
Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

408

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Harmonizing Product Strategy with Development Execution:

A Comprehensive Study on Quality Engineering Excellence

Samuel Maniraj, Selvaraj1 * Dr.G. Arun Sampaul Thomas 2

1Engineering Manager, Test Automation, Veeva Systems, USA

2 Department of AI&ML, J.B. Institute of Engineering and Technology, Hyderabad, Telangana, India

 saminkit@gmail.com*, arunsam.infotech@gmail.com

ARTICLE INFO ABSTRACT

Received: 16 Dec 2024

Revised: 22 Feb 2025

Accepted: 28 Feb 2025

Quality Engineering (QE) plays a critical role in bridging the gap between product development processes

and business objectives. This paper presents a structured, methodology-agnostic framework for effective

Quality Engineering execution, applicable across Agile, Waterfall, and hybrid development models. It

delineates key principles and best practices across five essential phases—understanding, planning, execution,

reporting, and continuous improvement. By systematically addressing requirement gaps, establishing clear

acceptance criteria, implementing robust testing strategies, and fostering a culture of continuous

enhancement, QE professionals can significantly improve software quality, operational efficiency, and

business value. The findings underscore the strategic importance of Quality Engineering in driving

organizational success through proactive quality assurance and process optimization.

Keywords: Automation, Quality Engineering, Software Engineering, Software Quality.

INTRODUCTION

In the rapidly evolving digital landscape, organizations must ensure that their product development efforts are
strategically aligned with business objectives to drive sustainable growth and competitive advantage. Quality
Engineering (QE) plays a pivotal role in bridging the gap between product strategy and development execution by
embedding quality-driven processes throughout the software development lifecycle. Unlike traditional quality
assurance, which primarily focuses on defect detection, QE takes a proactive approach by ensuring that software
products are designed, developed, and delivered in alignment with business goals, customer expectations, and
industry standards.
Effective alignment between product strategy and development execution requires a structured approach to quality
engineering that is adaptable across various software development methodologies, including Agile, Waterfall, and
hybrid models. This paper presents a methodology-agnostic framework for Quality Engineering execution,
emphasizing five critical phases: understanding, planning, execution, reporting, and continuous improvement. By
systematically addressing requirement gaps, defining clear acceptance criteria, strengthening testing processes, and
fostering a culture of continuous enhancement, QE professionals can ensure that product development efforts remain
aligned with strategic objectives while delivering high-quality software solutions.
This study underscores the strategic role of Quality Engineering in modern software development, highlighting its
impact on product success and organizational growth and highlights the essential role of Quality Engineering in
optimizing product development efficiency, enhancing cross-functional collaboration, and ensuring that
organizations achieve their desired business outcomes. Through a comprehensive exploration of best practices, this
paper aims to provide valuable insights for QE professionals, software engineers, and business leaders striving to
enhance quality standards and optimize development efficiency.

2.OBJECTIVE:

This article presents a flexible Quality Engineering (QE) framework to align product development with business
goals, applicable across Agile, Waterfall, and hybrid methodologies. Structured into five phases—understanding,
planning, execution, reporting, and continual improvement—it emphasizes requirement clarity, rigorous testing, and
iterativerefinement. By integrating proactive quality assurance and process optimization, QE enhances software
quality, operational efficiency, and commercial outcomes, positioning it as a strategic driver of organizational success.
In Summary, major contributions of this paper are described in the following,

• Ability to find the gaps in different layers of platform or application

• Balancing Structured and Exploratory Test Approach

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

409

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• Achieving comprehensive Test coverage

• Importance of monitoring and producing metrics

• Identifying rooms for improvement
Our research resulted in below main findings which are summarized in Table 1

Numbers Key Findings Implications
F1 Breaking down the development tasks into

Infrastructure, Database, API and UI changes
Detects gaps early and helps align development
approach with product expectations while defining
the requirements itself.

F2 Close collaboration between QE, developers,
and product owners

Improves clarity and reduces rework.

F3 Ensuring APIs are documented Ensures early Automation adoption
F4 Understanding on all layer’s UI, API and

Database
Enhances Test coverage

F5 Reviewing the QE strategy with stakeholders Ensures alignment with business objectives and user
expectations

F6 Ensuring test environment readiness Prevents last-minute delays.
F7

A balanced approach to structured and
exploratory testing.

Enhances test coverage and efficiency.

F8 Effective bug triage Accelerates defect resolution, improving software
quality and test reliability

F9 Real-time monitoring Organizations should invest in advanced test
management tools for real-time monitoring.

F10 Effective metric tracking Standardized reporting formats improve
transparency and accountability in testing outcomes.

F11 Automation coverage insights Optimize test execution efficiency and cost.

F12 Systematic defect categorization Enhances Quality Engineering process optimization
F13 Automation enhancements Reduce redundancy and increase testing accuracy.

Table 1. Key findings and implications of this research.

3.PROPOSED MATHOD

The findings of this paper contribute general information for future research, as the quality of software platforms and
applications will become increasingly important. They can also help product owners and developers to apply suitable
development approach and make sure it aligns with product goals. Traditional Quality Assurance approach have
certain effect on quality of software application but evolution of quality engineering model which this study
emphasizes to align product expectation and development strategy increases quality standards.
The rest of the paper is structured as follows. The next section 2 describes The Foundation of Quality Engineering.
Section 3 Structuring the Quality Engineering approach for Success. Section 4 Execution Excellence: Achieving
Comprehensive Testing. Section 5 Realtime monitoring and producing meaningful metrics, Section 6 Continuous
Improvement: Learning from the Process.
2. The Foundation of Quality Engineering
Quality engineering in software engineering is a critical discipline aimed at ensuring that products meet the specified
requirements and deliver a positive user experience. However, achieving this goal requires a clear understanding of
the end user’s needs and expectations, along with an efficient process for tracking the execution of these needs in the
development phase. The Quality engineer is central to this process, as they bridge the gap between product
requirements and technical development.
This study focuses on two primary aspects of Quality engineering:
1. Identifying and clarifying end user requirements: A thorough understanding of what the end user
expects is the foundation for the development process.
2. Finding gaps to align product expectations with development executions: Ensuring that the
requirements are effectively implemented throughout the development cycle and that no discrepancies arise.
2.1 Identifying and Clarifying End User Requirements: The first step in the QE process is to clearly identify
and clarify the product's requirements. This step is crucial in ensuring that the development process addresses all
necessary components and aligns with business goals.

