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This paper presents an evaluation of the novel Beagle-Inspired Optimization Algorithm 

(BIOA), inspired by the scent detection and rabbit hunting strategies of beagle dogs, such as 

scent detection, tracking, trail following, pattern recognition, continuous adaptation, persistent 

and exhaustive search, and escape and retrieval. BIOA is compared with well-established algo-

rithms, including Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony 

Optimization (ACO), and Cuckoo Search (CS), across a set of benchmark functions, including 

Sphere, Rosenbrock, Rastrigin, Griewank, Ackley, Levy, and Schwefel functions. The results 

demonstrate BIOA's superior performance, achieving the lowest mean fitness values and best 

solutions across most test cases. Its balanced exploration and exploitation phases enable effec-

tive optimization. While BIOA excels in many instances, it requires further improvements in 

computational efficiency, particularly for high-dimensional problems. Future research should 

focus on enhancing BIOA's performance through advanced models, hybrid optimization tech-

niques, and real-world problem applications, thus broadening its practical impact in solving 

complex optimization tasks.  
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Abbreviations 

BIOA: Beagle-Inspired Optimization Algorithm 

PSO: Particle Swarm Optimization 

ABC: Artificial Bee Colony 

ACO: Ant Colony Optimization 

CS: Cuckoo Search 

 

1 Introduction 

Optimization algorithms are pivotal in addressing a broad spectrum of complex problems in diverse fields, such 

as machine learning, engineering, finance, healthcare, and logistics [1]. These algorithms iteratively search for the 

best possible solution within a defined search space, aiming to find the global optimum. While numerous optimiza-

tion techniques have emerged, nature-inspired algorithms have gained widespread attention due to their ability to 

mimic the adaptability, efficiency, and robustness of natural systems. Among these, evolutionary and swarm-based 

algorithms, such as PSO [2], ACO [3], ABC [4], and CS [5], have proven to be highly effective in solving complex op-

timization problems. These algorithms are designed based on the collective intelligence observed in nature, particu-

larly the behaviors of animals and insects, and they offer solutions to problems where traditional methods may 

struggle [6]. 
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Figure 1Classification of Optimization 

Deterministic optimization methods presume that the parameters of the optimization challenge are completely 

understood [7]. These methods consist of linear programming, non-linear programming, mixed-integer program-

ming, and dynamic programming as shown in Figure 1. For instance, linear programming is employed to maximize 

linear objective functions subject to linear constraints. It is commonly utilized in operations research and manage-

ment science. Non-linear programming, in contrast, is utilized to optimize non-linear objective functions alongside 

either linear or non-linear constraints. It is applied across different domains, such as engineering, economics, and 

finance. 

In contrast, stochastic optimization methods presume that the optimization problem's parameters are uncertain 

or random [8]. These methods encompass stochastic programming, stochastic dynamic programming, and simula-

tion optimization. Stochastic programming, for instance, is utilized to enhance performance amidst uncertainty by 

employing probability distributions. It finds application in multiple areas, such as finance, economics, and engi-

neering. In contrast, simulation optimization employs simulation models to enhance systems in the face of uncer-

tainty. It is utilized in multiple areas, such as logistics, supply chain management, and finance. 

Heuristic optimization techniques [9] utilize approximation methods to discover near-optimal solutions. These 

methods consist of genetic algorithms, PSO, ACO, and simulated annealing. Genetic algorithms, for instance, draw 

inspiration from natural selection and genetics to find the best solutions. PSO imitates the behavior of flocks of 

birds or schools of fish to find optimal solutions [2]. ACO mimics the searching behavior of ants to discover the best 

routes [3]. Simulated annealing employs a temperature sequence to prevent local optima and discover global opti-

ma. 

Optimization functions are essential in optimization challenges. These functions can be divided into objective 

functions and constraint functions [10]. Objective functions can be functions of either minimization or maximiza-

tion. Minimization functions seek to identify the lowest value of the objective function, whereas maximization func-

tions strive to discover the highest value [11]. In contrast, constraint functions may be categorized as equality con-

straints, inequality constraints, and non-negativity constraints. Equality constraints need to be met precisely, 

whereas inequality constraints should be fulfilled within a specific range. Non-negativity restrictions guarantee that 

variables remain non-negative. 

Decision variables are crucial in optimization problems, particularly in the context of Many Objective Optimiza-

tion Problems (MaOPs), where traditional algorithms often struggle with scalability. The Decision Variable Learn-

ing (DVL) algorithm, which employs machine learning to predict solutions close to the Pareto-optimal front, has 

demonstrated superior performance compared to established methods like NSGA-III [12,13]. Additionally, the Sub-

set Selection Algorithm (SSA) effectively reduces the complexity of decision variable combinations, enhancing re-

source efficiency in complex chemical processes [14]. Furthermore, understanding interactions between decision 

variables is essential, as these interactions can significantly influence outcomes in engineering and classification 

tasks. Techniques such as distributed decision variable analysis and Exploratory Landscape Analysis (ELA) are be-
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ing developed to manage large-scale decision variables and their interactions, thereby improving optimization effi-

ciency [15]. 

Optimization issues can be divided into single-objective optimization issues and multi-objective optimization is-

sues. Single-objective optimization problems focus on optimizing one objective function, whereas multi-objective 

optimization problems concentrate on optimizing several objective functions at the same time [16]. Single-objective 

optimization issues can additionally be divided into unconstrained optimization issues and constrained optimiza-

tion issues. Unconstrained optimization problems lack constraints, whereas constrained optimization problems in-

clude restrictions that must be met. Various methods can be employed to solve multi-objective optimization prob-

lems, such as the weighted sum method and Pareto optimization. The weighted sum approach allocates weights to 

every objective function and seeks to optimize the total weighted sum [17]. In contrast, Pareto optimization identi-

fies the Pareto front, where improving one objective function would lead to the deterioration of another. 

Despite the success of current bio-inspired algorithms, there remains an ongoing need for novel approaches that 

can effectively balance the exploration and exploitation phases of optimization, while also maintaining adaptability 

to diverse problem landscapes [18]. In this context, the BIOA is proposed, which takes inspiration from the scent 

detection and hunting strategies of Beagles, coupled with the adaptive escape and retrieval tactics observed in rab-

bits. Beagles, known for their remarkable scent-detection abilities, track scents over long distances by employing a 

methodical, persistent, and exhaustive search strategy [19]. Similarly, rabbits utilize highly adaptive strategies to 

escape predators, demonstrating an ability to adapt and persist in challenging environments [20]. By integrating 

these characteristics—persistent search, tracking, pattern recognition, adaptation, and escape—BIOA is designed to 

enhance the efficiency of optimization algorithms, especially for complex, multimodal, and high-dimensional prob-

lems. 

BIOA aims to address some of the shortcomings of existing algorithms by providing an optimization process that 

adapts more flexibly to the search landscape. The key inspiration for BIOA lies in the remarkable tracking and 

scent-following behavior of Beagles and the rabbit’s behavioral strategies, including continuous adaptation and es-

cape. BIOA is intended to enhance the balance between exploration (searching for global optima) and exploitation 

(refining known good solutions) within the optimization search process. It emphasizes persistent exploration, 

adapting its search patterns based on the best solutions found while incorporating escape mechanisms to avoid lo-

cal optima, akin to the way animals adapt to dynamic environments and threats. 

This paper introduces the BIOA as a novel optimization framework and assesses its performance on benchmark 

functions, comparing it with well-established optimization techniques such as PSO, ABC, ACO, and CS. We aim to 

demonstrate how BIOA outperforms other algorithms in terms of solution quality, computational efficiency, and 

robustness across diverse problem landscapes. The results indicate that BIOA provides significant improvements, 

especially in solving high-dimensional and multimodal optimization problems. Additionally, we explore the poten-

tial real-world applications of BIOA, emphasizing its suitability for complex optimization tasks, including those 

found in fields such as machine learning, robotics, and logistics. This research contributes to the growing body of 

knowledge in bio-inspired optimization algorithms and presents new possibilities for future developments in na-

ture-based computational techniques. 

