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ARTICLE INFO ABSTRACT

Received: 10 Oct 2024 This paper presents an evaluation of the novel Beagle-Inspired Optimization Algorithm

(BIOA), inspired by the scent detection and rabbit hunting strategies of beagle dogs, such as

scent detection, tracking, trail following, pattern recognition, continuous adaptation, persistent

Accepted: 26 Dec 2024 and exhaustive search, and escape and retrieval. BIOA is compared with well-established algo-
rithms, including Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony
Optimization (ACO), and Cuckoo Search (CS), across a set of benchmark functions, including
Sphere, Rosenbrock, Rastrigin, Griewank, Ackley, Levy, and Schwefel functions. The results
demonstrate BIOA's superior performance, achieving the lowest mean fitness values and best
solutions across most test cases. Its balanced exploration and exploitation phases enable effec-
tive optimization. While BIOA excels in many instances, it requires further improvements in
computational efficiency, particularly for high-dimensional problems. Future research should
focus on enhancing BIOA's performance through advanced models, hybrid optimization tech-
niques, and real-world problem applications, thus broadening its practical impact in solving
complex optimization tasks.
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1 Introduction

Optimization algorithms are pivotal in addressing a broad spectrum of complex problems in diverse fields, such
as machine learning, engineering, finance, healthcare, and logistics [1]. These algorithms iteratively search for the
best possible solution within a defined search space, aiming to find the global optimum. While numerous optimiza-
tion techniques have emerged, nature-inspired algorithms have gained widespread attention due to their ability to
mimic the adaptability, efficiency, and robustness of natural systems. Among these, evolutionary and swarm-based
algorithms, such as PSO [2], ACO [3], ABC [4], and CS [5], have proven to be highly effective in solving complex op-
timization problems. These algorithms are designed based on the collective intelligence observed in nature, particu-
larly the behaviors of animals and insects, and they offer solutions to problems where traditional methods may
struggle [6].
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Figure 1Classification of Optimization

Deterministic optimization methods presume that the parameters of the optimization challenge are completely
understood [7]. These methods consist of linear programming, non-linear programming, mixed-integer program-
ming, and dynamic programming as shown in Figure 1. For instance, linear programming is employed to maximize
linear objective functions subject to linear constraints. It is commonly utilized in operations research and manage-
ment science. Non-linear programming, in contrast, is utilized to optimize non-linear objective functions alongside
either linear or non-linear constraints. It is applied across different domains, such as engineering, economics, and
finance.

In contrast, stochastic optimization methods presume that the optimization problem's parameters are uncertain
or random [8]. These methods encompass stochastic programming, stochastic dynamic programming, and simula-
tion optimization. Stochastic programming, for instance, is utilized to enhance performance amidst uncertainty by
employing probability distributions. It finds application in multiple areas, such as finance, economics, and engi-
neering. In contrast, simulation optimization employs simulation models to enhance systems in the face of uncer-
tainty. It is utilized in multiple areas, such as logistics, supply chain management, and finance.

Heuristic optimization techniques [9] utilize approximation methods to discover near-optimal solutions. These
methods consist of genetic algorithms, PSO, ACO, and simulated annealing. Genetic algorithms, for instance, draw
inspiration from natural selection and genetics to find the best solutions. PSO imitates the behavior of flocks of
birds or schools of fish to find optimal solutions [2]. ACO mimics the searching behavior of ants to discover the best
routes [3]. Simulated annealing employs a temperature sequence to prevent local optima and discover global opti-
ma.

Optimization functions are essential in optimization challenges. These functions can be divided into objective
functions and constraint functions [10]. Objective functions can be functions of either minimization or maximiza-
tion. Minimization functions seek to identify the lowest value of the objective function, whereas maximization func-
tions strive to discover the highest value [11]. In contrast, constraint functions may be categorized as equality con-
straints, inequality constraints, and non-negativity constraints. Equality constraints need to be met precisely,
whereas inequality constraints should be fulfilled within a specific range. Non-negativity restrictions guarantee that
variables remain non-negative.

Decision variables are crucial in optimization problems, particularly in the context of Many Objective Optimiza-
tion Problems (MaOPs), where traditional algorithms often struggle with scalability. The Decision Variable Learn-
ing (DVL) algorithm, which employs machine learning to predict solutions close to the Pareto-optimal front, has
demonstrated superior performance compared to established methods like NSGA-III [12,13]. Additionally, the Sub-
set Selection Algorithm (SSA) effectively reduces the complexity of decision variable combinations, enhancing re-
source efficiency in complex chemical processes [14]. Furthermore, understanding interactions between decision
variables is essential, as these interactions can significantly influence outcomes in engineering and classification
tasks. Techniques such as distributed decision variable analysis and Exploratory Landscape Analysis (ELA) are be-
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ing developed to manage large-scale decision variables and their interactions, thereby improving optimization effi-
ciency [15].

Optimization issues can be divided into single-objective optimization issues and multi-objective optimization is-
sues. Single-objective optimization problems focus on optimizing one objective function, whereas multi-objective
optimization problems concentrate on optimizing several objective functions at the same time [16]. Single-objective
optimization issues can additionally be divided into unconstrained optimization issues and constrained optimiza-
tion issues. Unconstrained optimization problems lack constraints, whereas constrained optimization problems in-
clude restrictions that must be met. Various methods can be employed to solve multi-objective optimization prob-
lems, such as the weighted sum method and Pareto optimization. The weighted sum approach allocates weights to
every objective function and seeks to optimize the total weighted sum [17]. In contrast, Pareto optimization identi-
fies the Pareto front, where improving one objective function would lead to the deterioration of another.

Despite the success of current bio-inspired algorithms, there remains an ongoing need for novel approaches that
can effectively balance the exploration and exploitation phases of optimization, while also maintaining adaptability
to diverse problem landscapes [18]. In this context, the BIOA is proposed, which takes inspiration from the scent
detection and hunting strategies of Beagles, coupled with the adaptive escape and retrieval tactics observed in rab-
bits. Beagles, known for their remarkable scent-detection abilities, track scents over long distances by employing a
methodical, persistent, and exhaustive search strategy [19]. Similarly, rabbits utilize highly adaptive strategies to
escape predators, demonstrating an ability to adapt and persist in challenging environments [20]. By integrating
these characteristics—persistent search, tracking, pattern recognition, adaptation, and escape—BIOA is designed to
enhance the efficiency of optimization algorithms, especially for complex, multimodal, and high-dimensional prob-
lems.

BIOA aims to address some of the shortcomings of existing algorithms by providing an optimization process that
adapts more flexibly to the search landscape. The key inspiration for BIOA lies in the remarkable tracking and
scent-following behavior of Beagles and the rabbit’s behavioral strategies, including continuous adaptation and es-
cape. BIOA is intended to enhance the balance between exploration (searching for global optima) and exploitation
(refining known good solutions) within the optimization search process. It emphasizes persistent exploration,
adapting its search patterns based on the best solutions found while incorporating escape mechanisms to avoid lo-
cal optima, akin to the way animals adapt to dynamic environments and threats.

This paper introduces the BIOA as a novel optimization framework and assesses its performance on benchmark
functions, comparing it with well-established optimization techniques such as PSO, ABC, ACO, and CS. We aim to
demonstrate how BIOA outperforms other algorithms in terms of solution quality, computational efficiency, and
robustness across diverse problem landscapes. The results indicate that BIOA provides significant improvements,
especially in solving high-dimensional and multimodal optimization problems. Additionally, we explore the poten-
tial real-world applications of BIOA, emphasizing its suitability for complex optimization tasks, including those
found in fields such as machine learning, robotics, and logistics. This research contributes to the growing body of
knowledge in bio-inspired optimization algorithms and presents new possibilities for future developments in na-
ture-based computational techniques.