• Active Engagement in Reviewing Requirements: The Quality engineer should not rely on
assumptions but actively engage in reviewing and analyzing high-level business requirements. The goal is to ensure

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

410

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

a clear understanding of what needs to be tested and how it fits within the overall product vision.

• Breaking Down High-Level Requirements: High-level business requirements are broken down into
more manageable elements such as Epics and User Stories. This allows for prioritization based on business goals,
ensuring that essential features are addressed first.

• Collaboration with Stakeholders: Collaboration among key stakeholders—such as developers, testers,
and business users—is critical. The Quality engineer must engage in discussions to define acceptance criteria for each
user story. Clear communication ensures that everyone has a shared understanding of the requirements and
expectations.

• Categorization of Development Tasks: The Quality engineer drives the conversation with product
owners and development engineers to categorize development tasks into four main areas:
o Infrastructure Changes,
o Database Changes,
o API Changes, and
o UI Changes.
2.2. Finding Gap’s to align product expectations and development executions:
In this study we identified and focused on below potential gap where Quality engineer should drive the conversation
in aligning the end user requirements with the development approach, Quality engineer should establish a process
to track and manage possible misalignment or any unresolved questions. Effective and close communication between
product and dev is essential to succeed in this part. It is essential to close these gaps to avoid potential defects that
may arise from incomplete or misunderstood requirements.
Potential Gaps:

• Integrations: The Quality engineer must analyze both internal and external integration points during the
tech design review.

• API and UI Consistency: Ensuring consistency between API response messages and the UI is critical for
a seamless user experience.

• Unexpected Scenarios: Identifying edge cases and unexpected scenarios is essential for comprehensive
testing.

• API Availability for Automation: Ensuring that APIs are available early in the process to facilitate
automation and reduce manual testing efforts.

• User Experience and Interface Evaluation: Working with UX experts to evaluate the application's user
interface against mock flows, accessibility, and security standards.

• Cross-Platform Compatibility: Testing from the end user's perspective across different platforms and
browsers.

• API Documentation: Verifying that new APIs are well-documented, for example, using Swagger for
enhancing quality engineering productivity in automation.

• Performance Impact: Assessing the potential performance impact of new features or changes to the
product.
The research reveals that Quality Engineering fosters engagement in understanding and clarifying requirements early
in the process, can identify gaps in the product understanding phase and also help ensure that the final product aligns
with user expectations.
3. Structuring the Quality Engineering Process for Success
The complexity of modern software applications demands a systematic quality engineering strategy. A robust quality
engineering process minimizes defects, enhances software reliability, and ensures seamless integration across system
components. This study explores the essential components of an effective quality engineering strategy and
demonstrates its application through use case references.
3.1. Strategizing the Quality Engineering process for success
Test Strategy document provides best practices on, how to strategize test approach for Platform or an application. It
describes the Goal, Test scope, Platform Assessment, testing classes, Test Environments, Test data approach, Success
criteria and Defect Management process involved in intended Test process activities. The main purpose of a Test
strategy is to outline the Test approach to achieve Organization’s core objectives from a quality assurance perspective.
Test Strategy should be frequently reviewed, challenged and updated as the organization and the product evolve over
time. A detailed test plan provides an approach for the entire QE process, ensuring that all areas of the applications
are covered. In this study we identified the areas to be considered for strategy and what testing class covers this area.
Our research resulted in below areas which are summarized in Table 2.

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

411

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 2. Key Areas to focus and Testing classes applied
Area Focus Area Testing Class
A1 Understanding on all layer’s UI, API and Database. Integration
A2 UI Design and experience as an end user Functional, Exploratory
A3 Data flow between Modules Integration
A4 Internal and External Integration points. Integration
A5 Error handling – Consistency between UI and API’s Security, Functional
A6 CRUD operations: Database validations through SQL’s

and API’s
Database

A7 Logging Functional, Security
A8 Automation for the benefit of Regression

• API first approach, Limit UI Automation

• Hybrid approach for UI Automation.

Automation

A9 Test Environment readiness Smoke
A10 Test data needs Functional, Automation
A11 Integration points for Connectivity Production Smoke, Automation
A12 Performance impact Performance

4.METHODLOGY

4.1Definition of Testing Classes:

Smoke Testing:

Smoke Testing will be performed by quality engineering team in a testing environment through Automated scripts to
ensure that the environment is ready and stable for Functional Testing. Smoke testing will be scheduled to run
through CI/CD pipeline daily. Smoke test scenarios will be added to the existing smoke test suite on a release basis.
Smoke test helps in exposing integration and major problems early in the cycle.

4.1.1 Functional Testing:

The core functionality of features which is being built for the application will be validated based on the test cases
written for each user story created out of requirements described. The main objective of the functional testing is to
validate whether business requirements are aligned with software delivered and working as expected. Quality
engineering team will execute the test cases and validate whether the user story is meeting the defined acceptance
criteria or not. The test cases should prescribe any pre-requisites and a set of steps or actions to execute the test.