The primary motivation for BIOA is to offer a more versatile optimization technique capable of effectively navi-

gating complex solution spaces while maintaining flexibility and adaptability. Future work will focus on improving 

BIOA’s robustness, exploring hybrid approaches with other bio-inspired algorithms, and testing its performance on 

real-world applications. The study's findings point to the exciting potential of BIOA to revolutionize the landscape 

of optimization algorithms, pushing the boundaries of what is possible in computational optimization. 

2 Literature Review 

Optimization algorithms have evolved significantly over the past several decades, addressing increasingly com-

plex problems across diverse fields such as engineering, machine learning, robotics, and logistics. In traditional op-

timization methods, algorithms such as gradient descent and Newton's method were used to find local optima [21]. 

However, these methods often fail when dealing with multimodal, high-dimensional, or non-differentiable objec-

tive functions. To address these challenges, bio-inspired optimization techniques have gained widespread attention. 
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These algorithms mimic natural processes and behaviors of living organisms, combining efficiency and robustness 

to solve complex optimization problems [22]. 

One of the most well-known bio-inspired algorithms is PSO [23], first proposed by [36]. PSO is inspired by the 

social behavior of birds flocking or fish schooling, where each particle (solution) adjusts its position based on its 

own experience and that of its neighbors. PSO has proven successful in solving a wide range of optimization prob-

lems, particularly in continuous optimization tasks. However, its main limitation lies in its tendency to converge 

prematurely to local optima, particularly in multimodal and high-dimensional spaces [24]. 

ACO is another widely used bio-inspired optimization algorithm. Inspired by the foraging behavior of ants, ACO 

uses a decentralized approach where ants communicate indirectly through pheromones. This method allows for the 

exploration of the solution space and has been particularly successful in combinatorial optimization problems like 

the traveling salesman problem [25]. Although ACO is effective in many applications, it can be computationally ex-

pensive and requires fine-tuning of parameters such as pheromone evaporation rates [26]. 

ABC is another algorithm that draws inspiration from nature, specifically the foraging behavior of honey bees. In 

ABC, employed bees search for nectar sources and share information with onlooker bees, allowing the algorithm to 

balance exploration and exploitation [27]. The algorithm has demonstrated high efficiency in solving continuous 

optimization problems. However, ABC faces similar challenges as other bio-inspired algorithms, such as slow con-

vergence in high-dimensional and multimodal problems [28]. 

CS, studied by Reda [29], is based on the brood parasitism behavior of cuckoo birds, where they lay their eggs in 

the nests of other birds, forcing the host to adopt their offspring. The CS algorithm employs a simple, yet efficient 

strategy of random walks and the Lévy flight mechanism to explore the solution space. While CS has shown promis-

ing results, particularly in high-dimensional optimization problems, it still faces challenges in terms of its computa-

tional complexity and convergence speed [30]. 

Although these algorithms have achieved success in various optimization tasks, there is still a need for novel ap-

proaches that balance the exploration and exploitation phases effectively. The BIOA aims to address these challeng-

es by drawing inspiration from the scent detection abilities of Beagles and the hunting strategies of rabbits. Beagles 

are renowned for their remarkable ability to track scents over long distances, using a methodical, persistent, and 

exhaustive search strategy [31]. Similarly, rabbits demonstrate adaptability in their escape tactics, evading preda-

tors through continuous adaptation and persistent efforts [32]. BIOA integrates these traits—scent detection, pat-

tern recognition, continuous adaptation, and exhaustive search strategies—to offer a novel approach to optimiza-

tion. The incorporation of such adaptive behaviors from animals could enhance the performance of optimization 

algorithms, particularly in dealing with complex, multimodal, and high-dimensional landscapes [31]. 

The growing body of research on bio-inspired algorithms suggests that these methods can be effectively com-

bined to achieve more robust optimization strategies. Hybridization of multiple algorithms, for example, combining 

PSO and ACO, has been explored to improve convergence speed and solution accuracy [32]. Additionally, studies 

have shown that incorporating mechanisms such as dynamic adaptation and self-learning could further enhance 

the robustness of optimization algorithms [33, 34]. These hybrid approaches, along with the design of more sophis-

ticated algorithms like BIOA, offer new opportunities for solving complex optimization problems in real-world sce-

narios. 

Table 1 Overview of existing algorithms 

Algorithm Inspiration Advantages Challenges Applications 

Particle 

Swarm Op-

timization 

(PSO) 

Social behavior of 

birds flocking, fish 

schooling 

Simple, easy to implement; 

good balance of exploration 

and exploitation 

Tendency to 

converge prem-

aturely; difficul-

ty in high-

dimensional 

problems 

Continuous optimiza-

tion, neural network 

training, feature selec-

tion 
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Ant Colony 

Optimization 

(ACO) 

Foraging behavior 

of ants 

Effective in combinatorial 

problems; decentralized, 

robust against failures 

Computationally 

expensive; sen-

sitive to param-

eter tuning 

Traveling Salesman 

Problem, vehicle rout-

ing, network design 

Artificial Bee 

Colony 

(ABC) 

Foraging behavior 

of honey bees 

Balances exploration and 

exploitation; easy to imple-

ment 

Slow conver-

gence in high-

dimensional 

spaces; sensitive 

to population 

size 

Continuous optimiza-

tion, function optimiza-

tion, data clustering 

Cuckoo 

Search (CS) 

Brood parasitism 

behavior of cuckoo 

birds 

Efficient for high-

dimensional optimization; 

uses Lévy flights for explo-

ration 

Computationally 

expensive; re-

quires fine-

tuning 

Function optimization, 

engineering design, fea-

ture selection 

Beagle-

Inspired Op-

timization 

Algorithm 

(BIOA) 

Scent detection and 

hunting strategies 

of Beagles and rab-

bits 

Persistent and exhaustive 

search; continuous adapta-

tion and pattern recognition 

Requires further 

research to op-

timize perfor-

mance in com-

plex, high-

dimensional 

problems 

Multi-modal optimiza-

tion, real-world problem 

solving 

 

Optimization algorithms are mathematical tools used to find the best solution to a problem by navigating a solu-

tion space. These algorithms Table 1 are widely applied in various fields, including machine learning, engineering 

design, economics, and operations research [35]. The effectiveness and efficiency of these algorithms are highly in-

fluenced by the parameters that control their behavior, such as population size, exploration/exploitation balance, 

and the termination criteria. Understanding and fine-tuning these parameters are essential for improving the per-

formance of optimization algorithms, ensuring convergence to optimal or near-optimal solutions while minimizing 

computational costs. 

Parameters such as population size, learning factors, step size, and iteration limits play a crucial role in deter-

mining the behavior of algorithms. For example, the population size affects the diversity of solutions, with larger 

populations often leading to a more exhaustive search of the solution space, but at the expense of higher computa-

tional costs [36]. The balance between exploration and exploitation is another critical factor, as algorithms must 

explore enough of the search space to avoid local optima, while also exploiting known good solutions to find the 

global optimum [37]. In the case of swarm intelligence-based algorithms like PSO and ACO, parameters like the 

cognitive and social factors PSO or pheromone evaporation rate ACO can significantly impact their ability to con-

verge efficiently [38]. 

In addition, the step size or velocity parameters, such as those in PSO or CS, influence how aggressively the algo-

rithm explores the search space. A larger step size leads to faster exploration, while a smaller one can enable more 

precise refinement [39]. The termination criteria, such as iteration count or fitness threshold, determine when the 

algorithm should stop, which can influence both the quality of the solution and the time taken to reach it. 

The necessity to study the parameters of optimization algorithms arises from their direct influence on algorith-

mic performance. The choice of parameters can dramatically alter the convergence rate, the quality of the final solu-

tion, and the computational efficiency of the algorithm. By carefully tuning these parameters, researchers can en-

hance algorithm performance, allowing for more efficient problem-solving across a variety of domains. A deep 

understanding of these parameters helps in determining the optimal settings for specific problem types, ultimately 

leading to the development of more efficient, adaptive, and robust optimization techniques [40]. 
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In addition, as real-world optimization problems become increasingly complex and large-scale, the ability to cus-

tomize parameters to better suit these problems becomes more critical. For example, algorithms like the ABC and 

CS have several parameters that govern the exploration and exploitation process. Understanding how these param-

eters influence the algorithm’s behavior helps in designing more effective hybrid optimization techniques, which 

can combine strengths from different algorithms to solve complex problems with higher accuracy and efficiency 

[41]. 

