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      These days, a wide range of applications and electrical gadgets employ machine 

learning techniques to solve issues and forecast future conditions. Since there are so 

many cars on the road and traffic congestion is readily caused by them, one of the 

problems that most  large cities face is traffic jams. Although traffic congestion are bad 

for the environment, their effects may be reduced with careful planning. Because it 

may prevent traffic congestion by using its predictive knowledge, one of the most 

intriguing topics for intelligent transportation systems is traffic prediction. It is quite 

difficult for academics to develop or use a model that will function properly in various 

conditions when it comes to traffic prediction. One of the most important aspects of 

traffic prediction is capturing both geographical and temporal connections. Taking use 

of model combinations is one approach to capturing both dependencies. the model 

combine three layer the graph convolution network and the long short term memory . 

Graph convolutional network is used by the model to learn the spatial dependency 

based on road network architecture, and long short term memory are used to learn the 

short-time trend in time series. To further increase prediction accuracy, the attention 

mechanism was included to modify the weight assigned to various time points and 

compile global temporal information. 

Keywords: traffic forecasting, temporal graph convolutional network, spatial 

dependence, temporal dependence. 

1-INTRODUCTION  

      Traffic forecasting is a crucial element of traffic control, transportation planning and management, 

and intelligent transportation systems [12, 15–17] . Complex spatiotemporal relationships have made 

accurate real-time traffic forecasting extremely difficult. Periodicity and propensity are signs of 

temporal dependency, which is the idea that the status of the traffic varies over time. Due to the 

transfer of upstream traffic state to downstream portions and the retroactive effects of downstream 

traffic state on the upstream section, changes in traffic state are subject to the structural topology of 

road networks, a phenomenon known as spatial dependence[10] . 

   Therefore, achieving the traffic forecasting assignment requires taking into account the topological 

properties of the road network as well as its complicated temporal features. There are two types of 

traffic forecasting models now in use: parametric and non-parametric. Historical averages, time series 
[1, 14], linear regression models [27], and Kalman filtering models [23] are examples of common 

parametric models. Traditional parametric models rely on the stationary hypothesis even if they make 

use of straightforward techniques. These models are unable to account for the nonlinearity and 

unpredictability of traffic conditions or to mitigate the impact of unforeseen circumstances like traffic 

accidents. When given sufficient historical data, non-parametric models may automatically learn the 

statistical laws of data, which enables them to effectively address these issues. K-nearest [2], support 

vector regression (SVR) [11, 30], fuzzy logic [34], Bayesian network [28], and neural network models are 

examples of common non-parametric models. 
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      Because deep learning is developing so quickly, deep neural network models have recently drawn a 

lot of interest from academics [22, 26]. Because they can employ self-circulation mechanism and 

simulate temporal dependency, (RNNs), long short-term memory (LSTM) [13], and gated recurrent 

units (GRUs) [7] have been effectively used in traffic forecasting [20, 25]. Nevertheless, these models 

ignore spatial dependency and solely take into account the temporal change of traffic status. 

Convolutional neural networks (CNNs) have been incorporated by several researchers into their 

models in order to effectively quantify spatial dependency. 

      Wu et al. [31] combined an LSTM with a CNN to create a feature fusion framework for short-term 

traffic flow forecasting. Using two LSTMs, the framework investigated the short-term fluctuations and 

periodicity of traffic flow while capturing the spatial properties of the flow through a one-dimensional 

CNN. Cao and associates. [6] presented an end-to-end model known as ITRCN, which used a CNN to 

collect network flows and convert interactive network traffic to pictures. 

       GRU was also used by ITRCN to extract temporal characteristics. An investigation demonstrated 

that this method's predicting error was 14.3% and 13.0% greater than those of GRU and CNN, 

respectively. Yu et al. [36] used LSTM and DCNN, respectively, to capture temporal dynamics and 

spatial correlation. 

Additionally, they demonstrated the advantages of SRCN through an analysis of Beijing traffic 

network data. Even if CNN is useful for Euclidean data[9], such images and grids, it is still limited 

when used to traffic networks since these networks have non-Euclidean architecture. 

     Graph convolutional network (GCN) has emerged in recent years [18], It has advanced quickly and is 

able to get over the aforementioned constraints while capturing the structural features of networks [19, 

35, 37]. Furthermore, RNNs and its variations employ sequential processing across time and are better 

able to retain the most recent data, making them appropriate for capturing changing short-term 

patterns. As though The proximity of time alone cannot discern the relative value of distinct time 

points. For this reason, above design the model for traffic forecasting. the model combine of the three 

layer of GCN and connected to LSTM. 

2-RELATED WORK 

        It has been demonstrated that intelligent transport systems (ITS) maximize traffic flow, safety, 

and overall transportation efficiency. Precise traffic flow forecasting is one of the issues that ITS faces 
[29]. 

     Among the methods that have been investigated to address this traffic flow forecasting issue, 

statistical models are a frequently employed option. Utilizing past traffic data, the statistical models 

identify patterns and trends that may be applied to forecasting.  

