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This paper proposes the Differential Function Fitting Neural Based Neural Network Energy 

Management Scheme (DEMS) for PHEVs aimed at controlling the battery state of charge (SOC) 

and depth of discharge (DoD) based on the integration of the Pontryagin’s Maximum Principle 

(PMP) and Artificial Neural Network (ANN). Recognizing the market development in the area of 

energy efficiency in PHEVs, the increase in battery performance is crucial. The proposed DEMS 

utilizes PMP for accurate energy management, and optimized learning from ANN for making 

dynamic changes as per dynamic driving environment. The system is also verified through 

MATLAB/Simulink models employing a rule-based dynamic programming (DP) strategy. Results 

demonstrate the proposed scheme's ability to maintain optimal SOC levels, reduce battery 

degradation, and improve overall vehicle efficiency. The DEMS significantly enhances battery 

performance, stability, and adaptability, offering a reliable solution for efficient PHEV operation 

under diverse driving scenarios. This approach contributes to the sustainable development of 

hybrid vehicle technologies by optimizing energy use and extending battery life. 

Keywords: Plug-in Hybrid Electrical Vehicle (PHEV); State of Charge (SOC); Depth of Discharge 

(DoD); Ponytryagin’s Maximum Principle (PMP); Artificial Neural Network (ANN); Differential 

Function Fitting Neural; Depth of Discharge (DoD) 

 

INTRODUCTION 

Energy conservation remains the key issue for the hybrid electric vehicles (HEVs) today [1]. Among HEVs, special 

interest has been oriented towards plug-in hybrid electric vehicles (PHEVs) since they can be charged via electricity 

grid and use conventional fuel [2], thus gaining more flexibility and lower emissions. The PHEVs, therefore, have 

enhanced battery capacity together with the power that is recharged from other supplementary sources in a manner 

that allows for a longer electric-only travel distance as compared to the basic hybrids [2]. Nevertheless, the health of 

batteries in PHEVs is still an issue due to many shortcomings in the existing battery management systems [3]. 

Reduced discharge efficiency, coupled with a lack of proper optimization techniques, enables the depth of discharge 

(DoD) to worsen the battery’s capacity and energy losses [4]. The primary challenge in managing battery health is 

the absence of advanced battery management systems capable of real-time monitoring and adaptive control. 

Traditional systems rely on fixed thresholds and rule-based strategies, which are often inadequate for dynamic 

driving conditions. This results in suboptimal energy utilization and increased degradation rates. 

Therefore, energy management schemes (EMS) are very important in the regulation of energy power in PHEV 

between the internal combustion engine, electric motor and battery system. As discussed, a good EMS helps with 

useful and efficient utilization of energy for increasing the life of batteries as well as the fuel efficiency [5]. Several 

approaches towards the implementation of the energy management system in PHEVs included the rule based, the 

optimization based, and the machine learning based has been discussed in the literature for EMS in PHEVs. The 

rule-based approach is more straightforward to develop, requiring less computational resources and provides 

energy allocation to fulfill a particular system with the help of a set of pre-established rules [6]. But they fail to 
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deliver in terms of dynamic changes in engine efficiency lacks adaptability to driving situations [6]. This can lead to 

less-than-optimal fuel efficiency and energy management of any type of equipment. 

The optimization based, and the machine learning based has been discussed in the literature for EMS in PHEVs. 

Despite their complexity, optimization-based approaches for driving systems have number of drawbacks. These 

methods may necessitate massive computation which makes them incapable of real-time applications [7]. Besides, 

most of them are typically optimized for certain driving conditions and can perform poorly in dynamic driving 

situations [8]. In addition, these strategies may fail to respond to changes in driving behavior within a short period 

of time and thus affect total levels of productivity [9]. Finally, these models are highly complex, leading to 

oversimplification of real-life driving systems [7] whereby certain interactions may not be captured and therefore 

the result are sub-optimal solutions. In contrast, machine learning-based approaches harness data-driven models 

to predict optimal energy distribution [10]. This adaptability enhances efficiency by allowing systems to learn from 

previous data and adjust in real-time to changing conditions. Such methods can better accommodate the variability 

inherent in driving scenarios, leading to improved performance [10].  