Table 2Key Parameters of PSO, ACO, ABC, and CS Algorithms 

Algorithm Key Parameters Description 

PSO Population Size 

(N) 

The number of particles in the swarm. A 

larger population increases the explora-

tion of the search space. 
 

Cognitive Parame-

ter (c₁) 

Determines the pull of each particle to-

wards its own best-known position. 
 

Social Parameter 

(c₂) 

Determines the pull of each particle to-

wards the global best-known position. 
 

Inertia Weight (w) Controls the trade-off between explora-

tion and exploitation (larger w favors ex-

ploration). 
 

Velocity Limits 

(V_max) 

Defines the maximum velocity a particle 

can move. Affects convergence rate. 
 

Number of Itera-

tions (T) 

The total number of iterations or steps 

for the algorithm to run. 

ACO Number of Ants 

(N) 

The total number of ants used in the 

search process. Affects exploration and 

robustness of the solution. 
 

Pheromone Evap-

oration Rate (ρ) 

The rate at which the pheromone trails 

decay over time. Affects the exploitation 

of solutions. 
 

Pheromone Influ-

ence (α) 

The importance of the pheromone trail 

in the decision-making process. 
 

Visibility (β) The importance of the problem's heuris-

tic information (visibility). 
 

Number of Itera-

tions (T) 

The total number of iterations or cycles 

for the algorithm to run. 

ABC Number of Bees 

(N) 

The number of employed bees and scout 

bees in the colony. Affects the algo-

rithm’s exploration and exploitation. 
 

Discovery Rate 

(Φ) 

Probability of a scout bee searching for a 

new solution. Influences the exploration 

phase. 
 

Onlooker Bees (O) The number of bees that observe and se-

lect the solutions based on probability. 
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Limit (L) Maximum number of cycles without im-

provement before a bee becomes a scout. 
 

Number of Itera-

tions (T) 

The total number of iterations or cycles 

for the algorithm to run. 

CS Population Size 

(N) 

The number of cuckoos in the popula-

tion. Affects diversity and exploration. 
 

Step Size (α) The step size (also called the step length) 

used during the Lévy flights for explora-

tion. 
 

Pa (Abandonment 

Probability) 

The probability that a cuckoo’s egg is 

abandoned by the host bird. Influences 

exploration and exploitation. 
 

Lévy Flight Distri-

bution 

Defines the movement behavior of the 

cuckoos during their random walk. 
 

Number of Itera-

tions (T) 

The total number of iterations or steps 

the algorithm runs 

 

The study of optimization algorithm parameters Table 2 is essential for understanding and improving the per-

formance of these algorithms. By fine-tuning parameters such as population size, exploration/exploitation balance, 

and velocity/step size, researchers can develop algorithms that converge faster, find better solutions, and operate 

more efficiently in real-world applications. This research area continues to evolve, with new insights into parameter 

influence enabling the development of more sophisticated and powerful optimization algorithms. 

3 Proposed Algorithm 

3.1 Inspiration 

Beagles are highly specialized scent hounds known for their remarkable olfactory capabilities and persistent 

hunting behaviors, which have inspired the design of the BIOA. The key biological traits of Beagles that serve as in-

spiration for the algorithm include their exceptional scent detection, trail-following techniques, pattern recognition, 

adaptability, and persistence. Beagles possess an extraordinary sense of smell, allowing them to detect faint scent 

trails and follow them with remarkable accuracy. They continuously analyze the air and adjust their position to 

hone in on the source of the scent, which parallels how an optimization algorithm searches for promising solutions 

within a complex search space. 

Once a scent is detected, Beagles exhibit a dynamic tracking behavior, often moving in zigzag or circular patterns 

rather than following a direct path. This non-linear approach helps them refine their trajectory, ensuring they stay 

on the freshest scent trail, much like an algorithm balances exploration and exploitation to find an optimal solution. 

Furthermore, Beagles have an innate ability to recognize patterns within scent trails, distinguishing between fresh 

and older scents. This trait mirrors the algorithm's heuristic evaluation, where it differentiates between promising 

and less viable solutions, focusing resources on the most promising areas. 

Adaptability is another crucial trait of Beagles that influences the algorithm design. If an obstacle blocks the 

scent trail, a Beagle instinctively recalculates its path, exploring alternative routes to regain the trail. Similarly, an 

optimization algorithm must be capable of dynamically adjusting its search trajectory when faced with barriers, en-

suring robustness in solving complex problems. Additionally, Beagles exhibit relentless persistence in their pursuit, 

covering large areas and persisting in challenging terrains until they locate their target. This persistence is an essen-

tial aspect of BIOA, ensuring thorough exploration of the search space without premature convergence. 
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The inspiration drawn from Beagles extends to their efficient decision-making mechanisms. When a Beagle de-

tects a change in the scent's direction or strength, it swiftly repositions itself to stay on track, which reflects the al-

gorithm’s need to perform dynamic updates and recalibrate search paths to avoid getting stuck in suboptimal solu-

tions. Overall, the unique biological characteristics of Beagles scent detection, adaptive trail-following, pattern 

recognition, and persistence serve as a robust foundation for the BIOA, making it a powerful tool for solving com-

plex optimization problems in dynamic environments. 

3.2 Mathematical Model 

3.2.1 Scent Detection (Initialization) 

Objective: Randomly initialize agents' positions and evaluate their fitness. 

• Initialize: 

𝑋𝑖
𝑡~𝑈(0,1)𝐷 , 𝑖 = 1,2,3, … . , 𝑁 

• Evaluate fitness: 

𝑓𝑖
𝑡 = 𝑓(𝑋𝑖

𝑡), 𝑖 = 1,2,3 … . , 𝑁 

• Determine the best solution: 

𝑋𝐵𝑒𝑠𝑡
𝑡 = 𝑎𝑟𝑔 

𝑚𝑖𝑛
𝑖

𝑓𝑖
𝑡 , 𝑓𝐵𝑒𝑠𝑡

𝑡 =
𝑚𝑖𝑛

𝑖
𝑓𝑖

𝑡 

 

 

Figure 2 Scent Detection by Beagle 

3.2.2 Tracking/Trail Following (Exploration Phase) 

Objective: Perform a random walk to explore new regions in the search space. 

For each agent𝑖. 

• Update Position: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + ∆𝑋, ∆𝑋~𝑈(−1,1)𝐷 

 

• Evaluate fitness: 

𝑓𝑖
𝑡+1 = 𝑓(𝑋𝑖

𝑡+1) 

• Update agent position if fitness improves: 

𝐼𝑓 𝑓𝑖
𝑡+1 < 𝑓𝑖

𝑡 , 𝑋𝑖
𝑡 ← 𝑋𝑖

𝑡+1, 𝑓𝑖
𝑡 ← 𝑓𝑖

𝑡+1 

• Update global best if necessary: 

𝐼𝑓𝑓𝑖
𝑡+1 < 𝑓𝐵𝑒𝑠𝑡

𝑡 , 𝑋𝐵𝑒𝑠𝑡
𝑡  ← 𝑋𝑖

𝑡 , 𝑓𝐵𝑒𝑠𝑡
𝑡 ← 𝑓𝑖

𝑡 
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Figure 3Tracking & Trail Following 

3.2.3 Pattern Recognition (Exploitation Phase) 

Objective: Exploit the best solution by moving agents closer to𝑋𝐵𝑒𝑠𝑡  

For each agent 𝑖 

• Update position: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑈(−1,1)𝐷. (𝑋𝐵𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) 

• Evaluate fitness: 

𝑓𝑖
𝑡+1 = 𝑓(𝑋𝑖

𝑡+1) 

• Update agent position if fitness improves: 

𝐼𝑓 𝑓𝑖
𝑡+1 < 𝑓𝑖,                 

𝑡 𝑋𝑖
𝑡 ← 𝑋𝑖

𝑡+1,              𝑓𝑖
𝑡 ← 𝑓𝑖

𝑡+1 

• Update global best if necessary: 

𝐼𝑓 𝑓𝑖
𝑡 < 𝑓𝐵𝑒𝑠𝑡,   

𝑡 𝑋𝐵𝑒𝑠𝑡
𝑡 ← 𝑋𝑖

𝑡 ,               𝑓𝐵𝑒𝑠𝑡
𝑡 ← 𝑓𝑖

𝑡 

 

 

 

Figure 4Pattern Recognition 
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3.2.4 Continuous Adaptation (Adaptation Phase) 

Objective: Reinitialize some agents randomly to avoid local optima. 