        The autoregressive integrated moving average (ARIMA) statistical model is predicated on the idea 

that there exists a robust pattern in the historical data pertaining to traffic [14]. Due to the dynamic 

nature of urban areas, traffic patterns constantly change over time and diverge from past traffic norms. 

Traditional machine learning approaches are also employed to anticipate traffic flow, and ML models 

have an advantage than statistic models in that they can handle more complicated patterns and 

considerably bigger data sets for analysis. Support vector regression (SVR) [26] and k-nearest 

neighbors (KNN) [27] are the popular models. 

Machine learning models may take into account variables like the time of day, the local site of interest, 

and the weather [30]. Since deep learning has advanced, deep learning models have outperformed 

standard machine learning [13]. Two deep learning models that are often utilized in traffic flow 

forecasting are the gated recurrent unit (GRU) and long-short term memory (LSTM) [26]. However, the 

issue with all of the aforementioned models is that they ignore the spatial characteristics of traffic data, 

which prevents them from having a strong understanding of the nearby roadways. In addition to the 
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previously discussed methods, typical machine learning and deep learning models are unable to 

handle graph-structured data because neighboring roads have an impact on the following road [21]. 

3-METHODOLOGY LSTM3GCN MODEL 

3.1- Definition of problems 

      In this study, traffic forecasting is done on urban highways to estimate future traffic conditions 

based on past traffic conditions. Traffic flow, speed, and density are all considered to be part of the 

traffic condition. The only definition of "traffic state" in this study is "traffic speed." 

     Definition 1 of a road network G: The set of road sections is denoted by G = (V , E) ,where V = 

(v1,v2, …... , vN), and the number of road sections is indicated by N. This represents the topological 

structure of the urban road network. The edges, or set E, represent the links between the various 

portions of the route. The adjacent matrix A € RN,N contains all of the connectivity data. Road sections 

index the rows and columns, and each entry's value represents the connection between relate 

road d The whole connectivity data is kept in the adjacent matrix A € RN,N, where road sections serve 

as the index for rows and columns. Each entry's value represents the connection between related road 

sections. In the event that there isn't a road link, the entry value is 0 (an unweighted graph) or non-

negative (a weighted graph). 

Definition 2. by calculating a sequence representation from its adjacency matrix, enhances the traffic 

flow forecast. In particular, traffic prediction can benefit from the application of self-attention to 

represent the temporal interdependence of traffic patterns over extended periods of time. In traffic 

prediction jobs, this is useful since historical traffic patterns have a significant influence on future 

traffic circumstances. With the application of a self-attention mechanism, deep learning models are 

able to assess the relative relevance of various input sequence segments [48]. Each input sequence must 

have three sets of vectors computed for the self-attention mechanism to function: query, key, and 

value vectors. The proper amount of attention that the model should assign is determined by the 

weights given to each element in the sequence. In this approach, we use a scaled dot-product self-

attention with the linear transformation of the adjacency matrix and compute the attention-weighted 

feature using Figure  as follows: The adjacency matrix A is divided into three copies: Query Q, Key K, 

and Value V, the similarity between the Q and each K can be used to calculate the attention score, 

which reflects the importance of different temporal moments. The attention score is normalized by 

softmax, and finally, multiply the value V by the normalized Q and K to get the attention-weighted 

feature Ậ 

 …………..(1) 

 

Fig -1  the Architecture of the adjacent matrix . 
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     The weighted sum of the vectors for each node in a graph, denoted as Ậ, is what will be passed to 

the GCN layers in place of the adjacency matrix Ậ. The model is given X as traffic input (traffic speed 

or flow) and A as its adjacency matrix. This forces the GCN layer to extract node relationships from 

the adjacency matrix Ậ rather than taking them directly to LSTM , and the model receives the 

architecture. 

3.2 Graph neural network (GNN) 

    Graph Neural Networks (GNNs): GNNs are a kind of neural network that works with graphs, which 

are mathematical structures made up of nodes and edges that represent entities and relationships 

between them. GNNs can be used to learn graph representations and perform different tasks like node 

classification, link prediction, and graph classification [51]. GNNs work by gathering information from 

neighboring nodes and updating each node's representation based on this information [23]. 

Traditionally, traffic flow forecasting has been accomplished through the use of statistical models, 

time series analysis, and machine learning techniques like Support Vector Regression (SVR). 

Nevertheless, the geographical dependencies and correlations among traffic data, which are crucial 

components for precise traffic flow prediction, are not well captured by these systems. GNNs are able 

to grasp the intricate correlations between many data sources, including traffic flow, meteorological 

information, and road network layout. By representing network topology as a graph and identifying 

the geographical connections between traffic data, GNNs can overcome these drawbacks [45]. 

The aggregator and updater are two crucial parts of a Graph Neural Network (GNN) that collaborate 

to update each node's hidden state depending on the hidden states of its neighbors [45]. 

      After receiving the hidden states of nearby nodes, the aggregator function combines or processes 

these states to create a node representation. Subsequently, the concealed state of the central node is 

updated using this node representation. A variety of functions, such as mean, max, or sum pooling, as 

well as more intricate ones like attention mechanisms or graph convolution, can be used as the 

aggregate function. In [50] As an illustration, consider a mean pooling aggregator, which creates a node 

representation by averaging the hidden states of nearby nodes. 