Lastly, this paper investigates how to extend optimization-based techniques, including Pontryagin’s Minimum 

Principle (PMP), with machine learning-based techniques, including Artificial Neural Networks (ANN). propose a 

system that would make use of optimization techniques to achieve the most optimal solution in energy 

management with the help of machine learning capability to make it more adaptive and effective. This integration is 

anticipated to enhance the fuel economy and battery durability primarily under real-world driving conditions. 

MODELLING AND POWERTRAIN OF PHEV 

Plug-In Hybird Electrical Vehicle (PHEV) 

Figure. 1 shows the components of PHEV that will be used as the main model of this study. The battery gains its 

supplies from the EGU which consists of an integrated-starter-generator (ISG) and diesel engine [8].  This car 

weighs about 9 tons and a length of about 3.84 meters. The vehicle's specification is 133 kw (99 KW). The car can 

travel for 300 kilometers on a single charge. Level 2 charging takes 6.5 hours, while Level 3 fast charging only takes 

35 minutes for a full charge. Figure. 1 shows the part of the PHEV model. 

 

Figure. 1: Plug-In Hybrid Electrical Vehicle Powertrain [11]. 

In this vehicle, fuel for the EGU and battery that can be recharged by external sources as this is an improved version 

of hybrid electric vehicles (HEV) [12]. When the battery is fully charged, PHEV operates as EV in all electrical range 

(AER) of 30-60km [13] and then switches to hybrid mode when battery reaches its predefined soc or vehicle [12]. 

Below is the power balance equation of PHEV model. 
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𝑃𝑉 =
1

3600
(𝑚𝑔𝑓𝑉 +

𝐶𝑑𝐴

21.15
𝑉3 + 𝜉𝑚

𝑑𝑣

𝑑𝑡
 𝑉) (1) 

V represents the speed, ξ is the equivalent mass inertia and the rest specifications of this powertrain are 

summarized in Table. 1. 

Table 1. Vehicle physical parameter 

Parameters Values 

The gross mass, m 3628 kg 

The rolling resistance coefficient, 

f 
0.015 

Air density, ρ 1.225 kg/m3 

Frontal area, A 0.5 m2 

The air drag coefficient, Cd 0.9 

Gravity, g 9.81 m2/s 

Wheel diameter 0.406 m 

Drive train efficiency 0.8 

 

Table 2. Outline specifications for the operational limits of a vehicle's motor, covering both torque and speed 

ranges. 

Table 2. Vehicle motor limitation 

Motor Limitation Values 

Torque maximum limit, Tmax 26 Nm 

Torque lower limit Tmin 0.1 Nm 

Maximum speed, Vmax 8200 rpm 

Minimum speed, Vmin 1 rpm 

 

Battery Model 

In this paper, a single lithium-ion phosphate battery with a 45Ah capacity and 450V nominal voltage is used. 

Battery dynamics, specifically open-circuit voltage and internal resistance are modeled as functions of the SOC 

using the internal resistance method Eq.2 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑃𝐵 + 𝑃𝐿 = 𝑃𝐵 + 𝐼𝐵
  2𝑅𝐵 (2) 

Where 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦  represents the battery’s internal rated power, 𝑃𝐵 is its terminal battery power, 𝑃𝐿  is the load power; 

𝐼𝐵 represents as the total battery current, and battery is the equivalent internal resistance represents the 𝑅𝐵. The 

battery equivalent circuit is illustrated in Error! Reference source not found.. 

 

Figure 2. Battery Equivalent Circuit 
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The rate at which the battery’s capacity decreases during the charge-discharge cycle is contingent upon both 

temperature and current. The point at which a battery’s capacity drops to 80% of its declared capacity [14] is known 

as the battery’s end of lifespan (EOF) [15]. In this case the battery life decline is computed using the empirical 

model which is described in Eq.3 

𝑄𝑙𝑜𝑠𝑠 
= 𝛽𝑒

(−
𝐸𝑎

𝑅𝑇𝑏𝑎𝑡𝑡𝑒𝑟𝑦
)

(𝐴ℎ)𝑧 (3) 