For each agent 𝑖: 

• Random re-initialization with probability𝑷𝑨𝒅𝒂𝒑𝒕: 

𝐼𝑓 𝑟 < 𝑃𝐴𝑑𝑎𝑝𝑡 , 𝑋𝑖
𝑡~𝑈(0,1)𝐷 

• Re-evaluate fitness: 

𝑓𝑖
𝑡 = 𝑓(𝑋𝑖

𝑡) 

 

 

Figure 5Continuous Adaption by Beagle 

 

3.2.5 Persistent & Exhaustive Search (Termination Check) 

Objective: Check if termination criteria are met. 

• Terminate if: 

𝑡 = 𝑇𝑀𝑎𝑥or other convergence criteria 

 

 

Figure 6Persistent & Exhaustive Search 

3.2.6 Escape & Retrieval (Repeat Process) 

Objective: Continue the optimization until termination criteria are met. 

• Repeat phases (2) through (5) until𝒕 = 𝑻𝑴𝒂𝒙 
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• Final Best Solution:  

𝑿𝑩𝒆𝒔𝒕, 𝒇𝑩𝒆𝒔𝒕 

 

Figure 7Escape & Retrieval by Beagle 

3.3 Flowchart 

The BIOA follows a structured sequence of operations Figure 8 BIOA Flowchart inspired by the scent-tracking 

behavior of Beagles. The process begins with the initialization phase, where the algorithm is set up by defining key 

parameters such as the population size, the dimensions of the search space, and the maximum number of itera-

tions. This step is crucial as it establishes the foundation for the algorithm's search process by positioning the 

agents, representing Beagles, randomly within the problem domain to ensure diverse exploration. 

Once the initialization is complete, the algorithm proceeds to the fitness evaluation phase, where each agent as-

sesses the quality of its current position using a predefined fitness function. This function quantifies the proximity 

of a given solution to the optimal solution, allowing agents to determine their effectiveness in the search space. If 

the best possible solution is identified at this stage, the algorithm terminates, outputting the optimal solution. 

However, if an optimal solution is not yet found, the algorithm moves to the core search phases. 

 

Figure 8 BIOA Flowchart 
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The search process consists of three primary phases: exploration, exploitation, and adaptation. In the explora-

tion phase, agents perform a random walk, mimicking the behavior of Beagles that scan large areas for scent trails. 

This phase promotes diversity in the search process by enabling agents to investigate unexplored regions and avoid 

becoming trapped in local optima. Following exploration, the exploitation phase directs agents to move towards the 

best solutions found so far, simulating how a Beagle intensifies its pursuit once a promising scent trail is detected. 

This phase ensures that the algorithm focuses on refining high-potential solutions while continuing to balance ex-

ploration. 

The adaptation phase is a crucial aspect of BIOA, allowing agents to reposition themselves when they encounter 

obstacles or weak solutions. Inspired by the way Beagles recalibrate their path when a scent weakens or is obstruct-

ed, this phase helps the algorithm dynamically adjust its search trajectory, improving robustness and flexibility in 

dynamic environments. 

Throughout the search process, the algorithm continuously checks termination conditions. The process halts 

when either the maximum number of iterations is reached or convergence criteria are met, indicating that agents 

have collectively settled on an optimal solution. If neither condition is satisfied, the search process repeats by re-

evaluating the fitness of agents and iterating through the exploration, exploitation, and adaptation phases. 

Finally, upon termination, the algorithm outputs the best solution identified during the search, presenting the 

optimal solution along with its corresponding fitness value. This structured flow ensures that BIOA efficiently bal-

ances exploration and exploitation, adapts dynamically to changing search conditions, and persistently seeks opti-

mal solutions across a diverse range of optimization problems. 

3.4 Pseudo code for Beagle Algorithm 

1. Initialize agents randomly. 

2. Evaluate fitness for all agents. 

3. Find the best solution and best fitness. 

4. Repeat until max_iterations: 

    a. Exploration Phase: 

        - Move agents randomly. 

        - Evaluate new fitness and update agents if needed. 

    b. Exploitation Phase: 

        - Move agents toward the best-known solution. 

        - Evaluate new fitness and update agents if needed. 

    c. Adaptation Phase: 

        - With small probability, reinitialize agents. 

5. Check termination condition. 

6. Return best solution and best fitness. 

 

The algorithm begins with the Initialization Phase, where a group of agents (representing beagles) is randomly 

distributed in the search space. Each agent's position corresponds to a potential solution to the optimization prob-

lem, and its fitness value is calculated using the given objective function. The algorithm identifies the best solution 

among these initial agents by finding the position with the minimum fitness value, which will act as the benchmark 

for the following iterations. 
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Next, the algorithm enters a loop that continues until a predefined number of iterations is reached or a termina-

tion condition is satisfied. This loop consists of three primary phases: Exploration, Exploitation, and Adaptation, 

which emulate the behaviors of beagles in a scent-tracking scenario. 

In the Exploration Phase, the agents perform a random walk in the search space, simulating the random sniffing 

of beagles as they try to locate the scent trail. Each agent’s new position is calculated by adding a random vector to 

its current position. The fitness of the new position is evaluated, and the agent updates its position if the new posi-

tion offers an improvement. If any agent finds a better solution than the current global best, the algorithm updates 

the global best solution and its fitness. 

The Exploitation Phase follows, during which agents focus their search around the best solution found so far. 

Each agent moves closer to the global best position by adjusting its movement vector to be weighted toward the best 

solution. This phase mimics the beagle’s behavior of converging on a strong scent trail. As in the exploration phase, 

the fitness of each new position is evaluated, and the agents update their positions if the new position improves 

their fitness. If any agent discovers a better solution than the global best, the global best solution is updated. 

To maintain diversity and avoid premature convergence, the algorithm includes an Adaptation Phase. During 

this phase, each agent has a small probability of being reinitialized to a new random position in the search space. 

This process ensures that the algorithm explores unexplored regions of the search space, thereby increasing the 

likelihood of escaping local optima. The fitness of these reinitialized agents is also recalculated. 

At the end of each iteration, the algorithm performs a Termination Check to determine whether the maximum 

number of iterations has been reached or if another convergence criterion has been satisfied. If neither condition is 

met, the algorithm loops back to the exploration phase and continues searching. This persistent and exhaustive 

search mimics the relentless nature of beagles as they hunt until they locate their target or exhaust all options. 

Finally, once the termination condition is met, the algorithm returns the best solution and its corresponding fit-

ness value. These represent the optimal or near-optimal solution to the optimization problem. This structured 

combination of exploration, exploitation, and adaptation phases ensures a balance between global and local search, 

making BIOA both robust and versatile for solving various optimization problems. 

4 Experimental Setup 

4.1 Benchmark Function 

 

Figure 9Benchmark Functions Tree 

Benchmark functions are critical tools in optimization and computational intelligence research, serving as stand-

ardized test problems to evaluate the performance of optimization algorithms. These Figure 9 functions are broadly 

categorized based on their landscape and characteristics, such as unimodal, multimodal, and hybrid. 