The primary motivation for BIOA is to offer a more versatile optimization technique capable of effectively navi-
gating complex solution spaces while maintaining flexibility and adaptability. Future work will focus on improving
BIOA’s robustness, exploring hybrid approaches with other bio-inspired algorithms, and testing its performance on
real-world applications. The study's findings point to the exciting potential of BIOA to revolutionize the landscape
of optimization algorithms, pushing the boundaries of what is possible in computational optimization.

2 Literature Review

Optimization algorithms have evolved significantly over the past several decades, addressing increasingly com-
plex problems across diverse fields such as engineering, machine learning, robotics, and logistics. In traditional op-
timization methods, algorithms such as gradient descent and Newton's method were used to find local optima [21].
However, these methods often fail when dealing with multimodal, high-dimensional, or non-differentiable objec-
tive functions. To address these challenges, bio-inspired optimization techniques have gained widespread attention.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 702

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

These algorithms mimic natural processes and behaviors of living organisms, combining efficiency and robustness
to solve complex optimization problems [22].

One of the most well-known bio-inspired algorithms is PSO [23], first proposed by [36]. PSO is inspired by the
social behavior of birds flocking or fish schooling, where each particle (solution) adjusts its position based on its
own experience and that of its neighbors. PSO has proven successful in solving a wide range of optimization prob-
lems, particularly in continuous optimization tasks. However, its main limitation lies in its tendency to converge
prematurely to local optima, particularly in multimodal and high-dimensional spaces [24].

ACO is another widely used bio-inspired optimization algorithm. Inspired by the foraging behavior of ants, ACO
uses a decentralized approach where ants communicate indirectly through pheromones. This method allows for the
exploration of the solution space and has been particularly successful in combinatorial optimization problems like
the traveling salesman problem [25]. Although ACO is effective in many applications, it can be computationally ex-
pensive and requires fine-tuning of parameters such as pheromone evaporation rates [26].

ABC is another algorithm that draws inspiration from nature, specifically the foraging behavior of honey bees. In
ABC, employed bees search for nectar sources and share information with onlooker bees, allowing the algorithm to
balance exploration and exploitation [27]. The algorithm has demonstrated high efficiency in solving continuous
optimization problems. However, ABC faces similar challenges as other bio-inspired algorithms, such as slow con-
vergence in high-dimensional and multimodal problems [28].

CS, studied by Reda [29], is based on the brood parasitism behavior of cuckoo birds, where they lay their eggs in
the nests of other birds, forcing the host to adopt their offspring. The CS algorithm employs a simple, yet efficient
strategy of random walks and the Lévy flight mechanism to explore the solution space. While CS has shown promis-
ing results, particularly in high-dimensional optimization problems, it still faces challenges in terms of its computa-
tional complexity and convergence speed [30].

Although these algorithms have achieved success in various optimization tasks, there is still a need for novel ap-
proaches that balance the exploration and exploitation phases effectively. The BIOA aims to address these challeng-
es by drawing inspiration from the scent detection abilities of Beagles and the hunting strategies of rabbits. Beagles
are renowned for their remarkable ability to track scents over long distances, using a methodical, persistent, and
exhaustive search strategy [31]. Similarly, rabbits demonstrate adaptability in their escape tactics, evading preda-
tors through continuous adaptation and persistent efforts [32]. BIOA integrates these traits—scent detection, pat-
tern recognition, continuous adaptation, and exhaustive search strategies—to offer a novel approach to optimiza-
tion. The incorporation of such adaptive behaviors from animals could enhance the performance of optimization
algorithms, particularly in dealing with complex, multimodal, and high-dimensional landscapes [31].

The growing body of research on bio-inspired algorithms suggests that these methods can be effectively com-
bined to achieve more robust optimization strategies. Hybridization of multiple algorithms, for example, combining
PSO and ACO, has been explored to improve convergence speed and solution accuracy [32]. Additionally, studies
have shown that incorporating mechanisms such as dynamic adaptation and self-learning could further enhance
the robustness of optimization algorithms [33, 34]. These hybrid approaches, along with the design of more sophis-
ticated algorithms like BIOA, offer new opportunities for solving complex optimization problems in real-world sce-
narios.

Table 1 Overview of existing algorithms

Algorithm Inspiration Advantages Challenges Applications
Particle Social behavior of Simple, easy to implement;  Tendency to Continuous optimiza-
Swarm Op- birds flocking, fish ~ good balance of exploration  converge prem-  tion, neural network
timization schooling and exploitation aturely; difficul- training, feature selec-
(PSO) ty in high- tion

dimensional

problems
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Ant Colony Foraging behavior Effective in combinatorial Computationally Traveling Salesman
Optimization of ants problems; decentralized, expensive; sen-  Problem, vehicle rout-
(ACO) robust against failures sitive to param-  ing, network design
eter tuning
Artificial Bee Foraging behavior Balances exploration and Slow conver- Continuous optimiza-
Colony of honey bees exploitation; easy to imple-  gence in high- tion, function optimiza-
(ABC) ment dimensional tion, data clustering
spaces; sensitive
to population
size
Cuckoo Brood parasitism Efficient for high- Computationally Function optimization,
Search (CS)  behavior of cuckoo  dimensional optimization; expensive; re- engineering design, fea-
birds uses Lévy flights for explo-  quires fine- ture selection
ration tuning
Beagle- Scent detection and  Persistent and exhaustive Requires further Multi-modal optimiza-
Inspired Op- hunting strategies search; continuous adapta-  research to op-  tion, real-world problem
timization of Beagles and rab-  tion and pattern recognition timize perfor- solving
Algorithm bits mance in com-
(BIOA) plex, high-
dimensional
problems

Optimization algorithms are mathematical tools used to find the best solution to a problem by navigating a solu-
tion space. These algorithms Table 1 are widely applied in various fields, including machine learning, engineering
design, economics, and operations research [35]. The effectiveness and efficiency of these algorithms are highly in-
fluenced by the parameters that control their behavior, such as population size, exploration/exploitation balance,
and the termination criteria. Understanding and fine-tuning these parameters are essential for improving the per-
formance of optimization algorithms, ensuring convergence to optimal or near-optimal solutions while minimizing
computational costs.

Parameters such as population size, learning factors, step size, and iteration limits play a crucial role in deter-
mining the behavior of algorithms. For example, the population size affects the diversity of solutions, with larger
populations often leading to a more exhaustive search of the solution space, but at the expense of higher computa-
tional costs [36]. The balance between exploration and exploitation is another critical factor, as algorithms must
explore enough of the search space to avoid local optima, while also exploiting known good solutions to find the
global optimum [37]. In the case of swarm intelligence-based algorithms like PSO and ACO, parameters like the
cognitive and social factors PSO or pheromone evaporation rate ACO can significantly impact their ability to con-
verge efficiently [38].

In addition, the step size or velocity parameters, such as those in PSO or CS, influence how aggressively the algo-
rithm explores the search space. A larger step size leads to faster exploration, while a smaller one can enable more
precise refinement [39]. The termination criteria, such as iteration count or fitness threshold, determine when the
algorithm should stop, which can influence both the quality of the solution and the time taken to reach it.