……..(2) 

     where |N(i)| is the number of neighboring nodes of node i and a(l)i is the node representation of the 

hidden states of neighboring nodes for node i at layer l [45]. The updater function comes after the 

aggregator function, taking in the node representation and the node's previous hidden state to 

produce the new hidden state for the node [50]. 

3.3  Graph Convolutional Network (GCN) 

      Graph structure processing may be done using semi-supervised models called GCNs. They 

represent a graph fields version of CNNs. GCNs have made significant advancements in a wide range 

of applications, including unsupervised learning [18] , document classification [9], and picture 

classification [5]. In GCNs, the spatial domain and spectrum convolutions are included in the 

convolutional mode . In this investigation, the former was used. Compared to a single-layer GCN, the 

multi-layer GCN improves the model's ability to capture more intricate representations. The model's 

ability to comprehend the influences of various nodes' neighbors is improved by adding layers. 

Excessive layers have been shown to improve a model's performance in sparse graphs. This is due to 

the fact that in both dense and sparse graphs, the GCN model is unable to collect enough 

environmental data in one layer. This means that adding additional layers makes it possible to record 

a wider range of environmental data . The product of figure filter gθ(L), which is built in the Fourier 

domain, and signal x on the graph is known as spectrum convolution. gθ(L) * x = Ugθ (UT x), where _ is 
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a model parameter, L is the graph Laplacian matrix, U is the eigenvector of normalized Laplacian 

matrix L = IN – D-1/ 2 A D-1/ 2 = UλUT , and UT x is the graph Fourier transformation of x. x can also be 

promoted to X €RN×N. In order to capture the spatial characteristics of a graph, GCNs can perform the 

spectrum convolutional operation, taking into account the graph node and first-order adjacent 

domains of nodes. This allows GCNs to replace the convolutional operation in anterior CNNs, given 

the characteristic matrix X and adjacent matrix A. Moreover, many networks are superposed using the 

hierarchical propagation rule. A multilayer GCN model has the following expression: 

H(𝑙+1) = 𝜎 ( 𝐷̃ − 1 /2 𝐴 ̃𝐷̃ – 1/2 𝐻(𝑙) 𝜃 (𝑙)  )……………3 

     where  Ã = A + IN is an adjacent matrix with self connection structures, IN is an identity matrix, D is 

a degree matrix, D ii = ∑ Ãij , H(l) € RN×l is the output of layer l, θ(l) is the parameter of layer l, and σ(.) 

is an activation function used for nonlinear modeling.Generally at three layer of GCN . We define the 

GCN as the following: 

 ……..(4 ) 

In other words, this study learned spatial dependence through the GCN model [18]. GCNs can encode 

the topological structures of road networks and the attributes of road sections simultaneously by 

determining the topological relationship between the central road section and the surrounding road 

sections. 

3.4- long short –term memory (LSTM ) 

   The LSTM model is an effective recurrent neural system that was created specifically to solve the 

exploding/vanishing gradient issues that frequently occur while learning long-term dependencies, 

even in cases where the minimal time delays are extremely lengthy[40]. Generally, a constant error 

carousel (CEC), which keeps the error signal inside each unit's cell, can stop this. Since the input and 

output gates, which together create the memory cell, are added to the CEC, these cells are actually 

recurrent networks in and of themselves. This makes for an intriguing design. One time step lag is 

shown by the self-recurrent connections, which represent feedback. An input gate, an output gate, a 

forget gate, and a cell make up a vanilla LSTM unit. suggested the forget gate as a way to enable the 

network to reset its state, even though it was not originally a component of the LSTM network. The 

three gates control the information flow related to the cell, and the cell retains data for random 

periods of time. Since this is the most often used LSTM architecture, LSTM will be referred to as the 

vanilla variant in the next sections. That being said, this does not mean that it is always the better 

option.  The memory blocks that make up the LSTM architecture are a collection of sub-networks that 

are connected recurrently. The purpose of the memory block is to control the flow of information 

through non-linear gating units and preserve its state across time. The gates, input signal x(t), output 

signal y(t), activation functions, and peephole connections make up the architecture of a vanilla      

LSTM block, as shown in Figure 2. All of the gates and the block's input are repeatedly linked to the 

block's output. 

Let's imagine a network with N processing blocks and M inputs in order to better understand how the 

LSTM model functions. This recurrent neural system's forward pass is explained below. 

Block input: This phase is all about updating the block input component, which is made up of the 

output of that LSTM unit (y(t−1) )from the previous iteration and the current input x(t) . [39] This may be 

done as follows: 

 

z(t) = g(Wz x(t) + Rz y(t−1) + bz ) …………(5) 
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where Wz and Rz are the weights associated with x(t) and y(t−1) , respectively, while bz stands for the bias 

weight vector. 

 

             Fig -2 the Architecture of LSTM Block. 

Input gate : it combines the cell value c(t−1) from the previous iteration, the output of that LSTM unit, 

and the current input x(t) is updated in this step. The process is shown by the following equation: 

i (t) = σ (Wi x(t) + Ri y(t−1) + pi  c(t−1) + bi)………( 6 ) 

where Wi, Ri, and pi are the weights associated with x(t), y(t−1), and c(t−1), respectively, and bi stands for 

the bias vector associated with this component. Since marks the point-wise multiplication of two 

vectors. 