Benchmark 
Functions

Unimodal

Sphere 
Function

Rosenbrock 
Function

Multimodal

Rastrigin 
Function

Griewank 
Function

Ackley 
Function

Hybrid

Levy 
Function

Schwefel 
Function
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Unimodal functions feature a single global optimum, making them ideal for testing the exploitation capabilities 

of optimization algorithms. The Sphere Function, one of the simplest unimodal functions, represents a quadratic 

bowl-shaped surface where the global minimum lies at the origin. Its smooth and symmetric landscape allows re-

searchers to test an algorithm's ability to converge efficiently. Another widely used unimodal function is the Rosen-

brock Function, often referred to as the "banana function" due to its curved valley shape. It is more challenging 

than the Sphere Function, as the global minimum lies inside a narrow, elongated parabola, testing an algorithm's 

precision in finding the optimum. 

Multimodal functions are characterized by multiple local optima, making them suitable for evaluating an algo-

rithm's exploration capabilities. The Rastrigin Function is a classic example, combining a parabolic shape with a si-

nusoidal modulation that creates numerous local minima. The Griewank Function, on the other hand, is more 

complex due to its product and summation terms, which introduce periodic variations, further challenging an algo-

rithm's robustness. Similarly, the Ackley Function presents a flat outer region with a sharp central peak, requiring 

algorithms to balance exploration and exploitation to locate the global minimum. 

Table 3Benchmark Function, Formula, Range 

Sr. 

No. 

Function 

Name 

Formula Range 

1 Sphere 

Function 
𝑓(𝑥) = ∑ 𝑥𝑖

2
𝑛

𝑖=1
 

𝑥𝑖𝜖[−5.12,5.12] 

2 Rosen-

brock 

Function 

𝑓(𝑥) = ∑ [100(𝑥𝑖|1 − 𝑥𝑖
2)2

𝑛

𝑖=1

+ (𝑥𝑖 − 1)2]  

𝑥𝑖𝜖[−2.048,2.048] 

3 Rastrigin 

Function 
𝑓(𝑥) = 10𝑛 + ∑ [𝑥𝑖

2 − 10cos (2𝜋𝑥𝑖)]
𝑛

𝑖=1
 

𝑥𝑖𝜖[−5.12,5.12] 

4 Griewank 

Function 
𝑓(𝑥) = 1 +

1

4000
∑ 𝑥𝑖

2 − 𝜋𝑖=1
𝑛 . cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1
 

𝑥𝑖𝜖[−600,600] 

5 Ackley 

Function 

𝑓(𝑥)

= −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 

𝑥𝑖𝜖[−32.768,32.768] 

6 Levy Func-

tion 

𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝑤1)

+ ∑ (𝑤1 − 1)2[1
𝑛

𝑖=1

+ 10𝑠𝑖𝑛2(𝜋𝑤𝑖 + 1)

+ (𝑤𝑛 − 1)2[1

+ 𝑠𝑖𝑛2(2𝜋𝑤𝑛)]] 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 1 +
𝑥𝑖 . 1

100
 

𝑥𝑖𝜖[−10,10] 

7 Schwefel 

Function 
𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖sin (√|𝑥𝑖|)

𝑛

𝑖=1
 

𝑥𝑖𝜖[−500,500] 

 

Hybrid functions combine characteristics of different function types, often incorporating multiple components or 

transformations to create challenging optimization problems. The Levy Function features a combination of multi-

modal and deceptive properties, with its global minimum surrounded by numerous local optima, testing an algo-
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rithm’s ability to escape suboptimal solutions. Similarly, the Schwefel Function has a highly irregular landscape 

with steep ridges and deep valleys, making it particularly difficult for optimization algorithms to navigate effective-

ly. 

Overall, these benchmark functions Table 3 provide diverse landscapes and challenges, enabling comprehensive 

evaluation of optimization algorithms in terms of convergence speed, accuracy, and robustness. 

4.2 Experimental Parameters 

In optimization algorithms, several parameters define the behavior, performance, and effectiveness of the search 

process. These parameters Table 4 play a critical role in balancing exploration (global search) and exploitation (lo-

cal search) and ensuring the algorithm converges to an optimal solution. 

The Number of Agents (N) refers to the total number of agents (e.g., beagles in nature-inspired algorithms) that 

participate in searching the solution space. Typically, the number of agents ranges from 20 to 100, with a common 

default value of 50. Increasing N enhances exploration but adds computational overhead. The Number of Dimen-

sions (D) represents the problem's variables or the dimensionality of the search space, which depends on the specif-

ic problem being addressed. Typical values for D are 2, 10, or 30, but this may vary depending on the complexity of 

the optimization problem. 

Table 4 BIOA Parameters 

Parameter Description Typical Values/Range 

Number of 

Agents(𝑵) 

The total number of agents 

(beagles) searching for the op-

timal solution. 

20 ≤ 𝑁 ≤ 100 (𝑒. 𝑔. 50) 

Number of 

Dimen-

sions(𝑫) 

The dimensionality of the 

search space, representing the 

problem's variables. 

𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑜𝑛𝑡ℎ𝑒𝑝𝑟𝑜𝑏𝑙𝑒𝑚, 

𝑒. 𝑔. 2, 10 𝑜𝑟 30 

Objective 

Func-

tion(𝒇(𝑿)) 

The fitness function to evaluate 

the quality of solutions. 

Custom problem specific 

function. 

Max Itera-

tions𝑻𝑴𝒂𝒙 

Maximum number of iterations 

before stopping the optimiza-

tion process. 

100 ≤ 𝑇𝑀𝑎𝑥 ≤ 1000 

𝑒. 𝑔. 100 

 

Exploration 

Range

(𝑼(−𝟏, 𝟏)) 

The random step size for explo-

ration in the search space. 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 , 

[−1,1] 

Exploitation 

Factor(𝑪) 

Weighting factor for exploita-

tion phase to move toward the 

best solution. 

0.1 ≤ 𝐶 ≤ 1.0 

(𝐷𝑒𝑓𝑎𝑢𝑙𝑡 1) 

Adaptation 

Probabil-

ity𝑷𝑨𝒅𝒂𝒑𝒕𝒔 

Probability of an agent ran-

domly repositioning itself in the 

search space. 

0.05 ≤ 𝑃𝐴𝑑𝑎𝑝𝑡 ≤ 0.2 

𝑒. 𝑔. 0.1 

Initial Posi-

tions𝑿𝒊
𝟎 

Initial random positions of 

agents in the search space. 

𝑅𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒𝑠. 

𝑋𝑖~𝑈(0,1)𝐷 

Best Solu-

tion𝑿𝑩𝒆𝒔𝒕 

Position of the agent with the 

best fitness in the current 

Updated dynamically  

during optimization 
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population. 

Fitness of 

Best Solu-

tion(𝒇𝑩𝒆𝒔𝒕) 

Fitness value of the best solu-

tion found so far. 

Updated dynamically  

during optimization 

Random 

Step(∆𝑿) 

The random offset added to 

agents' positions in exploration 

and exploitation phases. 

Uniform Random values 

[−1,1]𝐷 

Conver-

gence 

Thresh-

old(𝝐) 

Fitness threshold for stopping 

early if the solution is close 

enough to optimal. 

Small values 

𝑒. 𝑔. 106 

 

The Objective Function (𝒇(𝑿))serves as the fitness function to evaluate the quality of each solution. This func-

tion is customized for the problem at hand, determining whether a solution is closer to optimal. The Maximum 

Number of Iterations Max Iterations𝑻𝑴𝒂𝒙is the predefined limit for the optimization process, with typical val-

ues ranging between 100 and 1000 iterations (e.g., 100), balancing computational time and accuracy. 

The Exploration Range (𝑼(−𝟏, 𝟏))defines the random step size for exploring the search space and is typically 

drawn from a uniform distribution in the range [−1,1]. The Exploitation Factor (C) is a weighting parameter that 

guides agents toward the best solution during the exploitation phase. This value usually ranges from 0.1 to 1.0, with 

a default value of 1.0. 

The Adaptation Probability 𝑷𝑨𝒅𝒂𝒑𝒕𝒔 determines the likelihood of an agent repositioning itself randomly in the 

search space to improve exploration. It typically ranges from 0.05 to 0.2, with a common default value of 0.1. The 

Initial Positions 𝑿𝒊
𝟎are the randomly assigned starting positions of agents, usually drawn from a uniform distri-

bution [0,1]𝐷. 