The necessity to study the parameters of optimization algorithms arises from their direct influence on algorith-
mic performance. The choice of parameters can dramatically alter the convergence rate, the quality of the final solu-
tion, and the computational efficiency of the algorithm. By carefully tuning these parameters, researchers can en-
hance algorithm performance, allowing for more efficient problem-solving across a variety of domains. A deep
understanding of these parameters helps in determining the optimal settings for specific problem types, ultimately
leading to the development of more efficient, adaptive, and robust optimization techniques [40].

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 704

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management

2024, 9(4s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

In addition, as real-world optimization problems become increasingly complex and large-scale, the ability to cus-
tomize parameters to better suit these problems becomes more critical. For example, algorithms like the ABC and
CS have several parameters that govern the exploration and exploitation process. Understanding how these param-
eters influence the algorithm’s behavior helps in designing more effective hybrid optimization techniques, which
can combine strengths from different algorithms to solve complex problems with higher accuracy and efficiency

[41].
Table 2Key Parameters of PSO, ACO, ABC, and CS Algorithms
Algorithm Key Parameters Description
PSO Population Size The number of particles in the swarm. A
) larger population increases the explora-
tion of the search space.
Cognitive Parame- Determines the pull of each particle to-
ter (c1) wards its own best-known position.
Social Parameter Determines the pull of each particle to-
(c2) wards the global best-known position.
Inertia Weight (w)  Controls the trade-off between explora-
tion and exploitation (larger w favors ex-
ploration).
Velocity Limits Defines the maximum velocity a particle
(V_max) can move. Affects convergence rate.
Number of Itera-  The total number of iterations or steps
tions (T) for the algorithm to run.
ACO Number of Ants The total number of ants used in the
(N) search process. Affects exploration and
robustness of the solution.
Pheromone Evap-  The rate at which the pheromone trails
oration Rate (p) decay over time. Affects the exploitation
of solutions.
Pheromone Influ-  The importance of the pheromone trail
ence () in the decision-making process.
Visibility () The importance of the problem's heuris-
tic information (visibility).
Number of Itera- The total number of iterations or cycles
tions (T) for the algorithm to run.
ABC Number of Bees The number of employed bees and scout

(N)

bees in the colony. Affects the algo-
rithm’s exploration and exploitation.

Discovery Rate Probability of a scout bee searching for a

(D) new solution. Influences the exploration
phase.

Onlooker Bees (O) The number of bees that observe and se-

lect the solutions based on probability.
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Limit (L)

Maximum number of cycles without im-

provement before a bee becomes a scout.

Number of Itera-
tions (T)

The total number of iterations or cycles
for the algorithm to run.

(O]

Population Size
(N)

The number of cuckoos in the popula-
tion. Affects diversity and exploration.

Step Size (a) The step size (also called the step length)
used during the Lévy flights for explora-
tion.

Pa (Abandonment The probability that a cuckoo’s egg is

Probability) abandoned by the host bird. Influences

exploration and exploitation.

Lévy Flight Distri- Defines the movement behavior of the
bution cuckoos during their random walk.

Number of Itera-
tions (T)

The total number of iterations or steps
the algorithm runs

The study of optimization algorithm parameters Table 2 is essential for understanding and improving the per-
formance of these algorithms. By fine-tuning parameters such as population size, exploration/exploitation balance,
and velocity/step size, researchers can develop algorithms that converge faster, find better solutions, and operate
more efficiently in real-world applications. This research area continues to evolve, with new insights into parameter
influence enabling the development of more sophisticated and powerful optimization algorithms.

3 Proposed Algorithm
3.1 Inspiration

Beagles are highly specialized scent hounds known for their remarkable olfactory capabilities and persistent
hunting behaviors, which have inspired the design of the BIOA. The key biological traits of Beagles that serve as in-
spiration for the algorithm include their exceptional scent detection, trail-following techniques, pattern recognition,
adaptability, and persistence. Beagles possess an extraordinary sense of smell, allowing them to detect faint scent
trails and follow them with remarkable accuracy. They continuously analyze the air and adjust their position to
hone in on the source of the scent, which parallels how an optimization algorithm searches for promising solutions
within a complex search space.

Once a scent is detected, Beagles exhibit a dynamic tracking behavior, often moving in zigzag or circular patterns
rather than following a direct path. This non-linear approach helps them refine their trajectory, ensuring they stay
on the freshest scent trail, much like an algorithm balances exploration and exploitation to find an optimal solution.
Furthermore, Beagles have an innate ability to recognize patterns within scent trails, distinguishing between fresh
and older scents. This trait mirrors the algorithm's heuristic evaluation, where it differentiates between promising
and less viable solutions, focusing resources on the most promising areas.

Adaptability is another crucial trait of Beagles that influences the algorithm design. If an obstacle blocks the
scent trail, a Beagle instinctively recalculates its path, exploring alternative routes to regain the trail. Similarly, an
optimization algorithm must be capable of dynamically adjusting its search trajectory when faced with barriers, en-
suring robustness in solving complex problems. Additionally, Beagles exhibit relentless persistence in their pursuit,
covering large areas and persisting in challenging terrains until they locate their target. This persistence is an essen-
tial aspect of BIOA, ensuring thorough exploration of the search space without premature convergence.
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The inspiration drawn from Beagles extends to their efficient decision-making mechanisms. When a Beagle de-
tects a change in the scent's direction or strength, it swiftly repositions itself to stay on track, which reflects the al-
gorithm’s need to perform dynamic updates and recalibrate search paths to avoid getting stuck in suboptimal solu-
tions. Overall, the unique biological characteristics of Beagles scent detection, adaptive trail-following, pattern
recognition, and persistence serve as a robust foundation for the BIOA, making it a powerful tool for solving com-
plex optimization problems in dynamic environments.

3.2 Mathematical Model
3.2.1 Scent Detection (Initialization)

Objective: Randomly initialize agents' positions and evaluate their fitness.
e Initialize:
XE~U(0,1)°,i =123,...,N
e Evaluate fitness:
ff=fxH,i=123...,N
¢ Determine the best solution:
min

min
i fit'fBFESl‘z l f;:t

t —
XBest =arg

Figure 2 Scent Detection by Beagle

3.2.2 Tracking/Trail Following (Exploration Phase)

Objective: Perform a random walk to explore new regions in the search space.
For each agenti.
e Update Position:

X = XE + AX, AX~U(—1,1)P

e Evaluate fitness:
fit+1 — f(Xlt+1)
e Update agent position if fitness improves:
If fit+1 < fit)Xit P Xit+1)fit P fit+1
e Update global best if necessary:
IffF* < foest Xbese < X, fhest < fif
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Figure 3Tracking & Trail Following
3.2.3 Pattern Recognition (Exploitation Phase)

Objective: Exploit the best solution by moving agents closer toXg,;
For each agent i
o Update position:

Xit+1 = Xit + U(_l'l)D- (Xlgest - th)

e Evaluate fitness:

i = FEY

o Update agent position if fitness improves:

If fit+1 < ﬁf Xlt P Xit+1' fit P fit+1
o Update global best if necessary:
If ff < flgest, Xpese < X[, fhest < fi

Figure 4Pattern Recognition
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3.2.4 Continuous Adaptation (Adaptation Phase)

Objective: Reinitialize some agents randomly to avoid local optima.
For each agent i:
e Random re-initialization with probabilityP 444,;:

If 7 < Pygapt Xt~U(0,1)?