The LSTM layer decides which data should be kept in the network's cell states c(t) in the earlier 

phases[38]. This involved choosing the input gate activation values, i(t), and candidate values, z(t) , that 

might be added to the cell states. 

Forget gate : The LSTM unit chooses which data from its earlier cell states c(t−1) should be eliminated 

in this stage. Thus, the current input x(t), the outputs y(t−1) and the state c(t−1) of the memory cells at the 

previous time step (t − 1), the peephole connections, and the bias terms bf of the forget gates are used 

to compute the activation values f (t) of the forget gates at time step t. Here is how this may be 

accomplished: 

 f(t) = σ (W f x(t) + R f y(t−1) + p f  c(t−1) + b f ) ……….(7)                    . 

The weights associated with x(t), y(t−1), and c(t−1) are represented by Wf, Rf, and pf, respectively, while bf 

stands for the bias weight vector. Cell This step computes the cell value by combining the values of the 

block input z(t), the input gate i(t), and the forget gate f (t) with the previous cell value. This can be done 

as shown below[40]  . 

                               c(t) = z(t)  i (t) + c(t−1) f (t)  …………….(8) 

Output gate : This phase calculates the output gate, which combines the current input x(t) , the 

output of that LSTM unit y(t−1) and the cell value c(t−1) in the last iteration. This may be done as 

indicated below: 

o(t) = σ (Wox(t) + Ro y(t−1) + po  c(t) + bo)………(9) 

    where Wo, Ro and po are the weights associated with x(t) , y(t−1) and c(t−1) , respectively, while bo 

denotes for the bias weight vector. 

Block output Finally, we calculate the block output, which combines the current cell value c(t) with 

the current output gate value as follows: 
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y(t) = g(c(t) )  o(t) …………(10) 

     In the above steps, σ, g and h denote point-wise non-linear activation functions. The logistic 

sigmoid σ (x) = (1/1+e1−x )  is used as a gate activation function, while the hyperbolic tangent g(x) = h(x) 

= tanh(x) is often used as the block input and output activation function. Although vanilla LSTM 

already performs very well, several works studied the possibilities to improve performance. For 

example, developed the Extended LSTM model, further improving the accuracy of predictions in 

several application fields by enhancing the memory capability. This suggests that theoretical 

improvements can still be made to an already state-of-the-art performing architecture. It seems 

appropriate to mention that the functionality of this architecture inspired the authors in to enhance 

the training of very deep networks. The gating mechanism was employed in the so-called highway 

networks to allow an unimpeded information flow across many layers. This could be considered 

another proof-of-concept, showing that the gates work. The process of looking for ways to make the 

model better was already underway. In order to maximize the sequence learning capabilities of LSTM, 

the authors searched for an alternate architecture. Through gradient descent, they were able to evolve 

memory cell architectures that could learn context-sensitive formal languages; in many aspects, their 

performance was similar to that of LSTM. The authors created Long Short-Term Memory Spiking 

Neural Networks (LSNN), which include adaptive neurons, by building atop recurrent networks of 

spiking neurons. 

      It was demonstrated that the performance is extremely similar to that of LSTM during experiments 

when the size of LSNN was comparable to that of LSTM. This is just one more example of how precise 

LSTM is and always will be. 

3.5 LSTM3GCN model 

    The model built for combine three layer of GCN connected to one LSTM , encapsulating 

geographical and temporal relationships. For both long- and short-term traffic flow forecasting, T-

GCN is utilized. The concept of "spatial dependency" in traffic relates to how traffic patterns at one 

place in a road network might affect other areas. Because of their geographical linkages, the traffic 

flow across various sites in the network is interconnected. Traffic is temporally dependent, meaning 

that historical traffic circumstances affect current traffic situations. In addition to the current 

circumstances, past traffic patterns and earlier states also influence the flow of traffic at any particular 

time [49]. 

 

Fig -3- the architecture of the LSTM3GCN model. 

A multi-layer GCN improves the model's ability to capture more intricate representations than one-

layer GCN alone. The model's ability to comprehend the various nodes' neighbor effect improves with 

the addition of layers. It has been demonstrated that when a graph is sparse, a model performs better 

with more layers. This is a result of the GCN model's inability to collect enough environmental data in 

a single layer in thick and sparse graphs. Therefore, adding more than one layer makes it possible to 

record a wider range of environmental data [5]. Increasing the sensitivity of GCNs to the topology of a 
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graph that has complicated topologies may result in a performance loss. To preserve the capacity to 

extract both local and global information from the graph, it is crucial to maintain a balance between 

this sensitivity. When the graph attention mechanism is used to enhance the models' ability to handle 

complicated graph topologies, the sensitivity of GCNs can be resolved [42]. Three layers make up the 

multi-layer GCN architecture that we have developed in this work. The GCN is defined as follows: 

…….(11) 

Three layers make up the architecture, and the weight matrices are W0, W1, and W2.Given an 

adjacency matrix A and input X, The first GCN layer receives the ˆA and X as input. These inputs are 

passed through three convolutional graph layers. The second and third convolutional graph layers 

receive the generated adjacency matrix as input. Lastly, the final output for the model is obtained by 

applying the ReLU activation function to the resultant matrix .The output of the GCN layers is the 

input for the LSTM model, which produces a prediction and a hidden state for the subsequent time 

stamp. 