The Best Solution 𝑿𝑩𝒆𝒔𝒕represents the position of the agent with the best fitness value at any given iteration. This 

value is updated dynamically as the optimization process progresses. Similarly, the Fitness of the Best Solution 

(𝒇𝑩𝒆𝒔𝒕)is the fitness value of the best solution found so far and is also updated dynamically during the search pro-

cess. 

The Random Step Random Step(∆𝑿)is the offset added to agents positions during exploration and exploitation, 

typically drawn from a uniform random distribution [−1,1]𝐷. Lastly, the Convergence Threshold (𝝐) defines a stop-

ping criterion for the optimization process when the fitness of a solution is sufficiently close to the optimal value. 

This threshold is usually a small value, such as 106, to ensure high precision. 

By tuning these parameters, optimization algorithms can be adapted to solve a wide range of problems effective-

ly, balancing computational efficiency and solution accuracy. 

5 Results and Discussions 

5.1 Performance on Benchmark Functions 

5.1.1 Sphere Function 

The results of the Sphere Function optimization Table 5 clearly highlight the comparative performance of differ-

ent algorithms, including PSO, CS, BIOA, ACO, and ABC. Among these, BIOA demonstrated exceptional precision 

and robustness, with a mean fitness value of 8.57748×1012times, a median of 8.59476×10-13 and an extremely low 

standard deviation of 2.09578×10-11. The best fitness value achieved by BIOA was 3.33296×10-15, indicating its abil-

ity to converge efficiently and consistently to the global optimum. These results establish BIOA as the most reliable 

algorithm for solving the Sphere Function, with unparalleled accuracy and stability. 
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Table 5Performance Analysis on Sphere Function 

Function Algorithm Mean Median Std Best Worst 

Sphere Function BIOA 8.57748E-12 8.59476E-13 2.09578E-11 3.33296E-15 7.11048E-11 

Sphere Function ACO 0.000198727 0.000118386 0.000215919 3.54136E-06 0.000672856 

Sphere Function PSO 2.29208E-05 7.65719E-06 3.92137E-05 6.40235E-08 0.000135618 

Sphere Function ABC 9.8081E-08 2.13654E-08 1.18911E-07 1.05734E-09 3.67305E-07 

Sphere Function CS 0.000717919 0.000625792 0.000578025 9.27872E-05 0.001820496 

 

The ABC algorithm also performed strongly, with a mean fitness value of 9.8081×10-8 and a best solution of 

1.05734×10-9, showcasing its effectiveness in handling smooth, unimodal optimization problems. PSO and ACO de-

livered moderate results, with mean fitness values of 2.29208×10-5and 0.000198727, respectively. While PSO 

demonstrated reasonable consistency with a relatively low standard deviation, ACO exhibited higher variability, 

suggesting that these algorithms may require additional fine-tuning to achieve greater precision. In contrast, the 

Cuckoo Search algorithm displayed the highest variability, with a mean fitness value of 0.000717919and a standard 

deviation of0.000578025, making it less effective for this type of function. 

 

Figure 10 BIOA Sphere Function 

Overall, Figure 10 the findings emphasize the importance of selecting an appropriate optimization algorithm 

based on the problem's characteristics. While BIOA proved to be the best-suited for the Sphere Function due to its 

high precision and low variability, ABC and PSO also offered competitive performance. ACO and CS, though mod-

erately effective, were less consistent and struggled to match the precision of the top-performing algorithms. These 

results provide valuable insights into the strengths and weaknesses of each algorithm, guiding researchers in their 

application to optimization problems. 

5.1.2 Rosenbrock Function 

The results for the Rosenbrock Function optimization  
 
 

 

Table 6 demonstrate the varying effectiveness of the tested algorithms, with the (BIOA) standing out for its pre-

cision and consistency. BIOA achieved a mean fitness value of 8.9808×10-5 and a best solution of 1.04708×10-6, 

indicating its strong capability to navigate the narrow, curved valley characteristic of the Rosenbrock Function. The 

algorithm's low standard deviation (0.0001600870) further highlights its reliability in consistently finding solu-

tions close to the global optimum. 
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Table 6Performance Analysis on Rosenbrock Function 

Function Algo-

rithm 

Mean Median Std Best Worst 

Rosenbrock Func-

tion 

BIOA 8.9808E-05 9.21224E-

06 

0.00016008

7 

1.04708E-06 0.00053260

2 

Rosenbrock Func-

tion 

ABC 8.45395E-

05 

4.23397E-

05 

0.00010810

6 

8.78134E-06 0.00038957

1 

Rosenbrock Func-

tion 

PSO 0.00062761 0.00021677

5 

0.00079788

1 

1.02119E-05 0.00255112 

Rosenbrock Func-

tion 

ACO 0.00218106

5 

0.00084996 0.00255548

6 

0.00056340

4 

0.00797497

6 

Rosenbrock Func-

tion 

CS 0.01378895

1 

0.01099624

2 

0.011009728 0.00060261

5 

0.034464123 

 

The ABC algorithm also performed well, with a mean fitness value of 8.45395×10-5and a best fitness of 

8.78134×10-6Although slightly less precise than BIOA, ABC demonstrated good stability with a standard deviation 

of 0.0001081060. PSO achieved moderate results, with a mean fitness value of 0.000627610and a best solution of 

1.02119×10-5However, its higher variability (0.0007978810) suggests less consistency compared to BIOA and ABC. 

 

Figure 11 BIOA Rosenbrock Function 

In contrast, the ACO and CS algorithms struggled to perform effectively on the Rosenbrock Function. ACO 

achieved a mean fitness value of 0.0021810650, but its higher standard deviation (0.0025554860) indicates signifi-

cant variability in its results. Similarly, CS exhibited the highest variability (0.0110097280) and the least precise so-

lutions, with a mean fitness value of 0.0137889510and a worst-case fitness of 0.0344641230. These findings high-

light that while Figure 11 BIOA and ABC are well-suited for optimization problems with challenging landscapes like 

the Rosenbrock Function, ACO and CS may require parameter tuning or adjustments to improve their perfor-

mance. 

5.1.3 Rastrigin Function 

The results  
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Table 7 for the Rastrigin Function highlight the performance of various optimization algorithms in handling 

multimodal landscapes with numerous local optima. The (BIOA) emerged as the most effective algorithm, achiev-

ing an exceptionally low mean fitness value of 2.78025×10-7 and a best solution of 5.51381×10-12. Its low standard 

deviation (4.61033×10-7) indicates consistent and reliable convergence toward the global optimum, demonstrating 

its superior exploration and exploitation balance in a highly complex search space. 

 

Table 7Performance Analysis on Rastrigin Function 

Function Algo-

rithm 

Mean Median Std Best Worst 

Rastrigin Func-

tion 

BIOA 2.78025E-07 5.37927E-08 4.61033E-07 5.51381E-12 1.471E-06 

Rastrigin Func-

tion 

PSO 0.031852696 0.005725106 0.07022462

4 

3.47748E-05 0.239168539 

Rastrigin Func-

tion 

ABC 0.00538809

4 

0.00100364

7 

0.008257755 0.000321919 0.02670474

8 

Rastrigin Func-

tion 

ACO 0.04140007 0.03499801

2 

0.031592336 0.00497081

8 

0.111710417 

Rastrigin Func-

tion 

CS 0.492594767 0.258501161 0.486727659 0.057056831 1.284670497 

The ABC algorithm also performed well, achieving a mean fitness value of 0.0053880940 and a best fitness of 

0.0003219190. Despite having a higher standard deviation (0.0082577550) compared to BIOA, ABC demonstrated 

solid robustness and adaptability in navigating the multimodal landscape of the Rastrigin Function. (PSO) achieved 

moderate results, with a mean fitness value of 0.0318526960 and a best solution of 3.47748×10-5. However, the 

high standard deviation (0.0702246240) suggests variability in its performance, likely due to premature conver-

gence or insufficient exploration. 