e Re-evaluate fitness:

fi=1&H

LA A
o~ AE At g%
g T -

“ - Path ‘Dosen.’t Work °

Figure 5Continuous Adaption by Beagle

3.2.5 Persistent & Exhaustive Search (Termination Check)

Objective: Check if termination criteria are met.
e Terminate if:

t = Tyq0r other convergence criteria

Figure 6Persistent & Exhaustive Search

3.2.6 Escape & Retrieval (Repeat Process)

Objective: Continue the optimization until termination criteria are met.
o Repeat phases (2) through (5) untilt = Ty,
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e Final Best Solution:

XBest' fBest

oo,

—’;\.FOI‘ argeA‘o.
. .
7 1.5C ‘e,

5.4 ee'b

R 4 —

La

| Starting Position

Figure 7Escape & Retrieval by Beagle

3.3 Flowchart

The BIOA follows a structured sequence of operations Figure 8 BIOA Flowchart inspired by the scent-tracking
behavior of Beagles. The process begins with the initialization phase, where the algorithm is set up by defining key
parameters such as the population size, the dimensions of the search space, and the maximum number of itera-
tions. This step is crucial as it establishes the foundation for the algorithm's search process by positioning the
agents, representing Beagles, randomly within the problem domain to ensure diverse exploration.

Once the initialization is complete, the algorithm proceeds to the fitness evaluation phase, where each agent as-
sesses the quality of its current position using a predefined fitness function. This function quantifies the proximity
of a given solution to the optimal solution, allowing agents to determine their effectiveness in the search space. If
the best possible solution is identified at this stage, the algorithm terminates, outputting the optimal solution.
However, if an optimal solution is not yet found, the algorithm moves to the core search phases.

Start BIOA

|

Initialize BIDA
(Population, Dimension, Iterations)

l

Evaluate Fitness
(For Each Agent)
..B.B'f“ No Exploration Phase
(Random Walk)
Found? l
l Yes Exploitation Phase
(Move Towards Best)
Store Best Solution - l
l Adaption Phase
(Reposition Agents)
Output Best Solution l
l Check Termination
(Max Iteration or Conv.)
Stop BIOA l
No Repeat Yes
Figure 8 BIOA Flowchart
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The search process consists of three primary phases: exploration, exploitation, and adaptation. In the explora-
tion phase, agents perform a random walk, mimicking the behavior of Beagles that scan large areas for scent trails.
This phase promotes diversity in the search process by enabling agents to investigate unexplored regions and avoid
becoming trapped in local optima. Following exploration, the exploitation phase directs agents to move towards the
best solutions found so far, simulating how a Beagle intensifies its pursuit once a promising scent trail is detected.
This phase ensures that the algorithm focuses on refining high-potential solutions while continuing to balance ex-
ploration.

The adaptation phase is a crucial aspect of BIOA, allowing agents to reposition themselves when they encounter
obstacles or weak solutions. Inspired by the way Beagles recalibrate their path when a scent weakens or is obstruct-
ed, this phase helps the algorithm dynamically adjust its search trajectory, improving robustness and flexibility in
dynamic environments.

Throughout the search process, the algorithm continuously checks termination conditions. The process halts
when either the maximum number of iterations is reached or convergence criteria are met, indicating that agents
have collectively settled on an optimal solution. If neither condition is satisfied, the search process repeats by re-
evaluating the fitness of agents and iterating through the exploration, exploitation, and adaptation phases.

Finally, upon termination, the algorithm outputs the best solution identified during the search, presenting the
optimal solution along with its corresponding fitness value. This structured flow ensures that BIOA efficiently bal-
ances exploration and exploitation, adapts dynamically to changing search conditions, and persistently seeks opti-
mal solutions across a diverse range of optimization problems.

3.4 Pseudo code for Beagle Algorithm

1. Initialize agents randomly.
2. Evaluate fitness for all agents.
3. Find the best solution and best fitness.
4. Repeat until max_ iterations:
a. Exploration Phase:
- Move agents randomly.
- Evaluate new fitness and update agents if needed.
b. Exploitation Phase:
- Move agents toward the best-known solution.
- Evaluate new fitness and update agents if needed.
c. Adaptation Phase:
- With small probability, reinitialize agents.
5. Check termination condition.

6. Return best solution and best fitness.

The algorithm begins with the Initialization Phase, where a group of agents (representing beagles) is randomly
distributed in the search space. Each agent's position corresponds to a potential solution to the optimization prob-
lem, and its fitness value is calculated using the given objective function. The algorithm identifies the best solution
among these initial agents by finding the position with the minimum fitness value, which will act as the benchmark
for the following iterations.
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Next, the algorithm enters a loop that continues until a predefined number of iterations is reached or a termina-
tion condition is satisfied. This loop consists of three primary phases: Exploration, Exploitation, and Adaptation,
which emulate the behaviors of beagles in a scent-tracking scenario.

In the Exploration Phase, the agents perform a random walk in the search space, simulating the random sniffing
of beagles as they try to locate the scent trail. Each agent’s new position is calculated by adding a random vector to
its current position. The fitness of the new position is evaluated, and the agent updates its position if the new posi-
tion offers an improvement. If any agent finds a better solution than the current global best, the algorithm updates
the global best solution and its fitness.

The Exploitation Phase follows, during which agents focus their search around the best solution found so far.
Each agent moves closer to the global best position by adjusting its movement vector to be weighted toward the best
solution. This phase mimics the beagle’s behavior of converging on a strong scent trail. As in the exploration phase,
the fitness of each new position is evaluated, and the agents update their positions if the new position improves
their fitness. If any agent discovers a better solution than the global best, the global best solution is updated.

To maintain diversity and avoid premature convergence, the algorithm includes an Adaptation Phase. During
this phase, each agent has a small probability of being reinitialized to a new random position in the search space.
This process ensures that the algorithm explores unexplored regions of the search space, thereby increasing the
likelihood of escaping local optima. The fitness of these reinitialized agents is also recalculated.

At the end of each iteration, the algorithm performs a Termination Check to determine whether the maximum
number of iterations has been reached or if another convergence criterion has been satisfied. If neither condition is
met, the algorithm loops back to the exploration phase and continues searching. This persistent and exhaustive
search mimics the relentless nature of beagles as they hunt until they locate their target or exhaust all options.

Finally, once the termination condition is met, the algorithm returns the best solution and its corresponding fit-
ness value. These represent the optimal or near-optimal solution to the optimization problem. This structured
combination of exploration, exploitation, and adaptation phases ensures a balance between global and local search,
making BIOA both robust and versatile for solving various optimization problems.

4 Experimental Setup

4.1 Benchmark Function

Benchmark
Functions

Unimodal Multimodal ‘ Hybrid ‘

Sphere | | Rastrigin ‘ Levy
Function Function | Function
Rosenbrock|| | Griewank Schwefel |
Function Function Function |

Ackley
Function

Figure 9Benchmark Functions Tree

Benchmark functions are critical tools in optimization and computational intelligence research, serving as stand-
ardized test problems to evaluate the performance of optimization algorithms. These Figure 9 functions are broadly
categorized based on their landscape and characteristics, such as unimodal, multimodal, and hybrid.
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Unimodal functions feature a single global optimum, making them ideal for testing the exploitation capabilities
of optimization algorithms. The Sphere Function, one of the simplest unimodal functions, represents a quadratic
bowl-shaped surface where the global minimum lies at the origin. Its smooth and symmetric landscape allows re-
searchers to test an algorithm's ability to converge efficiently. Another widely used unimodal function is the Rosen-
brock Function, often referred to as the "banana function" due to its curved valley shape. It is more challenging
than the Sphere Function, as the global minimum lies inside a narrow, elongated parabola, testing an algorithm's
precision in finding the optimum.