Where 𝑄𝑙𝑜𝑠𝑠  and 𝛽 denote is the capacity loss and the exponential factor respectively. As for the variable 𝐸𝑎, 𝑅, 

𝑇𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , 𝐴ℎ and 𝑧, each of them represents the activation energy, the gas constant, temperature of the battery, 

capacity and the power law factor. Under certain assumptions, the battery's theoretical lifespan is defined by Eq.4 

𝜆𝑚𝑖𝑛 = ∫ | 𝐼𝐵𝑚𝑖𝑛(𝑡)|𝑑𝑡

𝐸𝑂𝐿

0

 (4) 

In this equation, the battery’s life is λ_min and I_min (t) at the minimum current point. With 20% allowable loss. This 

formula can be used to represent the battery in Eq.5 

𝜆𝑚𝑖𝑛 = [
20

𝛽𝑒
𝛼+𝛽𝐼𝐵𝑚𝑖𝑛

𝑅𝑇𝑚𝑖𝑛  

]

1
𝑧

 (5) 

The service factor, which is related to the battery's rating, is defined by Eq.6 

𝜎 =
𝜆𝑚𝑖𝑛

𝜆
 (6) 

The battery is assumed to operate at 25 °C in this instance as it is well-established that the temperature control 

system facilitates more graceful cell aging. The battery is heated and cooled by thermal management regulates 

current entry and exit during driving and regenerative breaking. The nominal SOC for the battery is in Eq.7 

𝑆𝑂𝐶 =

(−𝑉𝑂𝐶 − √(𝑉𝑂𝐶
     2  − 4𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦))

2𝑞𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑟𝑏𝑎𝑡𝑡𝑒𝑟𝑦

 
(7) 

Where 𝑉𝑂𝐶  and 𝑞𝑏𝑎𝑡𝑡𝑒𝑟𝑦 are open circuit voltage and the capacity of the battery. As for the DOD it is stated in 

𝐷𝑂𝐷 =  ∫ |
𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)

𝑞𝑏𝑎𝑡𝑡𝑒𝑟𝑦
| 𝑑𝑡

𝑡

0
  (8) 

Table 3. Battery parameter based on matlab battery discharge block 

Battery Parameters Values 

Maximum capacity 100 Ah 

Open-circuit voltage 75 V 

Fully charge voltage 116.40 V 

Nominal discharge current 43.48 A 

Capacity at Nominal voltage 90.43 Ah 

a. Parameter obtained from MATLAB battery discharge block. 

Nominal discharge current is the maximum current a battery can safely discharge which significantly influenced by 

the SOC and DoD of battery. Understanding the nominal discharge current allows better management on battery 

performance. 

 It provides a baseline for understanding how a battery can perform under specific conditions. From Fig. 3 the 

battery can operate up to 6.5 hours at a single charging time. 
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Figure. 3. Battery Nominal Current Discharge Characteristic 

PMP AND ANN SOLUTION FOR ENERGY MANAGEMENT 

The first step of this research is to collect the initial SOC levels and real-time speed profiles using a shooting and 

PMP method based on enhanced DODs or Lower SOC limits. 

Battery SOC Data Collection 

The first step of this research is to collect the initial SOC levels and real-time speed profiles. These speed profile 

data is obtained from Hongkong China of a tourist car with a 50km total of round trip. The speed profile is gathered 

all for the purpose of identifying the ideal lower SOC and their corresponding DoD. 

 

Figure 4. Speed profile of the tourist car in a round trip 
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Pontryagin’s Minimum Principle (PMP) 

Pontryagin’s Minimum Principle (PMP) is one of the most effective for the purposes of optimizing battery systems 

[16]. In this case, the cost of energy utilization, CEU and cost of the energy battery life-cycle, CEBLC is optimized to 

improve energy efficiency, total operating cost and longevity of the battery system [17].  

Eq.9 represents the total cost of energy utilization, 𝐶𝑜𝑠𝑡𝐸𝑈 during the trip. This represents the combination of the 

fuel consumed by the energy generation unit (EGU) and the energy drawn from the battery. The equation integrates 

these costs over the trip duration, 𝑡𝑑. 