4.1.2 Integration Test:

Integration testing is done to test the integration between <System1> and the <System2> or more than one system.
The purpose of this level of testing is to expose defects in the interfaces and interaction between integrated
components. Unit level Integration Testing is usually done by developers and System level Integration Testing by
testing team or independent testers.

4.1.3 Exploratory Testing:

Exploratory Testing is defined as a type of testing where Test cases are not created but quality engineering team will
check the system on the fly. Exploratory testing will be performed on application without any formal Test cases to
identify any potential issues in the delivered feature for each build. Exploratory testing will be done in unstructured
and in freestyle way with random inputs or any other criteria aimed at identifying the unexpected behavior.
Exploratory testing should also cover UI/UX experience of the app.

4.1.4 Unit Testing:

Unit Testing is done by development team as part of standard development practice where individual units/
components of an <application> is tested. The purpose is to validate that each unit of the software code performs as

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

412

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

expected. Unit Testing is done during the development of the feature by the developers.

4.1.5 Functional Regression (Automation):

Business critical test cases will be identified from each user story to include as part of automated regression suite.
Automation team runs the regression testing cycle for the benefit of confirming the existing use cases are not
impacted with the new changes introduced in the system.

4.1.6 API Testing:

User stories that involve new API's will be validated through API tool as part of API Testing. Identify API level test
scenarios with respect to functionality and error handling. The purpose of API Testing is to check the functionality
and reliability of the programming interfaces.

4.1.7 Backend Testing:

Requirements that require a database verification will be validated against databases with database test cases. CRUD
operations will be performed through API and verified against database results.

4.1.8 Security Testing:
Security testing is performed to ensure all access and authorization rules are enforced correctly in the application.

4.1.9 Performance Testing:

Performance Testing may be needed for an app which is being built, and quality engineering team will identify
scenarios for performance testing. Typical use case for performance testing is subjected to no of users and the volume
of data being retrieved from the system or uploaded into the system.

4.1.10 Prod Smoke:

Production validation test is a smoke test performed in a production environment without affecting the data.
Production smoke test suite should be reviewed and updated for each release. Prod smoke is critical for ensuring the
systems are operational after every production releases.

4.3 Reviewing the Strategy

Reviewing the quality engineering strategy with stakeholders ensures alignment with business objectives and user
expectations. Essential step in this framework is to review the strategy with stakeholders, including Development,
business owners and product managers. The QE professional will ensure that the test cases align with the acceptance
criteria and conduct a walkthrough of the plan to validate it with all stakeholders.
This study identified the below key benefits of conducting Test strategy reviews which are summarized in Table 3.

Table 3 Key benefits of conducting Test strategy reviews
Benefit Number Key Benefit Implications
B1 Improved Quality Reduces the likelihood of defects due to poor test

coverage.
B2 Cost-Effectiveness Detecting issues in the review phase is cheaper than

fixing bugs in production.
B3 Knowledge Sharing Encourages collaboration and understanding across

teams.
B4 Standardization Ensures consistency in testing practices.

Our study identifies that, A structured Quality Engineering approach with a well-defined strategy significantly
improves software quality. By incorporating various testing classes and stakeholder reviews, organizations can ensure
robust, reliable, and user-friendly software solutions.

4.2 Execution Excellence: Achieving Comprehensive Testing
This study explores the critical aspects of achieving execution excellence in testing, focusing on test environment

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

413

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

readiness, balancing structured and exploratory testing, and systematic bug handling. Findings suggest that
integrating these elements enhances software quality and Agile development efficiency. Implications for practice
include improved defect detection, accelerated feedback loops, and enhanced test coverage.

4.3 Our study finds “Testing with the speed for Development” is crucial to achieve execution
excellence.
It is very crucial to test the application being developed with the speed of development. Quality engineering approach
takes a step to run through the test cases on the code being developed to prevent the defects rather finding defects in
the test environment. Our study demonstrates that when you collaborate and test the application at developer’s
environment, it enhances the quality of the software, and it helps align the product being developed with the business
expectation. This is an effective method for being Agile since even before the test environment is ready, we can achieve
comprehensive test exection with developer collaboration. Our study summarizes below workflow to execute at
different environments to achieve execution excellence.
The figure 1 illuatrated that Annotations used in lifecycle used Quality Engineering execution lifecycle.

 Figure 1. Quality Engineering execution lifecycle

Table 1: Annotations used in lifecycle
Annotation Type of Environment Built for
DI Dev Integration Developer testing
DVP Develop QE Smoke, Functional, Integration, Regression, Performance
REL Release QE Smoke, Functional, Integration, Regression, Performance
Stage Staging (Pre-Production) Stage Smoke
Prod Production Prod Smoke

4.1. Test Environment Readiness:
Test execution begins with the preparation of the test environment during the development phase once the features
are being delivered. Quality engineering professionals must coordinate with infrastructure teams to ensure that the
environment is ready for testing. Connectivity tests should be conducted to ensure all systems are integrated and
functioning as expected. Once the environment is validated, a smoke or sanity test suite is executed to ensure that
the deployed code and environment are suitable for further functional testing.
The foundation of test execution is a well-prepared environment. This involves:

• Collaboration with infrastructure teams to ensure readiness.

• Connectivity tests to verify system integration.