4-EXPERIMENTS 

4.1 Data Description 

     PeMSD4: It is collected by the Caltrans Performance Measurement System (PeMS) with a time 

granularity of 5 minutes. The PeMSD4 dataset refers to the traffic flow data in the San Francisco Bay 

Area, which contains traffic information of 307 loop detectors from 1/Jan/2018 to 28/Feb/2018.it 

used python language . 

4.2 Evaluation Metrics 

   To evaluate the prediction performance of the model, the error between real traffic speed and 

predicted results is evaluated on the basis of the following metrics: 

(1) Root Mean Squared Error (RMSE): 

……..(12) 

(2) Mean Absolute Error (MAE): 

……..(13) 

(3) Mean Absolute Percentage Error: 

………(14) 

Prediction error is specifically measured using RMSE, MAE, and MAPP. High prediction precision 

is shown by small RMSE, MAPE, and MASE values. Predictive precision is gauged by accuracy, with a 

high accuracy number being desirable. 

4.3 Performance Comparison 

       We compare LSTM3GCN with several baseline models, including: 

 GCN: Captures spatial dependencies but lacks temporal modeling capabilities. 

TGCN: Integrates GCN with temporal graph convolution but does not incorporate memory 

mechanisms. 

ASTGCN: Uses an attention-based spatiotemporal GCN but is computationally expensive. 
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HGCN: Employs hierarchical graph convolution to improve spatial representation but lacks long-term 

dependency modeling. 

4.4  Experimental result analysis and discussion  

      In this paper, we propose  deep learning framework LSTM3GCN for traffic prediction, integrating 

graph convolution network and long short term memory block. Experiments show that  model 

involved manually setting the learning rate and epoch for the datasets to 0.0001 and 100, respectively, 

based on prior experiences. The traffic information in the next 15, 30,45,60,90, and 120 min is 

predicted. The predicted results are compared with results from the other model are 

GCN, TGCN, ASTGCN,  and HGCN. 

Table 4-1 Experimental results of all models predicting the next 15 minutes under the PeMS04 dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 41.37 58.51 0.442 

TGCN 209.04 261.46 0.919 

ASTGCN 23.76 35.48 0.179 

HGCN 38.72 55.33 0.410 

LSTM3GCN 18.47 

 

29.66 0.121 

 

 

Figure 4-2 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 15 

minutes. 

      This chapter conducts experimental verification based on the PeMSD4 dataset and the three 

evaluation metrics RMSE, MAE, and MAPE. Tables 4-1,present the experimental results of all models 

in predicting traffic flow for the next 15 minutes. The comparative models include those based on 

traditional time series methods and those based on deep neural network methods. From the above 

table, it can be intuitively seen that LSTM3GCN has superior prediction performance. 
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Table 4-2 Experimental results of all models predicting the next 30 minutes under the PeMSD4 

dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 41.91 57.7 0.451 

TGCN 161.71 219.53 0.884 

ASTGCN 61.87 80.62 0.937 

HGCN 290.88 234.89 0.514 

LSTM3GCN 20.51 

 

32.48 

 

0.135 

 

Figure 4-3 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 30 

minutes. 

Tables 4-2,present the experimental results of all models in predicting traffic flow for the next 30 

minutes. The comparative models include those based on traditional time series methods and those 

based on deep neural network methods. From the above table, it can be intuitively seen that 

LSTM3GCN has superior prediction performance. 

Table 4-3 Experimental results of all models predicting the next 45 minutes under the PeMSD4 

dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 46.77 64.77 0.567 

TGCN 119.48 166.45 0.814 

ASTGCN 33.11 48.34 0.3105 

HGCN 180.67 353.68 0.358 

LSTM3GCN 22.15 34.72 0.146 

 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 195 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 

 

Figure 4-4 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 45 

minutes. 

    Tables 4-3,present the experimental results of all models in predicting traffic flow for the next 45 

minutes. The comparative models include those based on traditional time series methods and those 

based on deep neural network methods. From the above table, it can be intuitively seen that 

LSTM3GCN has superior prediction performance. 

Table 4-4 Experimental results of all models predicting the next 60 minutes under the PeMSD4 

dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 37.56 54.82 0.323 

TGCN 120.89 172.30 0.902 

ASTGCN 45.54 63.63 0.503 

HGCN 290.67 334.68 0.514 

LSTM3GCN 23.93 

 

37.17 0.158 
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Figure 4-5 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 60 

minutes. 

    Tables 4-4,present the experimental results of all models in predicting traffic flow for the next 60 

minutes. The comparative models include those based on traditional time series methods and those 

based on deep neural network methods. From the above table, it can be intuitively seen that 

LSTM3GCN has superior prediction performance. 