Multimodal functions are characterized by multiple local optima, making them suitable for evaluating an algo-
rithm's exploration capabilities. The Rastrigin Function is a classic example, combining a parabolic shape with a si-
nusoidal modulation that creates numerous local minima. The Griewank Function, on the other hand, is more
complex due to its product and summation terms, which introduce periodic variations, further challenging an algo-
rithm's robustness. Similarly, the Ackley Function presents a flat outer region with a sharp central peak, requiring
algorithms to balance exploration and exploitation to locate the global minimum.

Table 3Benchmark Function, Formula, Range

Sr. Function
No. Name

Formula Range

1 Sphere Z" 2 x;€[—5.12,5.12]
x) = x;
Function f&) im1 "
2 Rosen- Z” 22 x;€[—2.048,2.048]
= 100(x;py — X7 i ’
brock f(x) i:1[ (xl|1 Xi )
Function + (6 — 1D?]
Rastrigin n x;€[—5.12,5.12
3 Functig(;)n f(x) =10n+ Ziﬂ[xiz — 10cos (2mx;)] i€l ]
4 Griewank _ 1 "o a <ﬁ> x;€[—600,600]
Function =1 F 30002, % ~ oo\
5 Ackley £ x;€[—32.768,32.7(
Function
1" 5
=-20 —-0.2 —Z :
exp /n z=1xl
1 n
— exp (—Z cos(2nxi)) +20+e
n i=1
6 Levy Func-  f(x) = sin?(nw;) x;€[—10,10]
3 n
tion £ -1
i=1
+ 10sin?(mw; + 1)
+ (Wn - 1)2[1
+ sin?(2nw,)]]
h _qpel
where w; = 100
7 Schwefel Z” . x;€[—500,500]
= 418.9829d — i i t
Function f(x) _ Jisin W l1x:l)

Hybrid functions combine characteristics of different function types, often incorporating multiple components or

transformations to create challenging optimization problems. The Levy Function features a combination of multi-
modal and deceptive properties, with its global minimum surrounded by numerous local optima, testing an algo-
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rithm’s ability to escape suboptimal solutions. Similarly, the Schwefel Function has a highly irregular landscape
with steep ridges and deep valleys, making it particularly difficult for optimization algorithms to navigate effective-

ly.

Overall, these benchmark functions Table 3 provide diverse landscapes and challenges, enabling comprehensive
evaluation of optimization algorithms in terms of convergence speed, accuracy, and robustness.

4.2 Experimental Parameters

In optimization algorithms, several parameters define the behavior, performance, and effectiveness of the search
process. These parameters Table 4 play a critical role in balancing exploration (global search) and exploitation (lo-
cal search) and ensuring the algorithm converges to an optimal solution.

The Number of Agents (N) refers to the total number of agents (e.g., beagles in nature-inspired algorithms) that
participate in searching the solution space. Typically, the number of agents ranges from 20 to 100, with a common
default value of 50. Increasing N enhances exploration but adds computational overhead. The Number of Dimen-
sions (D) represents the problem's variables or the dimensionality of the search space, which depends on the specif-
ic problem being addressed. Typical values for D are 2, 10, or 30, but this may vary depending on the complexity of
the optimization problem.

Table 4 BIOA Parameters

Parameter

Description

Typical Values/Range

Number of

The total number of agents

20 < N < 100 (e. g.50)

Agents(N) (beagles) searching for the op-

timal solution.
Number of The dimensionality of the Dependsontheproblem,
Dimen- search space, representing the e.g.2,10 or 30
sions(D) problem's variables.
Objective The fitness function to evaluate  Custom problem specific
Func- the quality of solutions. .

. function.

tion(f (X))
Max Itera- Maximum number of iterations 100 < Ty, < 1000
tionsT y,, before stopping the optimiza- e.g.100

tion process.
Exploration The random step size for explo-  UniformDistribution ,
Range ration in the search space. [—1,1]
U(-1,1))
Exploitation Weighting factor for exploita- 01<C<1.0
Factor(C) tion phase to move toward the (Default 1)

best solution.
Adaptation Probability of an agent ran- 0.05 < Pygqpe < 0.2
Probabil- domly repositioning itself in the ¢, g.0.1
ityP gqapes search space.
Initial Posi- Initial random positions of Randomvalues.
tionsX? agents in the search space. X;~U(0,1)P
Best Solu- Position of the agent with the Updated dynamically
tionXg,; best fitness in the current during optimization
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Fitness of Fitness value of the best solu- Updated dynamically
Best Solu- tion found so far. during optimization
tion(f Best)
Random The random offset added to Uniform Random values
Step(AX) agents' positions in exploration  [-1,1]?
and exploitation phases.
Conver- Fitness threshold for stopping Small values
gence early if the solution is close e.g.10°
Thresh- enough to optimal.
old(e)

The Objective Function (f(X))serves as the fitness function to evaluate the quality of each solution. This func-
tion is customized for the problem at hand, determining whether a solution is closer to optimal. The Maximum
Number of Iterations Max IterationsT s the predefined limit for the optimization process, with typical val-
ues ranging between 100 and 1000 iterations (e.g., 100), balancing computational time and accuracy.

The Exploration Range (U(—1, 1))defines the random step size for exploring the search space and is typically
drawn from a uniform distribution in the range [-1,1]. The Exploitation Factor (C) is a weighting parameter that
guides agents toward the best solution during the exploitation phase. This value usually ranges from 0.1 to 1.0, with
a default value of 1.0.

The Adaptation Probability P ,4,,.s determines the likelihood of an agent repositioning itself randomly in the
search space to improve exploration. It typically ranges from 0.05 to 0.2, with a common default value of 0.1. The
Initial Positions X?are the randomly assigned starting positions of agents, usually drawn from a uniform distri-
bution [0,1]°.

The Best Solution X, represents the position of the agent with the best fitness value at any given iteration. This
value is updated dynamically as the optimization process progresses. Similarly, the Fitness of the Best Solution
(f gest)is the fitness value of the best solution found so far and is also updated dynamically during the search pro-
cess.

The Random Step Random Step(AX)is the offset added to agents positions during exploration and exploitation,
typically drawn from a uniform random distribution [—1,1]. Lastly, the Convergence Threshold (€) defines a stop-
ping criterion for the optimization process when the fitness of a solution is sufficiently close to the optimal value.
This threshold is usually a small value, such as 10°, to ensure high precision.

By tuning these parameters, optimization algorithms can be adapted to solve a wide range of problems effective-
ly, balancing computational efficiency and solution accuracy.