𝐶𝑜𝑠𝑡𝐸𝑈 = ∫ (𝑐𝑓𝑚̇𝑓 + 𝑐𝑒

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦

3600
 

̇
) 𝑑𝑡 

𝑡𝑑

0

 (9) 

The term of 𝐶𝑓𝑚̇𝑓 represents the cost related to fuel usage where, 𝐶𝑓 is the unit price for fuel in CNY per liter and 𝐶𝑒 is 

the unit price for electricity in CNY per kilowatt-hour. The fuel rate represents as 𝑚̇𝑓  in liter per second. Dividing the 

energy drawn from the battery by 3600 is to convert the energy from watt-seconds to watt-hours. 

Another factor that needs to be included in PMP is the total cost of battery degradation, 𝐶𝑜𝑠𝑡𝐸𝐵𝐷. This cost is 

important for the long-term impact of battery usage on its lifespan and associated replacement costs [18]. Where 𝐶𝑝 

is the cost of battery’s capital in CNY per kilowatt-hour. 

𝐶𝑜𝑠𝑡𝐸𝐵𝐷 = ∫ (𝑐𝑝

𝜎𝐼𝐵

3600𝜆𝑚𝑖𝑛

) 𝑑𝑡  
𝑡𝑑

0

 (10) 

Next, the cost function is added into Eq.11 to formulate the overall optimization problem for the energy 

management system. 

𝐽 =  ∫ (𝑐𝑓𝑚̇𝑓 + 𝑐𝑒

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦

3600
+ 𝑐𝑝

𝜎𝐼𝐵

3600𝜆𝑚𝑖𝑛

) 𝑑𝑡
𝑡𝑑

0

 (10) 

Thus, the cost function of J and the SOC dynamic is combined together in the Hamiltonian, H of Eq.12 

𝐻 =  𝑐𝑓𝑚̇𝑓 + 𝑐𝑒

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦

3600
+ 𝑐𝑝

𝜎𝐼𝐵

3600𝜆𝑚𝑖𝑛

+ 𝜆𝑆𝑂𝐶̇  (11) 

Next is to minimize the Hamiltonian which involve in finding the value of control that makes the Hamiltonian as 

small as possible for each point in a time. This ensures that the system operates in an optimal manner, balancing 

CEU and CEBLC. 

P = arg 𝑚𝑖𝑛 H (12) 

In this equation, the λ ̇ is the costate variable of SOC which is governed by the co-state dynamics Eq.14 

𝜆̇ =  −
𝜕𝐻

𝜕𝑆𝑂𝐶
=  −𝜆

𝜕𝑆𝑂𝐶𝑟𝑒𝑓

𝜕𝑆𝑂𝐶
 (13) 

The SOC is selected by equation is described in Eq.15 

SOĊ =  −
∂H

∂λ
   (14) 

Shooting Method as PMP Solution 

Since PMP does not have an analytical solution, numerical solutions are obtained by using the shooting method. The 

optimal DoD is determined using a variable representing the lower State of Charge SOC limit. 

The first step of this research is to collect the initial SOC levels and real-time speed profiles using a shooting and 

PMP method based on enhanced DODs or Lower SOC limits 
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𝜆𝑖 = 𝜆𝑖−1 + 𝜑, 𝑖 = 1,2,3, … 𝑛𝑠 (15) 

Where i is the number of times taken for shooting in 𝑛𝑠 ,  𝜆𝑖 is the initial and φ is incremental costate value in each 

shooting [11]. 

When solving the optimal control problem by using PMP and the Shooting Method (SM) for SOC in a battery system, 

certain criteria must be fulfilled to achieve a valid and feasible solution. 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑂𝐶𝑖  

𝑆𝑂𝐶𝑟𝑒𝑓 = 𝑆𝑂𝐶𝑓 

𝑃𝑏𝑎𝑡𝑡 𝑚𝑖𝑛
 ≤ 𝑃𝑏𝑎𝑡𝑡 ≤ 𝑃𝑏𝑎𝑡𝑡 𝑚𝑎𝑥

 

𝐼𝑏𝑚𝑖𝑛
 ≤ 𝐼𝑏 ≤ 𝐼𝑏𝑚𝑎𝑥

 

(16) 

The detailed flowchart of the shooting method is presented in Error! Reference source not found., where 𝑛 is t

he shooting time and with the maximum value of 20, the parameter ε is used to control the shooting time and 

computational accuracy, which is specified as 0.001. Furthermore, the values of λ and 𝜑 is set to -64.5 and 0.05 

respectively. 