Table 4-5 Experimental results of all models predicting the next 90 minutes under the PeMSD4 

dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 39.80 58.40 0.369 

TGCN 112.48 155.35 0.962 

ASTGCN 50.54 70.41 0.546 

HGCN 43.08 61.57 0.303 

LSTM3GCN 25.79 39.68 

 

0.171 
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Figure 4-6 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 90 

minutes. 

     Tables 4-5,present the experimental results of all models in predicting traffic flow for the next 90 

minutes. The comparative models include those based on traditional time series methods and those 

based on deep neural network methods. From the above table, it can be intuitively seen that 

LSTM3GCN has superior prediction performance. 

Table 4-6 Experimental results of all models predicting the next 120 minutes under the PeMSD4 

dataset. 

 

model 

Evaluation matrices 

MAE RMSE MAPE % 

GCN 49.65 70.63 0.504 

TGCN 150.41 199.89 0.897 

ASTGCN 57.94 79.09 0.679 

HGCN 44.12 62.61 0.347 

LSTM3GCN 23.59 

 

36.95 0.156 
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Figure 4-7 Comparison of RMSE, MAE, and MAPE values of all models in predicting the next 120 

minutes. 

       As shown in Figure 4-2 and Table 4-1, when predicting traffic flow for the next 15 minutes, the 

MAE value of LSTM3GCN is reduced by 44.64%,8.83%,77.7% ,and 47.7%  Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 50.6%,11.3%, 

83.5% ,and 53.6% , respectively. for the MAPE  value , it is reduced by 27.3%,13.1%,67.5%, and 29.5%, 

compared to them, respectively. 

      As shown in Figure 4-3 and Table 4-2, when predicting traffic flow for the next 30 minutes, the 

MAE value of LSTM3GCN is reduced by 48.9%,12.6%,33.15% ,and 7.1%  Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 56.2%,14.7%, 

40.28% ,and 13.8% , respectively. for the MAPE  value , it is reduced by 29.9%,15.27%,14.4%, and 

26.2%, compared to them, respectively. 

     As shown in Figure 4-4 and Table 4-3, when predicting traffic flow for the next 45 minutes, the 

MAE value of LSTM3GCN is reduced by 47.35%,18.53%,66.8% ,and 12.25% Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 53.6%,20.8%, 

71.8% ,and 9.8% , respectively. for the MAPE  value , it is reduced by 25.7%,17.9%,47.02%, and 

40.78%, compared to them, respectively. 

    As shown in Figure 4-5 and Table 4-4, when predicting traffic flow for the next 60 minutes, the 

MAE value of LSTM3GCN is reduced by 63.7%,19.7%,52.54% ,and 8.2% Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 76.8%,21.5%, 

71.8% ,and 11.1% , respectively. for the MAPE  value , it is reduced by 48.9%,17.5%,31.4%, and 30.7%, 

compared to them, respectively. 

As shown in Figure 4-6 and Table 4-5, when predicting traffic flow for the next 120 minutes, the MAE 

value of LSTM3GCN is reduced by 64.7%,22.92%,51.02% ,and 59.8% Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 67.9%,25,54%, 

56.3% ,and 64.4% , respectively. for the MAPE  value , it is reduced by 46.34%,17.7%,31.31%, and 

56.43%, compared to them, respectively. 

      As shown in Figure 4-7 and Table 4-6, when predicting traffic flow for the next 120 minutes, the 

MAE value of LSTM3GCN is reduced by 47.50%,15.6%,40.7% ,and 53.4%  Compared to the 

GCN,TGCN,ASTGCN,HGCN models ,Respectively. In term RMSE ,it is reduced by 52.3%,18.4%, 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 199 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

46.7% ,and 59.01% , respectively. for the MAPE  value , it is reduced by 30.95%,17.39%,22.97%, and 

44.95%, compared to them, respectively. 

 6- CONCLUSION AND FUTURE WORK 

     The simultaneous capture of global temporal dynamics and spatial correlations is made possible by 

a traffic forecasting technique called LSTM3GCN, which makes the process easier. The network of 

metropolitan roadways is built as a graph, with road traffic speed represented as a node's property on 

the graph. The suggested approach uses a three-layer GCN to capture the spatial relationships 

depending on the topological features of the road network. In the meanwhile, the dynamic variance. 

The LSTM records each successive historical traffic speed. Additionally, discovered that a typical 

technique is to combine GCN with LSTM in order to achieve the best possible performance and when 

compare the result the combine the GCN with LSTM is more better when connected with GRU. 

Convolution and pooling layers were employed in these hybrid models to lower the problem's 

dimensionality while significantly lowering the redundancy in the data. Further research into these 

components might result in LSTM variations with better prediction skills. the worldwide trend of 

temporal variation is taken in by the attention mechanism and assembled. A multi-layer GCN 

improves the model's ability to capture more intricate representations than one-layer GCN alone. The 

model's ability to comprehend the various nodes' neighbor effect improves with the addition of layers. 

It has been demonstrated that when a graph is sparse, a model performs better with more layers. This 

is a result of the GCN model's inability to collect enough environmental data in a single layer in thick 

and sparse graphs. Therefore, adding more than one layer makes it possible to record a wider range of 

environmental data [5].And the datset used , It is collected by the Caltrans Performance Measurement 

System (PeMS) with a time granularity of 5 minutes. The PeMSD4 dataset refers to the traffic flow 

data in the San Francisco Bay Area, which contains traffic information of 307 loop detectors from 

1/Jan/2018 to 28/Feb/2018. 