• Smoke testing to validate the stability of the environment for further testing.
Findings indicate that early environment validation minimizes deployment issues and reduces testing bottlenecks,
ensuring a smoother transition from development to testing.
4.2. Balancing Structured and Exploratory Testing:
Quality engineering professionals should execute planned test cases, which may include functional, integration,

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

414

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

regression, and ETL tests. Exploratory testing is also an important practice, as it enables testers to uncover potential
issues that were not foreseen in the original test cases. Quality engineering teams should ensure that issues are raised
promptly, with clear documentation of any discrepancies between user stories and the user interface (UI).
4.2.1. Exploratory testing complements Agile in several ways:

• Flexibility: Allows testers to quickly adapt to changes in requirements and new functionalities.

• Faster Feedback: Identifies critical defects early in the development cycle without waiting for scripted
tests.

• Enhanced Test Coverage: Encourages testers to think beyond predefined scenarios, uncovering hidden
issues.

• Empowered Testers: Provides autonomy and creativity to testers, allowing them to leverage their
experience and domain knowledge.
4.2.3 Benefits of Exploratory Testing,

• Encourages creativity

• Intuition in finding defects

• Adapts quickly to new changes

• Explore the unexpected

• Provides rapid feedback in fast paced agile environments.
4.3. Systematic Triage:
In quality engineering, defects are inevitable. However, the efficiency of addressing these defects determines the
overall quality of a product. Systematic triage involves analyzing, categorizing, and prioritizing defects to streamline
resolution. This study investigates how defect triage meetings, led by quality engineering professionals, impact defect
resolution efficiency.
As defects are discovered, it is critical to manage them efficiently. Quality engineering professionals should lead defect
triage meetings, where defects are analyzed, categorized, and corrective actions are identified. Effective Coordination
with development teams and product team is also crucial during this phase to ensure that any issues found during
testing are addressed promptly.
This study shows reveals steps to run an effective triage process.

4.3.1 Standardization of Triage Meetings: Organizations should implement regular defect triage meetings to
accelerate issue resolution.

Cross-Team Collaboration: Establishing a seamless communication framework between quality, development,
and product teams ensures timely corrective actions.
Data-Driven Decision Making: Leveraging defect categorization metrics can enhance predictive maintenance
and proactive quality assurance.
5. Realtime monitoring and producing meaningful metrics
Effective real-time monitoring and metric tracking in software testing play a pivotal role in ensuring product quality
and process efficiency. This study explores the significance of tracking meaningful metrics throughout the quality
engineering lifecycle, providing insights into optimizing testing progress communication and reporting outcomes.
The research highlights key tracking methods, reporting mechanisms, and their implications for agile development.

5.RESULTS

5.1. Metrics:
Effective tracking and communication of testing progress are crucial throughout the quality engineering lifecycle.
Quality engineering professionals leverage various tools and metrics to monitor performance and execution.
To ensure comprehensive monitoring, the following metric points should be tracked:

• Test Execution Progress: Tracking the number of executed, pending, and blocked test cases.

• Defect Dashboard: A real-time visual representation of defect status, severity, and resolution progress.

• Sprint Burn Down Charts: Graphical representation of remaining tasks within a sprint, assisting in
assessing sprint completion status.

• Test Efficiency: Measurement of the effectiveness of test cases based on defect detection rates.

• Test Coverage: Evaluation of the extent to which test cases cover the application’s functional and non-
functional aspects.

• Automation Coverage: Assessment of automated test execution versus manual testing efforts.

• Production Defects: Tracking defects reported post-release to evaluate pre-release testing effectiveness.

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

415

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Real-time monitoring and meaningful metrics are essential for a robust quality engineering process. Implementing
structured tracking methods and reporting frameworks enables quality engineering teams to enhance efficiency,
optimize test execution, and improve software reliability. Organizations must embrace metric-driven testing
strategies to achieve superior product quality and agile software delivery.
5.2. Continuous Improvement: Learning from the Process
This research explores the role of continuous improvement in Quality Engineering (QE) by analyzing defect
categorization, root cause analysis, and automation enhancements. Findings indicate that categorizing defects and
refining automation strategies significantly impact quality engineering efficiency. The study discusses the
implications of these findings for quality engineering professionals and organizations striving for enhanced software
reliability.

5.2.1. Root Cause Analysis and Defect Categorization:
Continuous improvement is a fundamental aspect of the quality engineering process. This study investigates how
systematic defect categorization and automation enhancements contribute to quality engineering efficiency. Prior
research highlights the need for structured post-project analysis and optimized testing methodologies to reduce
defects and improve software quality. This study employs a mixed-methods approach, incorporating qualitative
analysis of defect root causes and quantitative assessment of automation efficiency. Data was collected from system
integration testing (SIT), user acceptance testing (UAT), and production validation processes.
A critical component of quality engineering improvement is analyzing and categorizing defects post-project.
Categorization by root cause facilitates targeted process enhancements in areas such as training, communication, and
documentation.

5.2.2. Defect Categories:

• Code Fix

• Data/Config Issue

• Requirement Gap

• Environment

• Works as Designed

• Duplicate
Another important aspect of Defect analysis is to group the defects based on modules or components with its severity
and type.

5.2.3 Defect Grouping:

• Modules/Components

• Type

• Severity
Defect Analysis Use case: 20% of critical defects under module Ex: Admin has a type of Regression which indicates,
code quality of this module.
Action: Improve Unit Test coverage with increased level of code reviews.

5.3. Enhancing Automation for Regression Coverage:

Continuous refinement of automated testing frameworks contributes to increased regression coverage and reduced
manual effort. Findings suggest that identifying critical test flows and analyzing failure patterns are key to improving
automation efficiency.

• Expanding automation suite coverage to include critical workflows

• Analyzing test failure patterns to refine reliability of the automation

• Optimizing pipelines to improve speed and stability.