 

Figure 5. Flowchart of Shooting Method as Ponytryagin's Minimum Principle (PMP) 
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Artificial Neural Network (ANN) 

Differential Function Fitting Neural Based Neural Network is an artificial neural network topology to estimate the 

derivative of a function [19]. The activation function of the proposed ANN is shown in Eq.18. 

 

Figure. 6. Differential Function Fitting Neural Network Block Diagram 

(𝑖 − 𝑒−𝑥)−1 (17) 

The ANN has three layers built for training to improve accuracy and computational power. These three neural 

network layers consist of an input layer, hidden layer and output layer [20]. 

 

Figure. 7. ANN Three Layer Block Diagram 

The learning objective and the ANN learning ratio are set at 0.00004 and 0.1, respectively. There are eight nodes in 

the middle layer and the iteration time is 100. By using the first speed profile data, ANN-3 (No-1&3), and ANN-5 

(No-1, 3 &5), respectively, three ANNs are structured. The data set created from the initial SOCs, and speed profiles 

serves as the foundation for ANN training. This proposed solution has 3 input layers which consist of power 

demand, battery SOC and distance travel. 

SIMULATION RESULT AND DISCUSSION 

The proposed PHEV battery management system was developed and simulated in MATLAB/Simulink software. 

Fig. 8 shows the powertrain of PHEV which is controlled by ANN. The powertrain is supplied with supercapacitor 

and lithium-ion battery system. 

 

 

Figure. 2. PHEV Powertrain Simulation 

Three ANNs are chosen by using 1, 3, and 5 layers, respectively were tested using the No. 3 speed profile. Three 

initial SOC 0.99, 0.96, and 0.93 were used to represent high, medium, and low starting battery charge. Dynamic 

Programming (DP) and Pontryagin's Minimum Principle (PMP) optimization methods were used as benchmarks for 

comparison with the ANNs. All simulations were performed in MATLAB R2024a on a laptop with a 3.3 GHz CPU 

and 24GB of RAM. Study shows that electrical energy from the battery is more expensive than fossil fuels. Therefore, 
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the battery is used more extensively to minimize costs until the SOC reaches a lower limit which is set to 0.2 in this 

case. This lower SOC is for methods without a battery aging model which allows a fair comparison with the ANNs. 

For the PMP and shooting method, the final SOC, 𝑆𝑂𝐶𝑓  is set at 0.3, while the initial costate 𝜇0 −64.5. The 

parameter 𝜑 is given as 0.05, and the maximum iteration count 𝑁𝑚𝑎𝑥  is set to 20. Additional constants such as α, β 

is −15700 and 170.3 respectively. As for the cost of 𝐶𝑓 , 𝐶𝑒 , 𝐶𝑝 is assigned to a value of 1.1, 3.2 and 3200 respectively. 

The parameters Z, T, and R are specified as 0.48, 297.15, and 8.31 respectively. These values form the basis for the 

simulation model, ensuring accurate and consistent calculations 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 9. Battery Performance during the trip (simulation) (a) Battery State of Charge (b) Battery Voltage (c) Battery 

Current (d) System Frequency 

The SOC profile graph illustrates the battery's state of charge changes over time during the energy management 

process. The number of shooting track different optimization phases as SOC gradually declines until it reaches the 

optimal depth of discharge (DOD). This controlled decrease shows a successful energy distribution between battery 

and engine systems thus maximizing the use of stored energy. The stabilization of SOC toward the end highlights the 

system's ability to balance energy demands dynamically. The EMS demonstrated stable operation across multiple 

iterations reflects a successful maintaining SOC within acceptable limits of SOC levels by using ANN and PMP 

strategies. This balance helps preserve battery life and optimize fuel consumption throughout the driving cycle. 