5 Results and Discussions
5.1 Performance on Benchmark Functions
5.1.1 Sphere Function

The results of the Sphere Function optimization Table 5 clearly highlight the comparative performance of differ-
ent algorithms, including PSO, CS, BIOA, ACO, and ABC. Among these, BIOA demonstrated exceptional precision
and robustness, with a mean fitness value of 8.57748x102times, a median of 8.59476x1013 and an extremely low
standard deviation of 2.09578x10-11. The best fitness value achieved by BIOA was 3.33296x10-15, indicating its abil-
ity to converge efficiently and consistently to the global optimum. These results establish BIOA as the most reliable
algorithm for solving the Sphere Function, with unparalleled accuracy and stability.
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Table 5Performance Analysis on Sphere Function

Function Algorithm Mean Median Std Best Worst
Sphere Function BIOA 8.57748E-12  8.59476E-13  2.09578E-11  3.33296E-15  7.11048E-11
Sphere Function ACO 0.000198727 0.000118386 0.000215919 3.54136E-06 0.000672856
Sphere Function PSO 2.20208E-05 7.657190E-06  3.92137E-05  6.40235E-08 0.000135618
Sphere Function ABC 9.8081E-08 2.13654E-08  1.18911E-07 1.05734E-09  3.67305E-07
Sphere Function CS 0.000717919  0.000625792 0.000578025 0.27872E-05 0.001820496

The ABC algorithm also performed strongly, with a mean fitness value of 9.8081x10% and a best solution of
1.05734%10°9, showcasing its effectiveness in handling smooth, unimodal optimization problems. PSO and ACO de-
livered moderate results, with mean fitness values of 2.29208x105and 0.000198727, respectively. While PSO
demonstrated reasonable consistency with a relatively low standard deviation, ACO exhibited higher variability,
suggesting that these algorithms may require additional fine-tuning to achieve greater precision. In contrast, the
Cuckoo Search algorithm displayed the highest variability, with a mean fitness value of 0.000717919and a standard
deviation 0f0.000578025, making it less effective for this type of function.

ion: :t5.8215~5815e~87 1.98769289%¢-06]
ss: 4.203034495440293e-12

Figure 10 BIOA Sphere Function

Overall, Figure 10 the findings emphasize the importance of selecting an appropriate optimization algorithm
based on the problem's characteristics. While BIOA proved to be the best-suited for the Sphere Function due to its
high precision and low variability, ABC and PSO also offered competitive performance. ACO and CS, though mod-
erately effective, were less consistent and struggled to match the precision of the top-performing algorithms. These
results provide valuable insights into the strengths and weaknesses of each algorithm, guiding researchers in their
application to optimization problems.

5.1.2 Rosenbrock Function

The results for the Rosenbrock Function optimization

Table 6 demonstrate the varying effectiveness of the tested algorithms, with the (BIOA) standing out for its pre-
cision and consistency. BIOA achieved a mean fitness value of 8.9808x10-5 and a best solution of 1.04708x10-6,
indicating its strong capability to navigate the narrow, curved valley characteristic of the Rosenbrock Function. The
algorithm's low standard deviation (0.0001600870) further highlights its reliability in consistently finding solu-
tions close to the global optimum.
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Table 6Performance Analysis on Rosenbrock Function

Function Algo- Mean Median Std Best Worst
rithm
Rosenbrock Func- BIOA 8.9808E-05 9.21224E- 0.00016008 1.04708E-06 0.00053260
tion 06 7 2
Rosenbrock Func- ABC 8.45395E- 4.23397E- 0.00010810 8.78134E-06 0.00038957
tion 05 05 6 1
Rosenbrock Func- PSO 0.00062761 0.00021677 0.00079788 1.02119E-05 0.00255112
tion 5 1
Rosenbrock Func- ACO 0.00218106 0.00084996 0.00255548 0.00056340 0.00797497
tion 5 6 4 6
Rosenbrock Func- CS 0.01378895 0.01099624 0.011009728 0.00060261 0.034464123
tion 1 2 5

The ABC algorithm also performed well, with a mean fitness value of 8.45395x105and a best fitness of

8.78134x106Although slightly less precise than BIOA, ABC demonstrated good stability with a standard deviation
of 0.0001081060. PSO achieved moderate results, with a mean fitness value of 0.000627610and a best solution of
1.02119x105However, its higher variability (0.0007978810) suggests less consistency compared to BIOA and ABC.

: [0.98918027 ©.97883095]
ess: 0.09001295519668550336

Figure 11 BIOA Rosenbrock Function

In contrast, the ACO and CS algorithms struggled to perform effectively on the Rosenbrock Function. ACO
achieved a mean fitness value of 0.0021810650, but its higher standard deviation (0.0025554860) indicates signifi-
cant variability in its results. Similarly, CS exhibited the highest variability (0.0110097280) and the least precise so-
lutions, with a mean fitness value of 0.0137889510and a worst-case fitness of 0.0344641230. These findings high-
light that while Figure 11 BIOA and ABC are well-suited for optimization problems with challenging landscapes like
the Rosenbrock Function, ACO and CS may require parameter tuning or adjustments to improve their perfor-
mance.

5.1.3 Rastrigin Function

The results
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Table 7 for the Rastrigin Function highlight the performance of various optimization algorithms in handling
multimodal landscapes with numerous local optima. The (BIOA) emerged as the most effective algorithm, achiev-
ing an exceptionally low mean fitness value of 2.78025x10-7 and a best solution of 5.51381x10-12. Its low standard
deviation (4.61033x10-7) indicates consistent and reliable convergence toward the global optimum, demonstrating
its superior exploration and exploitation balance in a highly complex search space.

Table 7Performance Analysis on Rastrigin Function

Function Algo- Mean Median Std Best Worst
rithm

Rastrigin Func- BIOA 2.78025E-07 5.37927E-08 4.61033E-07 5.51381E-12  1.471E-06

tion

Rastrigin Func- PSO 0.031852696 0.005725106 0.07022462  3.47748E-05 0.239168539

tion 4

Rastrigin Func- ABC 0.00538809 0.00100364 0.008257755 0.000321919 0.02670474

tion 4 7 8

Rastrigin Func- ACO 0.04140007 0.03499801  0.031592336 0.00497081  0.111710417

tion 2 8

Rastrigin Func- CS 0.492594767 0.258501161 0.486727659 0.057056831 1.284670497

tion

The ABC algorithm also performed well, achieving a mean fitness value of 0.0053880940 and a best fitness of
0.0003219190. Despite having a higher standard deviation (0.0082577550) compared to BIOA, ABC demonstrated
solid robustness and adaptability in navigating the multimodal landscape of the Rastrigin Function. (PSO) achieved
moderate results, with a mean fitness value of 0.0318526960 and a best solution of 3.47748x10-5. However, the
high standard deviation (0.0702246240) suggests variability in its performance, likely due to premature conver-
gence or insufficient exploration.

Functi trigin_function
: [3.24424785e-26 2.77950310e-27]
1.8539125790984654e-09

Figure 12 BIOA Rastrigin Function

On the other hand, the ACO and CS algorithms struggled significantly on the Rastrigin Function. ACO achieved a
mean fitness value of 0.041400070 but exhibited a standard deviation of 0.0315923360, indicating inconsistent re-
sults. CS performed the worst, with a mean fitness value of 0.4925947670, a high standard deviation of
0.4867276590, and a worst-case fitness of 1.2846704971. These results suggest that CS faces challenges in escaping
local optima and maintaining effective exploration in such highly multimodal landscapes. Overall, Figure 12 BIOA
and ABC stood out as the most reliable algorithms for solving the Rastrigin Function, while PSO, ACO, and CS
demonstrated varying levels of inefficiency.
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5.1.4 Griewank Function

The Griewank Function results Table 8 demonstrate the performance of various optimization algorithms in solv-
ing problems with a complex, periodic search landscape. The (BIOA) exhibited outstanding performance, with an
exceptionally low mean fitness value of 1.1939x10-11and a best solution of 1.88738x10-15. Its low standard devia-
tion (3.13396x10-11) indicates consistent and reliable convergence, making it the most effective algorithm for this
function.