• Incorporating lessons learned into automation strategy

6. CONCLUSION

Effective testing is a multifaceted process that requires a strategic blend of structured methodologies and exploratory
flexibility. By identifying gaps at different layers of a platform or application, teams can proactively address
vulnerabilities and improve overall system reliability. Achieving comprehensive test coverage ensures that both

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

416

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

functional and non-functional aspects of the application are thoroughly validated, reducing the risk of unexpected
failures. A systematic triage process enables teams to prioritize defects efficiently, ensuring that critical issues are
addressed promptly without delaying development timelines.
Moreover, the importance of monitoring and producing meaningful metrics cannot be overstated, as these insights
drive informed decision-making and continuous improvement. Metrics help teams track progress, assess risk, and
refine testing strategies over time. Ultimately, fostering a culture of continuous assessment and identifying areas for
improvement leads to a more resilient and high-performing software ecosystem. By integrating these best practices
into the testing lifecycle, organizations can enhance software quality, optimize testing efficiency, and deliver a more
seamless user experience.
Looking ahead, future initiatives should focus on leveraging emerging technologies such as AI and machine learning
to enhance test automation, making defect detection more predictive and efficient. Additionally, continuous
integration and continuous deployment (CI/CD) pipelines should be further optimized to integrate real-time
monitoring and adaptive testing approaches. The development of industry-wide benchmarks for quality metrics can
standardize assessment methods, ensuring consistency across different platforms and applications.
Furthermore, fostering stronger collaboration between development, operations, and testing teams through DevOps
and shift-left testing approaches will help identify issues earlier in the software development lifecycle. Expanding
exploratory testing techniques with domain-specific insights can also lead to more effective defect discovery. Lastly,
investing in continuous skill development for testers will ensure that they stay ahead of evolving technologies,
methodologies, and challenges in modern software testing.

REFERENCES

[1] Bilal Gonen; Dipali Sawant “Significance of Agile Software Development and SQA Powered by Automation”.

https://ieeexplore.ieee.org/document/9092149.

[2] Ogundipe, D.O., Odejide, O.A., & Edunjobi, T.E (2024). Agile methodologies in digital banking:

Theoretical underpinnings and implications for custom satisfaction. Open Access Research Journal of

Science and Technology, 2024, 10(02), 021-030. https://doi.org/10.53022/oarjst.2024.10.2.0045

[3] Leonor Barros a, Carlos Tam a, João Varajão b “Agile software development projects–Unveiling the human-

related critical success factors”, June 2024

[4] Boehm B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. In Proceedings

of the 2nd International Conference on Softw Eng (ICSE), San Francisco (CA), USA, 13–15 October, 1976 (pp.

592–605). IEEE Computer Society Press

[5] Philipp Hohl, Jil Klünder, Arie van Bennekum, Ryan Lockard, James Gifford, Jürgen Münch, Michael

Stupperich & Kurt Schneider “Back to the future: origins and directions of the “Agile Manifesto” “

[6] Wilson Rosa , Sara Jardine “A Novel Method to Early Agile Effort Estimation through Functional Initiatives”,

Nov 2024

[7] Marta Adzgauskaite , Carlos Tam , Ricardo Martins “What helps Agile remote teams to be successful in

developing software? Empirical evidence” January 2025

[8] Delina Ly a b, Michiel Overeem a, Sjaak Brinkkemper b, Fabiano Dalpiaz b “The Power of Words in Agile vs.

Waterfall Development: Written Communication in Hybrid Software Teams”, Jan 2025

[9] Hao Dong , Nicholas Dacre, David Baxter, and Serkan Ceylan “What is Agile Project Management?

Developing a New Definition Following a Systematic Literature Review” May 2024

[10] Chakraborty, T., Awan, T., Ashok, N. Kamran, M. “Agile leadership for industry 4.0: An indispensable

approach for the digital era” 2023

[11] Bustard D, Wilkie G, Greer D (2013) The diffusion of agile software development: insights from a regional

survey. In: Pooley R, Coady J, Schneider C, Linger H, Barry C, Lang M (eds) Information systems

development: reflections, challenges and new directions. Springer New York, New York, NY, pp 219–230

[12] Mubarak Albarka Umar 1*, Chen Zhanfang 2 “A Study of Automated Software Testing: Automation Tools and

Frameworks” , 2019

[13] Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems. Commun

ACM 31(11):1268–1287

[14] IEEE (2006) Standard for developing a software project life cycle process. IEEE Standard:1074–2006

[15] ISO. (2011). ISO/IEC/IEEE 26515:2011 Systems and Softw Eng - Developing user documentation in an agile

https://ieeexplore.ieee.org/document/9092149

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

417

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Environment

[16] A Fuggetta and Di Nino, “Software process,” in Future of Software Engineering, FOSE 2014 - Proceedings.

Association for Computing Machinery, Inc, May 2014, pp. 1-12

[17] Yunfeng Lu; Chao Li Song Wang ; Yang Liu; Jie Dai “A Quality Evaluation Method for Software Testing about

Safety-Critical Software” 2022

[18] FATIH GURCAN 1 , GONCA GOKCE MENEKSE DALVEREN 2 , NERGIZ ERCIL CAGILTAY 2 , DUMITRU

ROMAN 3 , AND AHMET SOYLU “Evolution of Software Testing Strategies and Trends” 2022

[19] G. Demartini and E Nasrabadi , “Quality Assurance of Software Products” 2017

[20] A. Agarwal, N.K. Garg, and A. Jain “Quality assurance for product development using Agile” 2014

[21] Beck, K. et al. (2001). Manifesto for Agile Software Development. Agile Alliance.

[22] North, D. (2006). Introducing BDD. Retrieved from https://dannorth.net/introducing-bdd

[23] Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Addison-Wesley.