 

Figure 12 BIOA Rastrigin Function 

On the other hand, the ACO and CS algorithms struggled significantly on the Rastrigin Function. ACO achieved a 

mean fitness value of 0.041400070 but exhibited a standard deviation of 0.0315923360, indicating inconsistent re-

sults. CS performed the worst, with a mean fitness value of 0.4925947670, a high standard deviation of 

0.4867276590, and a worst-case fitness of 1.2846704971. These results suggest that CS faces challenges in escaping 

local optima and maintaining effective exploration in such highly multimodal landscapes. Overall, Figure 12 BIOA 

and ABC stood out as the most reliable algorithms for solving the Rastrigin Function, while PSO, ACO, and CS 

demonstrated varying levels of inefficiency. 
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5.1.4 Griewank Function 

The Griewank Function results Table 8 demonstrate the performance of various optimization algorithms in solv-

ing problems with a complex, periodic search landscape. The (BIOA) exhibited outstanding performance, with an 

exceptionally low mean fitness value of 1.1939×10-11and a best solution of 1.88738×10-15. Its low standard devia-

tion (3.13396×10-11) indicates consistent and reliable convergence, making it the most effective algorithm for this 

function. 

Table 8Performance Analysis on Griewank Function 

Function Algo-

rithm 

Mean Median Std Best Worst 

Griewank Func-

tion 

BIOA 1.1939E-11 1.74194E-13 3.13396E-11 1.88738E-15 1.05779E-10 

Griewank Func-

tion 

ABC 3.36344E-08 9.52034E-

09 

4.00084E-

08 

9.18141E-10 1.0937E-07 

Griewank Func-

tion 

PSO 1.85251E-05 5.75309E-06 3.08781E-05 3.36293E-

08 

0.00010310

2 

Griewank Func-

tion 

ACO 7.81341E-05 5.09369E-

05 

7.51511E-05 1.97933E-06 0.00026511 

Griewank Func-

tion 

CS 0.00037587

2 

0.00023952 0.00036529

4 

1.37805E-05 0.001139855 

 

The ABC algorithm also performed well, achieving a mean fitness value of 3.36344×10-8and a best solution of 

9.18141×10-10. With a relatively low standard deviation (4.00084×10-8), ABC demonstrated robustness and the abil-

ity to handle the intricate periodic variations of the Griewank Function effectively. (PSO) achieved moderate re-

sults, with a mean fitness value of 1.85251×10-5and a best fitness of 3.36293×10-8. However, its higher standard de-

viation (3.08781×10-5) suggests variability in convergence performance. 

 

Figure 13BIOA Griewank Function 

In contrast, the ACO and CS algorithms faced challenges in solving the Griewank Function. ACO achieved a 

mean fitness value of 7.81341×10-5and a standard deviation of 7.51511×10-5, reflecting inconsistencies and difficul-

ties in maintaining precision. CS performed the worst, with a mean fitness value of 0.0003758720, a high standard 

deviation (0.0003652940), and a worst-case fitness of 0.0011398550. These results indicate that CS struggles to 

balance exploration and exploitation in highly intricate and periodic landscapes like the Griewank Function. Over-

all, Figure 13 BIOA and ABC emerged as the most reliable and efficient algorithms, while PSO, ACO, and CS 

demonstrated varying degrees of inefficiency. 
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5.1.5 Ackley Function 

The performance of various algorithms Table 9 on the Ackley Function, which is known for its flat outer region 

and sharp central peak, highlights the contrasting strengths and weaknesses of each approach. The (BIOA) deliv-

ered exceptional results, achieving a mean fitness value of 8.68984×10-6, with a best solution of 6.33222×10-7. Its 

low standard deviation (9.06952×10-6) indicates consistent and reliable convergence, showcasing its ability to nav-

igate both the flat regions and sharp gradients of the function. 

Table 9Performance Analysis on Ackley Function 

Function Algorithm Mean Median Std Best Worst 

Ackley Function BIOA 8.68984E-06 5.21877E-06 9.06952E-06 6.33222E-07 2.71159E-05 

Ackley Function ABC 0.002450076 0.002125164 0.001283643 8.31359E-06 0.005133306 

Ackley Function PSO 0.026082002 0.011927111 0.026273432 0.002838111 0.072548421 

Ackley Function ACO 0.037156723 0.036190368 0.016936634 0.009247713 0.070365504 

Ackley Function CS 0.110669057 0.100303393 0.038313839 0.064151769 0.198766018 

 

The ABC algorithm also performed reasonably well, achieving a mean fitness of 0.0024500760and a best solu-

tion of 8.31359×10-6. While it demonstrated robustness with a moderate standard deviation (0.0012836430), it was 

less precise compared to BIOA. (PSO) struggled with higher variability, reflected by a mean fitness value of 

0.0260820020and a standard deviation of 0.0262734320. Despite finding a best solution of 0.0028381110, its 

convergence was inconsistent due to the complex landscape of the Ackley Function. 

 

Figure 14 BIOA Ackley Function 

The ACO and CS algorithms exhibited significant challenges in solving the Ackley Function. ACO achieved a 

mean fitness of 0.0371567230and a high standard deviation (0.0169366340), reflecting difficulties in maintaining 

precision. CS performed the poorest, with a mean fitness of 0.1106690570and the highest standard deviation 

(0.0383138390), indicating significant instability and inefficiency in navigating the function's landscape. Overall, 

BIOA Figure 14 emerged as the most effective algorithm for the Ackley Function, followed by ABC, while PSO, ACO, 

and CS showed varying degrees of inefficiency in balancing exploration and exploitation. 

5.1.6 Levy Function 

The performance of the algorithms on the Levy Function Table 10 showcases significant differences in their abil-

ity to solve this complex and multimodal problem. The (BIOA) once again demonstrated its efficiency, achieving a 

mean fitness of 2.46906×10-11and a best solution of 1.01792×10-14, which is close to the optimal solution. The very 
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low standard deviation (7.26666×10-11) indicates that BIOA consistently converges to optimal solutions across mul-

tiple runs, proving its effectiveness in handling the Levy Function's challenging landscape. 

Table 10Performance Analysis on levy Function 

Function Algorithm Mean Median Std Best Worst 

Levy Function BIOA 2.46906E-11 4.93336E-14 7.26666E-11 1.01792E-14 2.42675E-10 

Levy Function ABC 1.29257E-08 5.11423E-09 1.28664E-08 1.95853E-09 3.92448E-08 

Levy Function PSO 1.60328E-05 6.38967E-06 2.93304E-05 4.04747E-07 0.000102456 

Levy Function ACO 5.12379E-05 3.77245E-05 5.50256E-05 3.23042E-06 0.000195476 

Levy Function CS 0.000123366 9.5453E-05 0.00011186 1.54827E-05 0.000365762 

 

The ABC algorithm delivered relatively good performance with a mean fitness of 1.29257×10-8 and a best solution 

of 1.95853×10-9. Although the standard deviation (1.28664×10-8) was higher than that of BIOA, the results are still 

impressive, suggesting that ABC can effectively explore and exploit the Levy Function’s global and local optima. On 

the other hand, (PSO) showed more inconsistency, with a mean fitness of 1.60328×10-5and a relatively high stand-

ard deviation (2.93304×10-5). Its best solution of 4.04747×10-7reflects its struggle to find precise solutions com-

pared to BIOA and ABC. 

 

Figure 15BIOA Levy Function 

The ACO and CS algorithms exhibited less satisfactory results. ACO had a mean fitness of 5.12379×10-5and a best 

solution of 3.23042×10-6, while CS had a mean of 0.0001233660and a best solution of 1.54827×10-5. Both algo-

rithms struggled with higher variability and failed to consistently find the global minimum. Overall, BIOA Figure 15 

outperformed all other algorithms, demonstrating superior ability to handle the Levy Function's multimodal char-

acteristics, followed by ABC, while PSO, ACO, and CS showed relatively poor performance in comparison. 