Table 8Performance Analysis on Griewank Function

Function Algo- Mean Median Std Best Worst
rithm

Griewank Func- BIOA 1.1939E-11 1.74194E-13  3.13396E-11 1.88738E-15 1.05779E-10

tion

Griewank Func- ABC 3.36344E-08 9.52034E- 4.00084E- 9.18141E-10  1.0937E-07

tion 09 08

Griewank Func- PSO 1.85251E-05 5.75309E-06 3.08781E-05 3.36293E- 0.00010310

tion o8 2

Griewank Func- ACO 7.81341E-05 5.09369E- 7.51511E-05 1.97933E-06 0.00026511

tion 05

Griewank Func- CS 0.00037587  0.00023952 0.00036529 1.37805E-05 0.001139855

tion 2 4

The ABC algorithm also performed well, achieving a mean fitness value of 3.36344x10-8and a best solution of
9.18141x10°, With a relatively low standard deviation (4.00084x10-8), ABC demonstrated robustness and the abil-
ity to handle the intricate periodic variations of the Griewank Function effectively. (PSO) achieved moderate re-
sults, with a mean fitness value of 1.85251x10-5and a best fitness of 3.36293x10-8. However, its higher standard de-
viation (3.08781x105) suggests variability in convergence performance.

Function: griewank_function
Best position: [ 2.54839134e-06 -2.57135838e-06]
Best fitness: 4.90352203286192%9e-12

Figure 13BIOA Griewank Function

In contrast, the ACO and CS algorithms faced challenges in solving the Griewank Function. ACO achieved a
mean fitness value of 7.81341x10-5and a standard deviation of 7.51511x105, reflecting inconsistencies and difficul-
ties in maintaining precision. CS performed the worst, with a mean fitness value of 0.0003758720, a high standard
deviation (0.0003652940), and a worst-case fitness of 0.0011398550. These results indicate that CS struggles to
balance exploration and exploitation in highly intricate and periodic landscapes like the Griewank Function. Over-
all, Figure 13 BIOA and ABC emerged as the most reliable and efficient algorithms, while PSO, ACO, and CS
demonstrated varying degrees of inefficiency.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 719

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

5.1.5 Ackley Function

The performance of various algorithms Table 9 on the Ackley Function, which is known for its flat outer region
and sharp central peak, highlights the contrasting strengths and weaknesses of each approach. The (BIOA) deliv-
ered exceptional results, achieving a mean fitness value of 8.68984x10-6, with a best solution of 6.33222x10-7. Its
low standard deviation (9.06952x10-6) indicates consistent and reliable convergence, showcasing its ability to nav-
igate both the flat regions and sharp gradients of the function.

Table 9Performance Analysis on Ackley Function

Function Algorithm Mean Median Std Best Worst
Ackley Function BIOA 8.68984E-06 5.21877E-06  9.06952E-06 6.33222E-07  2.71159E-05
Ackley Function ABC 0.002450076 0.002125164 0.001283643 8.31359E-06 0.005133306
Ackley Function PSO 0.026082002 0.011927111 0.026273432 0.002838111  0.072548421
Ackley Function ACO 0.037156723  0.036190368 0.016936634 0.009247713 0.070365504
Ackley Function CS 0.110669057 0.100303393 0.038313839 0.064151769  0.198766018

The ABC algorithm also performed reasonably well, achieving a mean fitness of 0.0024500760and a best solu-
tion of 8.31359x%10-6. While it demonstrated robustness with a moderate standard deviation (0.0012836430), it was
less precise compared to BIOA. (PSO) struggled with higher variability, reflected by a mean fitness value of
0.0260820020and a standard deviation of 0.0262734320. Despite finding a best solution of 0.0028381110, its
convergence was inconsistent due to the complex landscape of the Ackley Function.

Function: ackley_function
Best position: [ 3.99981147e-96 -1.88811576e-96]
Best fitness: 1.0266338236863959e-05

Figure 14 BIOA Ackley Function

The ACO and CS algorithms exhibited significant challenges in solving the Ackley Function. ACO achieved a
mean fitness of 0.0371567230and a high standard deviation (0.0169366340), reflecting difficulties in maintaining
precision. CS performed the poorest, with a mean fitness of 0.1106690570and the highest standard deviation
(0.0383138390), indicating significant instability and inefficiency in navigating the function's landscape. Overall,
BIOA Figure 14 emerged as the most effective algorithm for the Ackley Function, followed by ABC, while PSO, ACO,
and CS showed varying degrees of inefficiency in balancing exploration and exploitation.

5.1.6 Levy Function

The performance of the algorithms on the Levy Function Table 10 showcases significant differences in their abil-
ity to solve this complex and multimodal problem. The (BIOA) once again demonstrated its efficiency, achieving a
mean fitness of 2.46906x10'and a best solution of 1.01792x10-4, which is close to the optimal solution. The very
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low standard deviation (77.26666x1011) indicates that BIOA consistently converges to optimal solutions across mul-
tiple runs, proving its effectiveness in handling the Levy Function's challenging landscape.

Table 10Performance Analysis on levy Function

Function Algorithm Mean Median Std Best Worst

Levy Function BIOA 2.46906E-11 4.93336E-14 7.26666E-11  1.01792E-14 2.42675E-10
Levy Function ABC 1.29257E-08  5.11423E-09 1.28664E-08 1.95853E-09 3.92448E-08
Levy Function PSO 1.60328E-05 6.38967E-06 2.93304E-05 4.04747E-07 0.000102456
Levy Function ACO 5.12379E-05 3.77245E-05 5.50256E-05 3.23042E-06 0.000195476
Levy Function CS 0.000123366 9.5453E-05 0.00011186 1.54827E-05 0.000365762

The ABC algorithm delivered relatively good performance with a mean fitness of 1.29257x10-8 and a best solution
of 1.95853%10°9. Although the standard deviation (1.28664x10-8) was higher than that of BIOA, the results are still
impressive, suggesting that ABC can effectively explore and exploit the Levy Function’s global and local optima. On
the other hand, (PSO) showed more inconsistency, with a mean fitness of 1.60328x10-5and a relatively high stand-
ard deviation (2.93304x105). Its best solution of 4.04747x107reflects its struggle to find precise solutions com-
pared to BIOA and ABC.

Function: levy_function
Best position: [0.99999993 B8.99999949]
Best fitness: 1.62564154412088674e-14

Figure 15BIOA Levy Function

The ACO and CS algorithms exhibited less satisfactory results. ACO had a mean fitness of 5.12379x10-5and a best
solution of 3.23042x106, while CS had a mean of 0.0001233660and a best solution of 1.54827x105. Both algo-
rithms struggled with higher variability and failed to consistently find the global minimum. Overall, BIOA Figure 15
outperformed all other algorithms, demonstrating superior ability to handle the Levy Function's multimodal char-
acteristics, followed by ABC, while PSO, ACO, and CS showed relatively poor performance in comparison.

5.1.7 Schwefel Function

The results of the algorithms Table 11 on the Schwefel Function demonstrate significant differences in perfor-
mance, highlighting the challenge posed by this highly complex multimodal optimization problem. (PSO) showed
the worst performance, with a mean fitness of —4.1554x102! and a worst solution of —3.16161x106°, both indicating
significant instability and an inability to properly converge to the global minimum. The extremely large standard
deviation (1.2466x10122) further supports this, showing that PSO struggles to find meaningful solutions in the high-
ly deceptive and rugged landscape of the Schwefel function.