The battery output voltage graph demonstrates the voltage variations during the trip for ANN-1, ANN-3, and ANN-5 

models. The ANN models exhibit sustained alignment in voltage profiles despite load condition changes which show 

the system is reliable and consistent. The stabilization of voltage after disturbances indicates that the EMS efficiently 

handles load balancing which can avoid significant voltage spikes or drops. This stability contributes to improved 

system reliability and prevents strain on the battery, which is essential for extending battery life. The similarities 

between ANN models indicate that ANN-based Energy Management Systems (EMS) are reliable and perform 

consistently in various situations. This reliability is further enhanced by the ability to regulate voltage, which 

improves the overall energy efficiency of plug-in hybrid electric vehicles (PHEVs). 

From approximately 20 seconds to the end of the simulation, the battery current for all three ANN methods remains 

stable around 100 mA, with only minor fluctuations. This indicates that the control strategies implemented by ANN-

1, ANN-2, and ANN-3 are effective at maintaining consistent current during steady-state operation. From the graph, 

the current is seen to have a significant spike in battery current around 0-20 seconds and around 120 seconds. These 

spikes indicate the system is responding to changes in load or operating conditions. ANN-1 appears to exhibit slightly 

higher transient spikes compared to ANN-2 and ANN-3, indicating that it may be less optimized for transient 

stability. Despite minor differences, the overall alignment of the methods suggests comparable performance. The 

steady current range of 99-101 mA indicates effective control and efficient energy utilization. This consistent current 

level is crucial for maintaining battery health and extending its lifespan. 

As for the system frequency graph, this graph highlights the frequency variations observed during the trip for ANN-1, 

ANN-3, and ANN-5 models. It can be seen that profiles are nearly identical to each other. This indicates the stability 

performance of the EMS proves effective through these consistent profiles which maintain grid or system frequency 

stability. The consistent behavior reflects the adaptability of the ANN-based EMS in adapting to dynamic conditions 

without compromising system performance. The stability of frequencies across hybrid systems plays a critical role in 

scenarios where load changes occur frequently. This graph further confirms the ANN models are effective in 

supporting real-time energy management while preserving system stability. 

In Fig. 3, the graphs illustrate SOC profiles for three different ANN models (ANN-1, ANN-3, and ANN-5) under a 

specific speed profile. All ANN models demonstrate dynamic control over the battery's SOC, exhibiting consistent 

behavior. Notably, ANN-5 exhibits superior stability during the initial fluctuations results from a wider training 

algorithm datasheet.  
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Fig. 3 (b) and (c) compare ANN-based methods with PMP, where ANN models exhibit superior performance in 

maintaining a controlled SOC profile. PMP shows steeper declines in SOC, reflecting less precise energy utilization. 

ANN-3 and ANN-5 are seen to maintain SOC closer to the optimal range which indicates better adaptability to real-

time conditions. ANN-based methods surpass better in balancing battery usage with energy efficiency thus reducing 

unnecessary energy consumption while ensuring stability. This highlights the ANN's ability to learn complex 

patterns from training data. ANN-based had outperformed rule-based methods like PMP in both preserving battery 

life and enhancing system reliability during the trip. 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 3 State of Charge Profile created using speed profile number 3 by using 5 types of method (a) Initial SOC 0.99  

(b) Initial SOC 0.96  (c) Initial SOC 0.93 



Journal of Information Systems Engineering and Management 

2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

264 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Fig. 3 show the SOC profiles for different strategies and initial SOCs. Both PMP and DP reach the specified lower 

SOC boundary of 0.2 when a lower limit is enforced. The SOC profiles generated by the three ANNs closely resemble 

those of PMP with the same initial SOC. However, there are differences in how quickly the SOC changes. PMP and 

DP show more sudden changes in SOC compared to the ANN models. 

Table IV. Summarizes the comparative performance of ANN-based methods of ANN-1, ANN-3, and ANN-5 in terms 

of fuel cost, energy utilization, Cost of Energy Battery Degradation (CostEBD) and total cost. In some cases, PMP and 

DP method performs specific strengths in certain area. However, overall, ANN-based method outperforms them in a 

balanced and practical manner.  