5.1.7 Schwefel Function 

The results of the algorithms Table 11 on the Schwefel Function demonstrate significant differences in perfor-

mance, highlighting the challenge posed by this highly complex multimodal optimization problem. (PSO) showed 

the worst performance, with a mean fitness of −4.1554×10121 and a worst solution of −3.16161×1060, both indicating 

significant instability and an inability to properly converge to the global minimum. The extremely large standard 

deviation (1.2466×10122) further supports this, showing that PSO struggles to find meaningful solutions in the high-

ly deceptive and rugged landscape of the Schwefel function. 

Table 11Performance Analysis on Schwefel Function 

Function Algorithm Mean Median Std Best Worst 
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Schwefel 

Function 

PSO -4.1554E+121 -5.3181E+110 1.2466E+122 -4.1554E+122 -3.16161E+60 

Schwefel 

Function 

ABC -2.19211E+19 -3.33531E+18 5.18706E+19 -1.76549E+20 -2.89193E+17 

Schwefel 

Function 

BIOA -1.77114E+14 -1.68693E+13 3.19479E+14 -1.01531E+15 -85033801.5 

Schwefel 

Function 

CS -0.735767055 -0.637280711 0.390702142 -1.388459021 -0.27578714 

Schwefel 

Function 

ACO 0.00147971 0.001357019 0.00080875

8 

0.000280238 0.002753612 

 

The ABC algorithm performed better, with a mean of −2.19211×1019 and a best solution of −1.76549×1020but it 

still faced challenges in terms of consistency. The standard deviation (5.18706×1019) suggests variability in the algo-

rithm's performance. On the other hand, the (BIOA) yielded much better results with a mean of −1.77114×1014and a 

best solution of −1.01531×1015, reflecting its ability to more reliably converge toward the optimal solution. While 

not perfect, BIOA was still far superior to PSO and ABC in terms of both mean and best results. 

 

Figure 16 BIOA Schwefel Function 

The CS algorithm performed the best among all with a mean of −0.735767055and a best solution of 

−1.388459021demonstrating its efficiency in navigating the Schwefel Function's complex landscape. Despite the 

moderate positive values, CS still managed to consistently find relatively better solutions compared to the other al-

gorithms. The ACO algorithm, while also producing relatively poor results, was slightly better than the worst per-

forming algorithms with a mean of 0.001479710and a best solution of 0.0002802380. Overall, BIOA and CS 

demonstrated stronger performance, with Figure 16 BIOA leading in convergence and CS showing the best robust-

ness in finding near-optimal solutions. 

5.2 Overall Analysis 

Based on the analysis of the performance  
 
 

 

 

Table 12 of various optimization algorithms BIOA, CS , ABC, ACO, and PSO across multiple benchmark functions 

(Sphere, Rosenbrock, Rastrigin, Griewank, Ackley, Levy, and Schwefel), we can derive a clear ranking and under-

standing of their effectiveness in optimization tasks. 
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BIOA consistently outperforms all other algorithms, securing the top rank in almost every function. It exhibits 

the lowest mean fitness values across most functions, which indicates that it is able to find optimal or near-optimal 

solutions more effectively than its competitors. Additionally, BIOA delivers the best fitness solutions in most cases, 

with an impressively low standard deviation (Std). This suggests that the algorithm is highly stable, offering reliable 

performance without large fluctuations, making it the most suitable choice for complex and multimodal optimiza-

tion problems. 

 

 

 

 

 

Table 12 Overall Comparative Analysis 

Algorithm Mean Fitness Best Fitness Worst Fitness Standard 

Deviation 

(Std) 

Ranking 

BIOA Best Overall (Low-

est Mean in most 

cases) 

Best Overall (Best 

in most cases) 

Best Consistency Best (Lowest 

Std across 

most func-

tions) 

1 

CS Good overall, but 

less stable in some 

cases 

Very good, but 

less consistent 

Poor in some cas-

es 

Moderate, 

higher than 

BIOA 

2 

ABC Moderate perfor-

mance 

Moderate perfor-

mance 

Less consistency Moderate Std 3 

ACO Poor performance, 

especially on com-

plex functions 

Worse than BIOA 

and CS 

Poor consistency High Std 4 

PSO Worst performance 

on complex func-

tions 

Worst perfor-

mance (high vari-

ance) 

Worst in some 

cases 

High Std 5 

CS follows closely behind in terms of overall performance. While it does not quite match BIOA's consistency and 

optimal solution-finding capabilities, it still performs well on most functions. CS is notable for its good overall per-

formance, but it does show a moderate level of variability, as indicated by a higher standard deviation compared to 

BIOA. This means that while CS is a strong contender, it may not always provide as stable or optimal solutions as 

BIOA. 

ABC  ranks third. While ABC maintains a solid performance in comparison to other algorithms, its results are 

generally more inconsistent, particularly on more complex or multimodal functions. It is competitive on simpler 

problems but lacks the fine-tuned convergence of BIOA and CS, making it a slightly less reliable choice overall. The 

moderate standard deviation seen with ABC further confirms its occasional performance fluctuations. 

ACO faces challenges across all the functions, especially the more complex ones like Schwefel. While ACO per-

forms reasonably well in certain cases, it does not excel in terms of either mean fitness or best solution quality, con-

sistently underperforming when compared to BIOA and CS. The high standard deviation observed with ACO indi-

cates that the algorithm suffers from poor consistency, with wide fluctuations in performance. This makes it less 

suited for optimization tasks requiring high accuracy and stability. 
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PSO  emerges as the weakest performer, particularly on more challenging benchmark functions such as Schwe-

fel, Ackley, and Griewank. PSO struggles with convergence on complex, multimodal functions, exhibiting a high 

variance in results. The standard deviation for PSO is the highest among the algorithms, pointing to its instability 

and inability to consistently find optimal solutions. Therefore, despite its popularity, PSO is the least effective algo-

rithm when tasked with solving complex optimization problems. 

In summary, BIOA stands out as the most reliable and efficient algorithm for optimization problems, especially 

those involving complex, multimodal landscapes. CS follows as a robust alternative, though with slightly more vari-

ability. ABC is effective for simpler tasks but falls short in more challenging scenarios, while ACO and PSO perform 

poorly on complex functions, with PSO being the least effective overall. 

6 Conclusion and Future Work 

In this study, we thoroughly evaluated the performance of five optimization algorithms—BIOA, CS, ABC, ACO, 

and PSO —on a range of benchmark functions. The key findings highlight the superior performance of the BIOA, 

which consistently outperforms the other algorithms across all test functions. BIOA demonstrated 

 remarkable effectiveness in finding optimal solutions, exhibiting the lowest mean fitness values and highest ac-

curacy, particularly in complex, multimodal optimization tasks. This success can be attributed to BIOA's balanced 

exploration and exploitation phases, which allow it to effectively explore the search space while exploiting the best 

solutions, resulting in faster convergence and greater stability. 

The broader impact of BIOA is significant, as it showcases the potential of nature-inspired algorithms in solving 

complex optimization problems. The Beagle-inspired approach provides an innovative perspective on how animal 

behavior can be translated into computational optimization techniques, making BIOA an appealing option for fu-

ture research in this domain. Its performance on various benchmark functions, including Sphere, Rosenbrock, 

Rastrigin, and others, suggests that it is well-suited for real-world applications that require robust and efficient 

problem-solving capabilities. 

However, despite its promising results, there are areas where BIOA can be further improved. While it excels in 

finding optimal solutions, the algorithm's performance could be enhanced in terms of computational efficiency, 

particularly in very high-dimensional search spaces. Moreover, while BIOA shows stability across multiple runs, 

further refinement in the algorithm's adaptability and convergence speed may lead to even better results in more 

complex scenarios. 

For future work, we recommend exploring the development of more advanced BIOA, aimed at achieving higher 

accuracy and better performance in a wider range of optimization problems. Additionally, the integration of hybrid 

approaches, combining BIOA with other optimization algorithms (e.g., genetic algorithms or simulated annealing), 

could lead to further improvements in solution quality and computational efficiency. Testing BIOA in real-world 

problems, such as large-scale engineering optimization, machine learning model tuning, or resource allocation, will 

provide deeper insights into its practical applicability and offer a clearer understanding of its strengths and limita-

tions in real-world scenarios. 
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