7-REFRENCES 

[1] NTedjopurnomo, D.A.; Bao, Z.; Zheng, B.; Choudhury, F.; Qin, A.K. A survey on modern 

deep neural network for traffic prediction:Trends, methods and challenges. IEEE Trans. 

Knowl. Data Eng. 2020, 34, 1544–1561  

 [2] N. S. Altman. An introduction to kernel and nearestneighbor nonparametric regression. American 

Statistician, 46(3):175–185, 1992. 

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly 

learning to align and translate, 2014. 

[4] . Bengio, Y., . Simard, P., and . Frasconi, P. Learning longterm dependencies with gradient descent 

is difficult. IEEE Trans Neural Netw, 5(2):157–166, 2002. 

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally 

connected networks on graphs. 2013. 

[6] Xiaofeng Cao, Yuhua Zhong, Zhou Yun, Wang Jiang, and Weiming Zhang. Interactive temporal 

recurrent convolution network for traffic prediction in data centers. IEEE Access, PP(99):1–1, 2017. 

[7] Kyunghyun Cho, Bart Van Merrienboer, Dzmitry Bahdanau,and Yoshua Bengio. On the properties 

of neural machine translation: Encoder-decoder approaches. Computer Science, 2014. 

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of 

gated recurrent neural networks on sequence modeling, 2014. 

[9] Michal Defferrard, Xavier Bresson, and Pierre Vandergheynst.Convolutional neural networks on 

graphs with fast localized spectral filtering, 2016. 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 200 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[10] Chun Jiao Dong, Chun Fu Shao, Zhuge Cheng-Xiang, and Meng Meng. Spatial and temporal 

characteristics for congested traffic on urban expressway. Journal of Beijing University of Technology, 

38(8):1242–1246+1268, 2012. 

[11] Gui Fu, GuoQiang Han, Feng Lu, and ZiXin Xu. Shortterm traffic flow forecasting model based on 

support vector machine regression. Journal of South China University of Technology, 41(9):71–76, 

2013. 

[12] Lei Gao, Xingquan Liu, Yu Liu, Pu Wang, Min Deng, Qing Zhu, and Haifeng Li. Measuring road 

network topology vulnerability by ricci curvature. Physica A: Statistical Mechanics and its 

Applications, 527:121071, 2019. 

[13] Alex Graves. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. 

[14] Victoria J. Hodge, Rajesh Krishnan, Jim Austin, John Polak, and Tom Jackson. Short-term 

prediction of traffic flow using a binary neural network. Neural Computing and Applications, 25(7-

8):1639–1655, 2014. 

[15] Hai Jun Huang. Dynamic modeling of urban transportation networks and analysis of its travel 

behaviors. Chinese Journal of Management, 2005. 

[16] Yuan Jian and Bingquan Fan. Synthesis of short-term traffic flow forecasting research progress. 

Urban Transport of China, 2012. 

[17] Liu Jing and Guan Wei. A summary of traffic flow forecasting methods. Journal of Highway and 

Transportation Research & Development, 2004. 

[18] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional 

networks, 2016. 

[19] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Graph convolutional recurrent neural network: 

Data-driven traffic forecasting. CoRR, abs/1707.01926, 2017. 

[20] J.W. C. Van Lint, S. P. Hooqendoorn, and H. J. Van Zuvlen. Freeway travel time prediction with 

state-space neural networks: Modeling state-space dynamics with recurrent neural networks. 

Transportation Research Record Journal of the Transportation Research Board, 1811(1):347369, 2002. 

[21] Minh Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-

based neural machine translation. Computer Science, 2015. 

[22] MMorav?k,MSchmid, N Burch, V Lisy, D Morrill, N Bard, T Davis, K Waugh, M Johanson, and M 

Bowling. Deepstack: Expert-level artificial intelligence in heads-up nolimit 

poker. Science, 356(6337):eaam6960, 2017. 

[23] Iwao Okutani and Yorgos J. Stephanedes. Dynamic prediction of traffic volume through kalman 

filtering theory. Transportation Research Part B Methodological, 18(1):1–11, 1984. 

[24] Nikolaos Pappas and Andrei Popescu-Belis. Multilingual hierarchical attention networks for 

document classification. 2017. 

[25] Fu Rui, Zhang Zuo, and Li Li. Using lstm and gru neural network methods for traffic flow 

prediction. In Youth Academic Conference of Chinese Association of Automation, 2016. 

[26] D Silver, J Schrittwieser, K Simonyan, I Antonoglou, A. Huang, A Guez, T Hubert, L Baker, M. 

Lai, and A Bolton. Mastering the game of go without human knowledge. Nature, 550(7676):354–359, 

2017. 