Table 11Performance Analysis on Schwefel Function

Function Algorithm Mean Median Std Best Worst
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Schwefel PSO -4.1554E+121 -5.3181E+110  1.2466E+122 -4.1554E+122 -3.16161E+60
Function

Schwefel ABC -2.19211E+19 -3.33531E+18 5.18706E+19 -1.76549E+20 -2.89193E+17
Function

Schwefel BIOA -1.77114E+14 -1.68693E+13 3.19479E+14 -1.01531E+15 -85033801.5
Function

Schwefel CS -0.735767055 -0.637280711 0.390702142 -1.388459021 -0.27578714
Function

Schwefel ACO 0.00147971 0.001357019  0.00080875 0.000280238 0.002753612
Function 8

The ABC algorithm performed better, with a mean of —2.19211x109 and a best solution of —1.76549x102°but it
still faced challenges in terms of consistency. The standard deviation (5.18706x1019) suggests variability in the algo-
rithm's performance. On the other hand, the (BIOA) yielded much better results with a mean of —1.77114x10%4and a
best solution of -1.01531x10, reflecting its ability to more reliably converge toward the optimal solution. While
not perfect, BIOA was still far superior to PSO and ABC in terms of both mean and best results.

schwefel_function
ion: [8.374308703e+00 1.40219266e+14]
-136645368097348.83

Figure 16 BIOA Schwefel Function

The CS algorithm performed the best among all with a mean of -0.735767055and a best solution of
-1.388459021demonstrating its efficiency in navigating the Schwefel Function's complex landscape. Despite the
moderate positive values, CS still managed to consistently find relatively better solutions compared to the other al-
gorithms. The ACO algorithm, while also producing relatively poor results, was slightly better than the worst per-
forming algorithms with a mean of 0.001479710and a best solution of 0.0002802380. Overall, BIOA and CS
demonstrated stronger performance, with Figure 16 BIOA leading in convergence and CS showing the best robust-
ness in finding near-optimal solutions.

5.2 Overall Analysis

Based on the analysis of the performance

Table 12 of various optimization algorithms BIOA, CS , ABC, ACO, and PSO across multiple benchmark functions
(Sphere, Rosenbrock, Rastrigin, Griewank, Ackley, Levy, and Schwefel), we can derive a clear ranking and under-
standing of their effectiveness in optimization tasks.
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BIOA consistently outperforms all other algorithms, securing the top rank in almost every function. It exhibits
the lowest mean fitness values across most functions, which indicates that it is able to find optimal or near-optimal
solutions more effectively than its competitors. Additionally, BIOA delivers the best fitness solutions in most cases,
with an impressively low standard deviation (Std). This suggests that the algorithm is highly stable, offering reliable
performance without large fluctuations, making it the most suitable choice for complex and multimodal optimiza-
tion problems.

Table 12 Overall Comparative Analysis

Algorithm Mean Fitness Best Fitness Worst Fitness Standard Ranking
Deviation
(Std)
BIOA Best Overall (Low-  Best Overall (Best Best Consistency  Best (Lowest 1
est Mean in most in most cases) Std across
cases) most func-
tions)
CS Good overall, but Very good, but Poor in some cas- Moderate, 2
less stable in some  less consistent es higher than
cases BIOA
ABC Moderate perfor- Moderate perfor-  Less consistency =~ Moderate Std 3
mance mance
ACO Poor performance, Worse than BIOA  Poor consistency  High Std 4
especially on com- and CS
plex functions
PSO Worst performance Worst perfor- Worst in some High Std 5

on complex func-
tions

mance (high vari-
ance)

cases

CS follows closely behind in terms of overall performance. While it does not quite match BIOA's consistency and

optimal solution-finding capabilities, it still performs well on most functions. CS is notable for its good overall per-
formance, but it does show a moderate level of variability, as indicated by a higher standard deviation compared to
BIOA. This means that while CS is a strong contender, it may not always provide as stable or optimal solutions as
BIOA.

ABC ranks third. While ABC maintains a solid performance in comparison to other algorithms, its results are
generally more inconsistent, particularly on more complex or multimodal functions. It is competitive on simpler
problems but lacks the fine-tuned convergence of BIOA and CS, making it a slightly less reliable choice overall. The
moderate standard deviation seen with ABC further confirms its occasional performance fluctuations.

ACO faces challenges across all the functions, especially the more complex ones like Schwefel. While ACO per-
forms reasonably well in certain cases, it does not excel in terms of either mean fitness or best solution quality, con-
sistently underperforming when compared to BIOA and CS. The high standard deviation observed with ACO indi-
cates that the algorithm suffers from poor consistency, with wide fluctuations in performance. This makes it less
suited for optimization tasks requiring high accuracy and stability.
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PSO emerges as the weakest performer, particularly on more challenging benchmark functions such as Schwe-
fel, Ackley, and Griewank. PSO struggles with convergence on complex, multimodal functions, exhibiting a high
variance in results. The standard deviation for PSO is the highest among the algorithms, pointing to its instability
and inability to consistently find optimal solutions. Therefore, despite its popularity, PSO is the least effective algo-
rithm when tasked with solving complex optimization problems.

In summary, BIOA stands out as the most reliable and efficient algorithm for optimization problems, especially
those involving complex, multimodal landscapes. CS follows as a robust alternative, though with slightly more vari-
ability. ABC is effective for simpler tasks but falls short in more challenging scenarios, while ACO and PSO perform
poorly on complex functions, with PSO being the least effective overall.

6 Conclusion and Future Work

In this study, we thoroughly evaluated the performance of five optimization algorithms—BIOA, CS, ABC, ACO,
and PSO —on a range of benchmark functions. The key findings highlight the superior performance of the BIOA,
which consistently outperforms the other algorithms across all test functions. BIOA demonstrated

remarkable effectiveness in finding optimal solutions, exhibiting the lowest mean fitness values and highest ac-
curacy, particularly in complex, multimodal optimization tasks. This success can be attributed to BIOA's balanced
exploration and exploitation phases, which allow it to effectively explore the search space while exploiting the best
solutions, resulting in faster convergence and greater stability.

The broader impact of BIOA is significant, as it showcases the potential of nature-inspired algorithms in solving
complex optimization problems. The Beagle-inspired approach provides an innovative perspective on how animal
behavior can be translated into computational optimization techniques, making BIOA an appealing option for fu-
ture research in this domain. Its performance on various benchmark functions, including Sphere, Rosenbrock,
Rastrigin, and others, suggests that it is well-suited for real-world applications that require robust and efficient
problem-solving capabilities.

However, despite its promising results, there are areas where BIOA can be further improved. While it excels in
finding optimal solutions, the algorithm's performance could be enhanced in terms of computational efficiency,
particularly in very high-dimensional search spaces. Moreover, while BIOA shows stability across multiple runs,
further refinement in the algorithm's adaptability and convergence speed may lead to even better results in more
complex scenarios.

For future work, we recommend exploring the development of more advanced BIOA, aimed at achieving higher
accuracy and better performance in a wider range of optimization problems. Additionally, the integration of hybrid
approaches, combining BIOA with other optimization algorithms (e.g., genetic algorithms or simulated annealing),
could lead to further improvements in solution quality and computational efficiency. Testing BIOA in real-world
problems, such as large-scale engineering optimization, machine learning model tuning, or resource allocation, will
provide deeper insights into its practical applicability and offer a clearer understanding of its strengths and limita-
tions in real-world scenarios.
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