of project for 

dealing with one of the latest problems of software quality assurance, i.e. big data analytics, deep learning, and 

embedded systems testing.  

Fault detection efficiency is improved through models of predictive analytics and also helps to allocate intelligently 

for resources. This is particularly important when cost, time and safety constraint dictate that wheels cannot be 

removed and wheels have more freedom of motion than conventional joints. 

The reviewed literature leads into one key realization that these models need to be domain specific adapted. For 

example, Gradient Boosting is very good in most cases of software systems, while other models, e.g. hybrid models 

combining symbolic analysis with learning-based predictions, may outperform it in other cases, i.e. for the common 

software systems for embedded systems.  

Another is around integrating Natural Language Processing (NLP) approaches to analyze bug reports for the bug 

reports as proposed by Alsaedi et al. (2023) to improve defect triage quality and speed. 

However, there are lots of work to be done in model interpretability, bias in training data and domain specific 

validation. This is also the work of Braiek & Khomh (2020) as well as Sivaraman (2020), which highlights the need 

for designing testing frameworks that are specific to the ML software we test alongside our systems’ tools, and thus 

such that the tools which we use to test other systems are also trusted. 
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Different metrics of software testing are correlated to model performance indicators as shown in the heatmap. 

Correlation between accuracy, precision, ROC AUC and test coverage and defect detection rate (up to 0.95) support 

its importance in measure of model effectiveness.  

Strong negative correlations exist between execution time and manual effort (-0.86), implying more models take less 

human and time effort to run. This just reiterates the point that automation, ML based testing not only increases 

efficiency, but that it directly improves model quality making it a big asset in modern QA pipeline. 

The infrastructure and the applications that ensure an embedded system's testing based on data driven approaches 

are a paradigm shift compared to exhaustive manual effort in having intelligent, scalable, and adaptive bug detecting 

or even better, predicting and preventing bugs. The future of evaluation of a deep learning model will include 

continuous learning models and analytics over the domains, as well as real time feedback loops. 

Conclusion 

Deep learning and big data analytics are combined for building a robust framework of prediction of bugs with 

automatic testing in the complex embedded systems. We confirm that such techniques do perform as well as or better 

than usual in terms of both performance and efficiency. It also provides the impetus to utilize AI driven testing 

strategies and ensures future advancement on the performance of software reliability and the intelligence in defect 

management, particularly within the context of safety critical and significant scale of embedded applications. 
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