[27] Hongyu Sun, Chunming Zhang, and Bin Ran. Interval prediction for traffic time series using local 

linear predictor. In International IEEE Conference on Intelligent Transportation Systems, 2004. 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 201 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[28] Shiliang Sun, Changshui Zhang, and Guoqiang Yu. A bayesian network approach to traffic flow 

forecasting. IEEE Transactions on Intelligent Transportation Systems, 7(1):124–132, 2006. 

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information 

processing systems, pages 5998–6008, 2017. 

[30] Chun-Hsin Wu, Jan-Ming Ho, and D. Lee. Travel-time prediction with support vector regression. 

Intelligent Transportation Systems, IEEE Transactions on, 5:276 – 281, 01 2005. 

[31] Yuankai Wu and Huachun Tan. Short-term traffic flow forecasting with spatial-temporal 

correlation in a hybrid deep learning framework. 2016. 

[32] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional 

factorization machines: Learning the weight of feature interactions via attention networks, 2017. 

[33] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, 

Richard Zemel, and Yoshua Bengio. Show, attend and tell: Neural image 

caption generation with visual attention, 2015. 

[34] Hongbin Yin, S. C.Wong, Jianmin Xu, and C. K.Wong. Urban traffic flow prediction using a 

fuzzy-neural approach. Transportation Research Part C, 10(2):85–98, 2002. 

[35] Byeonghyeop Yu, Yongjin Lee, and Keemin Sohn. Forecasting road traffic speeds by considering 

area-wide spatio-temporal dependencies based on a graph convolutional neural network (gcn). 

Transportation Research Part C: Emerging Technologies, 114:189–204, 2020. 

[36] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma. Spatiotemporal recurrent convolutional networks for 

traffic prediction in transportation networks. Sensors, 17(7):1501–, 2017. 

[37] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: 

A temporal graph convolutional network for traffic prediction. IEEE 

Transactions on Intelligent Transportation Systems, 2019. 

[38]  Bellec G, Salaj D, Subramoney A, Legenstein R, Maass W (2018) Long short-term memory and 

learningto-learn in networks of spiking neurons. In: Advances in neural information processing 

systems, pp 787–797  

[39] Bhunia AK, Konwer A, Bhunia AK, Bhowmick A, Roy PP, Pal U (2019) Script identification in 

natural scene image and video frames using an attention based convolutional-LSTM network. Pattern 

Recognit 85:172–184 

[40] Zhang P, Ouyang W, Zhang P, Xue J, Zheng N (2019b) SR-LSTM: state refinement for LSTM 

towards pedestrian trajectory prediction. In: Proceedings of the IEEE conference on computer vision 

and pattern recognition, pp 12085–12094 

[41] Shengyou Wang, Jin Zhao, Chunfu Shao, Chunjiao Dong, and Chaoying Yin. Truck traffic flow 

prediction based on lstm and gru methods with sampled gps data. IEEE Access, 8:208158–208169, 

2020. doi: 10.1109/ACCESS.2020.3038788. 

[42] Xinjue Wang, Esa Ollila, and Sergiy A. Vorobyov. Graph neural network sensitivity under 

probabilistic error model, 2022. 

[43] Tianshu Wu, Kunqing Xie, Guojie Song, and Cheng Hu. A multiple svr approach with time lags 

for traffic flow prediction. In 2008 11th International IEEE Conference on Intelligent Transportation 

Systems, pages 228–233, 2008. doi: 10.1109/ITSC.2008. 4732663. 

[44] WenyuWu, Xiumei Fan, Yaqiong Xue, and Yusheng Huang. An attention mechanismbased 



Journal of Information Systems Engineering and Management 
2025, 10(36s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 202 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

method for predicting traffic flow by gcn. In 2021 40th Chinese Control Conference (CCC), pages 

8410–8415, 2021. doi: 10.23919/CCC52363.2021.9550673. 

bibliography 39 

[45] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A 

comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and 

Learning Systems, 32(1):4–24, 2021.  

[46] Guo Xiaojian and Zhu Quan. A traffic flow forecasting model based on bp neural network. In 

2009 2nd International Conference on Power Electronics and Intelligent Transportation System 

(PEITS), volume 3, pages 311–314, 2009.  

 [47] Lakshmi Yermal and P. Balasubramanian. Application of auto arima model for forecasting 

returns on minute wise amalgamated data in nse. In 2017 IEEE International Conference on 

Computational Intelligence and Computing Research (ICCIC), pages 1–5, 2017. [48] Zhou Yu, Xingyu 

Shi, and Zhaoning Zhang. A multi-head self-attention transformerbased model for traffic situation 

prediction in terminal areas. IEEE Access, 11:16156– 16165, 2023. 

[49] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: 

A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent 

Transportation Systems, 21(9):3848–3858, 2020.  

[50] Xin Zheng, Miao Zhang, Chunyang Chen, Chaojie Li, Chuan Zhou, and Shirui Pan. Multi-

relational graph neural architecture search with fine-grained message passing. In 2022 IEEE 

International Conference on Data Mining (ICDM), pages 783–792, 2022. 

 [51] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, 

Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI 

open, 1:57–81, 2020. 

[52] Jiawei Zhu, Chao Tao, Hanhan Deng, Ling Zhao, Pu Wang, Tao Lin, and Haifeng Li. Ast-gcn: 

Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting, 2020. 

 