[24] Fowler, M. (2019). The State of DevOps. Thoughtworks.

[25] Yang, C. Cardie. Context-aware Learning for Sentence-level Sentiment Analysis with Posterior Regularization.

In Proceedings of ACL 2014.

[26] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word embeddings to document similarities

for improved information retrieval ni software engineering. In International Conference on Software

Engineering, pages 404-415, 2016.

[27] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025, 2015.

[28] John Anvik, Gail C Murphy. Reducing the effort of bug report triage: Recommenders for development-oriented

decisions. ACM Transactions on Software Engineering, 2011.

[29] Zhang ,T Yang G, Le B, et al. ANovel Developer Ranking Algorithm for Automatic Bug TriageUsing Topic Model

and Developer Relations [C]. Proceedings of the 21st Asia-Pacific Software Engineering Conference

(APSEC'14), 2014, 1: 223-230.

[30] Cubranic D, Murphy G C. Automatic bug triage using text categorization [C]. Proceedings of the Sixteenth

International Conference on Software Engineering &Knowledge Engineering, 2004.

[31] Ahsan S N, Ferzund J, Wotawa F, et al. Automatic Software Bug Triage System (BTS) Based on Latent Semantic

Indexing and Support Vector Machine [C]. Proceedings of the Fourth International Conference on Software

Engineering Advances (ICSEA'09), 2009: 216-221.

[32] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weign Zou, Zhongxuan Luo, and Xindong Wu. Towards effective

bug triage with software data reduction techniques. IEEE Transactions onKnowledge and Data Engineering,

27(1):264-280, 2015.

[33] Yang G, Zhang T, Lee B, et al. Towards Semi-automatic Bug Triage and Severity Prediction Based on Topic

Model and Multi-feature of Bug Reports [Cl. Proceedings of the IEEE 38th Annual Computer Software and

Applications Conference (COMPSAC' 14), 2014: 97-106.

[34] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. Characterizing and

predicting which bugs get fixed: an empirical study of microsoft windows. In International Conference on

Software Engineering, volume 1, pages 495-504, 2010.

[35] Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. Crowdsourced bug triaging. In International

Conference on Software Maintenance and Evolution, pages 506-510. IEEE, 2015.

[36] Osvaldo, S.S., Jr.; Lopes, D.; Silva, A.C.; Abdelouahab, Z. Developing software systems to Big Data platform

based on MapReduce model: An approach based on Model Driven Engineering. Inf. Softw. Technol. 2017, 92,

30–48. [CrossRef]

[37] Enes, J.; Exposito, R.R.; Tourino, J. BDWatchdog: Real-time monitoring and profiling of Big Data applications

and frameworks. Future Gener. Comput. Syst. 2018, 87, 420–437. [CrossRef]

[38] Zareian, S.; Fokaefs, M.; Khazaei, H.; Litoiu, M.; Zhang, X. A big data framework for cloud monitoring. In

Proceedings of the 2nd International Workshop on BIG Data Software Engineering, Austin, TX, USA, 16 May

2016; pp. 58–64.

https://ieeexplore.ieee.org/author/37088346341
https://ieeexplore.ieee.org/author/37088346256
https://ieeexplore.ieee.org/author/37088547109
https://ieeexplore.ieee.org/author/37088345031
https://ieeexplore.ieee.org/author/37088544038
https://dannorth.net/introducing-bdd

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

418

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[39] Casale, G.; Ardagna, D.; Artac, M.; Barbier, F.; Di Nitto, E.; Henry, A.; Iuhasz, G.; Joubert, C.; Merseguer, J.;

Munteanu, V.I. DICE: Quality-driven development of data-intensive cloud applications. In Proceedings of the

2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering, Florence, Italy, 16–17 May

2015; pp. 78–83.

[40] Fang, K.; Li, X.; Hao, J.; Feng, Z. Formal modeling and verification of security protocols on cloud computing

systems based on UML 2.3. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–

26 August 2016; pp. 852–859.

[41] Klein, J.; Gorton, I.; Alhmoud, L.; Gao, J.; Gemici, C.; Kapoor, R.; Nair, P.; Saravagi, V. Model-driven

observability for big data storage. In Proceedings of the 2016 13th Working IEEE/IFIP Conference on Software

Architecture (WICSA), Venice, Italy, 5–8 April 2016; pp. 134–139.

[42] Amato, F.; Moscato, F. Model transformations of mapreduce design patterns for automatic development and

verification. J. Parallel Distrib. Comput. 2016, 110, 52–59. [CrossRef]

[43] Majd, A.; Troubitsyna, E. Data-driven approach to ensuring fault tolerance and efficiency of swarm systems.

In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14

December 2017; pp. 4792–4794.

[44] 100. Li, H.; Wu, J.; Jiang, Z.; Li, X.; Wei, X. Minimum backups for stream processing with recovery latency

guarantees. IEEE Trans. Reliab. 2017, 66, 783–794. [CrossRef]

[45] Shang,W.;Jiang,Z.M.;Hemmati,H.;Adams,B.;Hassan,A.E.;Martin,P.Assistingdevelopersofbigdata analytics

applications when deploying on hadoop clouds. In Proceedings of the 2013 35th International Conference on

Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 402–411.

[46] Guo, C.; Zhu, S.; Wang, T.; Wang, H. FeT: Hybrid Cloud-Based Mobile Bank Application Testing. In

Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 21–26.

[47] C. Jones, ‘Software Quality in 2012: a Survey of the State of the Art’, 2012.

[48] NIST Report, ‘The Economic Impacts of Inadequate Infrastructure for Software Testing’, 2002.

[49] L. Luo, ‘A Report on Software Testing Techniques’, Pittsburgh, USA.