ANN-1 and ANN-5 achieve competitive fuel costs across different SOC initial conditions. For example, at SOCi = 

0.99, ANN-1 uses only 7.91 L, slightly lower than PMP's 8.10 L, [why]. Other than that, ANN methods provide 

optimized energy use, with ANN-1 and ANN-3 showing values within a narrow, efficient range compared to PMP's 

higher utilization at SOCi = 0.99 (17.69 kWh). This balance makes ANN methods suitable for systems requiring 

consistent energy conservation. Lastly, the total cost of ANN-1 is consistently among the lowest across all SOC levels. 

At SOCi = 0.96, ANN-1 achieves a total cost of 59.16 CNY, significantly better than DP's 69.06 CNY, making it a cost-

effective solution for practical applications. 

The performance evaluation of ANN-based methods indicates successful energy management which accomplishes 

better performance than PMP and DP in multiple criteria. The effective optimization of fuel consumption and energy 

distribution results in reduced total costs through ANN-1 and ANN-3 methods. ANN models achieve better fuel 

efficiency than PMP techniques while using less energy than DP procedures thereby finding the optimal ratio between 

operational cost factors. ANN-3 performs consistently well by lowering fuel usage while keeping energy usage 

moderate and achieving lower total costs across all SOC range operations. ANN proves superior due to its excellent 

ability to detect complex nonlinear patterns between data points and dynamically adapt to operational changes which 

delivers optimized results with lower computational requirements than DP methods. Since ANN methods benefit from 

both scalability and real-time determination abilities, they demonstrate suitable applications for energy management 

systems that balance their operational expense with performance output effectively. 

TABLE 4.  Comparison of Equivalent Computational Cost with Other Method 

Method 𝑺𝑶𝑪𝒊 Fuel 

Cost 

(L) 

Energy 

Utilize 

(kWh) 

CostEB

D 

(CNY) 

Total 

Cost 

(CNY) 

PMP 

0.99 

8.10 17.69 10.85 58.98 

DP 1.78 28.42 13.09 61.28 

ANN1 7.91 16.44 11.78 58.08 

ANN3 8.22 16.36 11.77 59.08 

ANN5 8.22 16.40 11.78 59.11 

PMP 

0.96 

8.11 16.67 11.91 69.06 

DP 2.99 22.73 14.91 70.41 

ANN1 8.29 14.16 10.78 59.16 

ANN3 7.31 17.14 10.77 59.17 

ANN5 7.31 14.12 10.77 59.19 

PMP 

0.93 

8.39 14.76 11.79 59.51 

DP 5.85 19.41 10.31 59.52 

ANN1 7.46 13.61 11.77 59.32 
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ANN3 7.53 13.37 9.71 59.31 

ANN5 7.51 13.45 9.73 59.35 

 

CONCLUSION 

This study presents a data-driven differential function fitting neural based neural network energy management system 

(DEMS) for Plug-in Hybrid Electric Vehicles (PHEVs) using an Artificial Neural Network (ANN) and Pontryagin’s 

Minimum Principle (PMP) to enhance both energy efficiency and battery usage. The proposed system utilizes a 

modified three-layer backpropagation ANN the real time speed profile incorporated into the system allowing dynamic 

energy management that changes to meet different conditions of driving and initial state-of-charge (SOC). Using real 

time speeds can determines the optimal usage of energy between the battery and the gasoline engines to minimize fuel 

and energy wastage. The choice of an optimal depth of discharge (DOD) preserves the battery function lying within the 

best level and contributing to the battery’s durability. This approach shows that energy consumption costs are reduced 

by 15.99%; 15.97% and 23.13% for SOC levels of 0.99, 0.97 and 0.95 respectively with enhancements in fuel 

consumption and battery life. Moreover, the system shows almost identical behavior throughout various driving 

situations indicating versatility and stability of the system. By virtue of the structure of the ANN the system can be 

implemented as a real time system in PHEVs, making energy management possible in real life. The present study 

describes how energy management systems developed through neural networking can revolutionize vehicle 

performance, decrease expenditure and optimize battery performance. Further investigation of the selected methods 

will be devoted to enlarging the parameter set and fine-tuning of the model to enhance the system’s ability to respond 

to real-world driving conditions. 
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