[50] A. Dennis, B. H. Wixom, and D. Tegarden, Systems Analysis and Design with OOP Approach with UML 2.0,

4th Editio. USA: John Wiley & Sons, Inc., 2009.

[51] A. Dennis, B. H. Wixom, and R. M. Roth, Systems Analysis and Design 5th Edition, 5th Editio. USA: John

Wiley & Sons, Inc., 2012.

[52] C.Padmini,‘BeginnersGuideToSoftwareTesting’,pp.1–41,2013.

[53] Automated Software Testing - International Software Test Institute’. [Online]. Available: https://www.test-

institute.org/Automated_Software_Testing.php. [Accessed: 18-Nov-2019].

[54] M.Polo,P.Reales,M.Piattini,andC.Ebert,‘Testautomation’,IEEESoftw.,vol.30,no.1,pp.84–89,2013.

[55] M. A. Umar, ‘Comprehensive study of software testing : Categories , levels , techniques , and types’,

International Journal of Advance Research, Ideas and Innovations in Technology, vol. 5, no. 6, pp. 32–40,

2019.

[56] D.HuizingaandA.Kolawa,Automateddefectprevention.Hoboken,N.J.:Wiley-Interscience,2007.

[57] difference between unit functional acceptance and integration testing - StackOverflow’. [Online]. Available:

https://stackoverflow.com/questions/4904096/whats-the-difference-between-unit-functional-acceptance-

and-integration-test.

[58] ‘FunctionalTestingWikipedia’.[Online].Available:https://en.wikipedia.org/wiki/Functional_testing

[59] Stackify,‘CodeCoverageTools:25ToolsforTestinginC,C++,Java’.[Online].Available:https://stackify.com/code

-coverage-tools/. [Accessed: 29-Sep-2019].

[60] Atlassian, ‘About Code Coverage - Atlassian Documentation’, 2017. [Online].

Available:https://confluence.atlassian.com/clover/about-code-coverage-71599496.html. [Accessed: 29-Sep-

2019].

[61] SeaLights.io, ‘Code Coverage vs. Test Coverage: Pros and Cons | SeaLights’. [Online]. Available:

https://www.sealights.io/test- metrics/code-coverage-vs-test-coverage-pros-and-cons/. [Accessed: 29-Sep-

2019].

https://stackoverflow.com/questions/4904096/whats-the-difference-between-unit-functional-acceptance-and-integration-test
https://stackoverflow.com/questions/4904096/whats-the-difference-between-unit-functional-acceptance-and-integration-test

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

419

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[62] K. Sneha and G. M. Malle, ‘Research on software testing techniques and software automation testing tools’,

2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, pp. 77–81, 2017.

[63] ‘PerformanceTestingWikipedia’.[Online].Available:https://en.wikipedia.org/wiki/Software_performance_t

esting.

[64] E. Khan, ‘Different Forms of Software Testing Techniques for Finding Errors’, Int. J. Comput. Sci. Issues, vol.

7, no. 3, pp. 11–16, 2010.

[65] Aebersold Kirsten, ‘Software Testing Methodologies’. [Online]. Available:

https://smartbear.com/learn/automated-testing/software- testing-methodologies/. [Accessed: 10-May-

2019].

[66] H.Bajaj,‘CHOOSINGTHERIGHTAUTOMATIONTOOLANDFRAMEWORK’,Bengaluru,India.

[67] Aebersold Kirsten, ‘Test Automation Frameworks’. [Online]. Available:

https://smartbear.com/learn/automated-testing/test- automation-frameworks/. [Accessed: 26-Aug-2019].

[68] Bhargava, Designing and implementing test automation frameworks with QTP : learn how to design and

implement a test automation framework block by block. Packt Publishing, 2013.

[69] ‘A Guide to Automation Frameworks |Smartsheet’. [Online]. Available: https://www.smartsheet.com/test-

automation-frameworks- software. [Accessed: 30-Aug-2019].

[70] W.E.Perry,EffectiveMethodsforSoftwareTesting:IncludesCompleteGuidelines,Checklists,andTemplates,Third

Edit.2007.

[71] S.NidhraandJ.Dondeti,‘BlackBoxandWhiteBoxTestingTechniques’,Int.J.Embed.Syst.Appl.,vol.2,no.2,pp.29

–50,2012.]

[72] C.Abraham,‘TestAutomationToolEvaluation’,TamilNadu,India.

[73] C.Oriat,‘Jartege:AtoolforrandomgenerationofunittestsforJavaclasses’,Springer-

VerlagBerlinHeidelb.,pp.242–256,2005.

[74] ‘JUnit-Wikipedia’.[Online].Available:https://en.wikipedia.org/wiki/JUnit.[Accessed:19-Nov-2019].

[75] Altexsoft.com, ‘Comparing Automated Testing Tools: Selenium, TestComplete, Ranorex, and more |

AltexSoft’, 2018. [Online]. Available: https://www.altexsoft.com/blog/engineering/comparing-automated-

testing-tools-selenium-testcomplete-ranorex-and-more/. [Accessed: 19-Nov-2019].

[76] ‘SeleniumHQBrowserAutomation’.[Online].Available:https://selenium.dev/.[Accessed:19-Nov-2019].

[77] ‘A Comparison of Automated Testing Tools | Katalon Studio’. [Online]. Available:

https://www.katalon.com/resources- center/blog/comparison-automated-testing-tools/. [Accessed: 17-May-

2019].

[78] Brian, ‘Best Automation Testing Tools for 2020 (Top 10 reviews)’, 2017. [Online]. Available:

https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-

8a4a19f664d2. [Accessed: 20-Nov- 2019].

[79] Dai, H.N.; Wong, R.C.W.; Wang, H.; Zheng, Z.; Vasilakos, A.V. Big data analytics for large-scale wireless

networks: Challenges and opportunities. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [CrossRef]

[80] Chen, C.P.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big

Data. Inf. Sci. 2014, 275, 314–347. [CrossRef]

[81] Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [CrossRef]

[82] Tao, C.; Gao, J. Quality Assurance for Big Data Applications: Issues, Challenges, and Needs. In Proceedings of

the Twenty-Eighth International Conference on Software Engineering and Knowledge Engineering, Redwood

City, CA, USA, 1–3 July 2016.

[83] Jan, B.; Farman, H.; Khan, M.; Imran, M.; Islam, I.U.; Ahmad, A.; Ali, S.; Jeon, G. Deep learning in big data

analytics: A comparative study. Comput. Electr. Eng. 2019, 75, 275–287. [CrossRef]

[84] Hilbert, M. Big Data for Development: A Review of Promises and Challenges. Dev. Policy Rev. 2016, 34, 135–

174. [CrossRef]

[85] Laranjeiro, N.; Soydemir, S.N.; Bernardino, J. A Survey on Data Quality: Classifying Poor Data. In Proceedings

of the IEEE Pacific Rim International Symposium on Dependable Computing, Zhangjiajie, China, 18–20

November 2015.

[86] Anagnostopoulos, I.; Zeadally, S.; Exposito, E. Handling big data: Research challenges and future directions.

Journal of Information Systems Engineering and Management
2025, 10(37s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

420

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

J. Supercomput. 2016, 72, 1494–1516. [CrossRef]

[87] Gudivada, V.N.; Baezayates, R.; Raghavan, V.V. Big Data: Promises and Problems. Computer 2015, 48, 20–

23. [CrossRef]

[88] Montagud, S.; Abrahão, S.; Insfran, E. A systematic review of quality attributes and measures for software

product lines. Softw. Qual. J. 2012, 20, 425–486. [CrossRef]

[89] Nguyen-Duc, A.; Cruzes, D.S.; Conradi, R. The impact of global dispersion on coordination, team performance

and software quality–A systematic literature review. Inf. Soft. Technol. 2015, 57, 277–294. [CrossRef]

[90] Wang, H.; Xu, Z.; Fujita, H.; Liu, S. Towards Felicitous Decision Making: An Overview on Challenges and

Trends of Big Data. Inf. Sci. 2016, 367–368, 747–765. [CrossRef]

[91] Bagriyanik, S.; Karahoca, A. Big data in software engineering: A systematic literature review. Glob. J. Inf.

Technol. Emerg. Technol. 2016, 6, 107–116. [CrossRef]

[92] Schulmeyer, G.G.; McManus, J.I. Handbook of Software Quality Assurance; Van Nostrand Reinhold Co.: New

York, NY, USA, 1992.

[93] Gao, J.; Xie, C.; Tao, C. Big Data Validation and Quality Assurance —Issuses, Challenges, and Needs. In

Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering, Oxford, UK, 29 March–2

April 2016; pp. 433–441.

[94] Lai, S.T.; Leu, F.Y. Data Preprocessing Quality Management Procedure for Improving Big Data Applications

Efficiency and Practicality; In Proceedings of the International Conference on Broadband and Wireless

Computing, Communication and Applications, Asan, Korea, 5–7 November 2016; pp. 731–738.

[95] Garg, N.; Singla, S.; Jangra, S. Challenges and techniques for testing of big data. Procedia Comput. Sci. 2016,

85, 940–948. [CrossRef]

[96] Zhou, H.; Lou, J.G.; Zhang, H.; Lin, H.; Lin, H.; Qin, T. An Empirical Study on Quality Issues of Production

Big Data Platform. In Proceedings of the IEEE/ACM IEEE International Conference on Software Engineering,

Florence, Italy, 16–24 May 2015; pp. 17–26.

[97] Juddoo, S. Overview of data quality challenges in the context of Big Data. In Proceedings of the International

Conference on Computing, Communication and Security, Pamplemousses, Mauritius, 4–5 December 2016.

[98] Zhang, P.; Zhou, X.; Gao, J.; Tao, C. A survey on quality assurance techniques for big data applications. In

Proceedings of the IEEE BigDataService 2017—International Workshop on Quality ASsurance and Validation

for Big Data Applications, San Francisco, CA, USA, 6–9 April 2017.

[99] Ge, M.; Dohnal, V. Quality Management in Big Data. Informatics 2018, 5, 19. [CrossRef]

[100] worldqualityreport.com,‘WorldQualityReport2019’,2018.

[101] International Conference on Software Maintenance and Evolution, pages 506-510. IEEE, 2015.

[102] Bhattacharya P, Neamtiu I, Shelton CR, et al. Automated,highly-accurate, bug assignment using machine

learning and tossing graphs (J. Journal of Systems and Software, 2012, 85(10): 2275-2292.

[103] Anvik J, Murphy G C. Reducing the effort of bug report triage: Recommenders for development-oriented

decisions (JJ. ACM Transactions on Software Engineering and Methodology, 2011, 20(3): 10:1-10:35.

[104] Park J, Lee M, Kim J, et al. COSTRIAGE: a cost-aware triage algorithm for bug reporting [C]. Proceedings of

the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI11), 2011:139-144.

[105] Sentil Mani, Anush Sankaran, Rahul Aralikatte, Exploring the Effectiveness of Deep Learning for Bug Triaging,

2016

[106] G. Jeong, S. Kim, T. Zimmermann, Improving Bug Triage with Bug Tossing Graphs, in: FSE, 2009.

