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Accurate and timely prediction of crop diseases is vital for improving agricultural productivity 

and ensuring food security. This research work proposes new framework that integrates an 

improved swarm-based color edge segmentation method with a modified ResNet-39 

architecture to efficiently detect and categorize crop diseases. The suggested segmentation 

technique utilizes Crow Search optimization algorithm combined with oppositional learning to 

improve edge recognition accuracy using color segmentation. This allows precise localization of 

disease-affected areas even under difficult situations such as poor contrast and noise. The 

segmented outputs are further processed using a tailored ResNet-39 architecture, optimized for 

computational efficiency and prediction accuracy. The proposed Enhanced edge segmentation 

Crow Search Optimization with ResNet-39 (EesCSO-ResNet-39) methodology is tested using 

publically accessible crop disease datasets, showing substantial improvements in critical 

metrics such as accuracy, precision, and recall relative to conventional segmentation 

techniques and current deep learning architectures, including ResNet-50 and VGG-16. 

Keywords: Modified ResNet-39, Oppositional Crow Search algorithm, edge segmentation, 

Precision agriculture, crop disease prediction. 

 

INTRODUCTION 

In recent decades, developing country's economy is relying highly on agriculture. Agriculture is the main source of 

income and the foundation of most rural communities of developing countries. In addition to supplying raw 

materials for many other types of businesses, a robust agricultural industry guarantees food security. But climate 

change, falling pricing, and soil deterioration are only a few of the recent problems that farmers have had to deal 

with. Among these difficulties, crop infections are particularly dangerous since they stunt crop development and 

ruin harvests. One potential answer is the use of sophisticated vision technology in agriculture. These technologies 

may help with early disease prediction and can greatly increase agricultural yields [20]. 

Prediction of crop diseases using traditional approaches requires constant professional observation and feedback 

from farmers. Because farmers could misunderstand symptoms or provide wrong facts, these methods are prone to 

mistakes that professionals can't help but fix. With the development of automated crop disease detection systems, 

early disease detection has become easier and requires much less human involvement. To detect diseases early on, 

these systems use digital camera pictures of crop leaves and machine learning (ML) algorithms. As a result of this 

automation, agricultural output rises, human error falls, and disease detection becomes more efficient [21]. These 

systems improve crop quality and production while saving time and costs by using digital cameras and ML 

algorithms. This eliminates the need for intensive expert monitoring. 

In the field of crop disease prediction, technologies such as segmentation and object identification are used. The 

identification of sick regions in crop leaves has been the subject of investigation by a number of researchers [22]. 

These researchers have used segmentation methods such as edge detection, clustering, smoothing, and boundary 

detection. One of the most popular approaches is K-means clustering, which has grown more popular due to its 
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speed and accuracy in the process of grouping enormous information. On the other hand, despite its simplicity, the 

K-means algorithm has certain inherent restrictions due to the fact that it is dependent on linear boundaries. There 

have been developments in methods for the generation of nonlinear boundaries, and the results have been 

promising [23]. Segmentation has the potential to increase the accuracy of illness detection; yet, the strain it places 

on computational resources may result in a reduction in system efficiency. It is vital to do preprocessing in order to 

improve object identification and classification systems, particularly edge detection approaches such as Sobel edge 

detection [24]. As is the case with segmentation, however, the system may become overloaded if there is an 

excessive amount of preprocessing. As a result, designing models that maximize efficiency while reducing 

computational overhead is crucial [25]. In this approach, an enhanced swarm-based edge segmentation model is 

developed for identifying edges in color images and a deep learning model is also created for handling classification. 

The following are the contributions of this research work. 

• Developed a novel swarm-based mechanism integrating edge and color features for precise segmentation of 

diseased regions in crop leaf images, leveraging oppositional learning for improved optimization and faster 

convergence. 

• A Modified ResNet-39 architecture optimized for crop disease prediction, achieving a balance between 

computational efficiency and accuracy by incorporating features from the segmentation mechanism. 

• Validation on diverse datasets under real-world conditions, with a focus on practical implementation for large-

scale farms, resource-constrained environments. 

The structure of the paper is as follows: Section 2 reviews the related work conducted in the field of crop disease 

detection. Section 3 defines the problem statement. Section 4 outlines the proposed methodology. Section 5 

presents the experimental results, and Section 6 concludes the study.  

  LITERATURE SURVEY 

Transparent object segmentation is a difficult problem that many academics have attempted to solve. TransCut [1] 

optimized occlusion detection in 4D light field pictures to provide segmentation outputs using an energy function 

based on LF linear. The matting of transparent objects was tackled by TOM-Net [2] as an estimate issue for low 

refractive index. The difficulty in getting refraction flow graph data in real-world circumstances is a major 

constraint of TOM-Net's training label. Using changes in transmission characteristics to extract useful data for 

object recognition in transparent images, Atsuro et al. [3] presented a new three-stream semantic segmentation 

technique. To distinguish between internal and exterior border characteristics, Han et al. [4] presented a novel 

internal-external boundary attention module. They also created an edge-body full attention module that uses 

external boundary semantic information to oversee transparent object segmentation. 

Recent years have seen the rise of transformers as a game-changing tool in computer vision applications, after their 

success in natural language processing (NLP). The Vision Transformer (ViT) [13] was created and used for picture 

categorization after transformers were successful in natural language processing (NLP), laying the groundwork for 

models in semantic segmentation that rely on transformers. ViT was improved by DeiT [5] with the use of 

knowledge distillation and powerful data augmentation methods, which decreased ViT's need on massive datasets. 

Several publications [6-9] have used pyramid-designed transformers with multi-scale features to improve model 

accuracy, drawing inspiration from the pyramid structures in convolutional networks. A multimodal sparse 

attention mechanism was used by SCANET [10] to enhance the model's efficiency. To create more accurate 

semantic models, TRPose [11] fused two scales of encoders. Spatial preservation, context acquisition, and high-level 

semantic extraction were divided into three simultaneous routes by MPSegNet [12], which suggested a multi-path 

structure with attention reweighting and multi-scale encoding. But most of these models ignore the decoder's 

crucial function of feature fusion in favour of encoder design. To fill this void, our method places an emphasis on 

efficient feature fusion inside the decoder, guaranteeing that multi-level feature information is lost to a minimum. 

On the other hand a significant number of applications were solved using evolutionary algorithms such as Wireless 

Sensor Networks [14, 16, 17], Vehicular Ad-Hod networks [15], Travelling salesman problem [18], Methane 

emission estimation [19] and so on. On these grounds in this research work, the crow search algorithm has been 

used for edge optimization purpose.  
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PROBLEM DEFINITION 

One of the most important preprocessing steps in image analysis is segmentation, which entails dividing a picture 

into relevant parts for easier analysis. Because they often include important markers of disease presence like 

discoloration, spots, or structural anomalies, edges and color-based areas must be accurately identified for 

applications like crop disease detection. 

But the problems that conventional methods of edge detection and segmentation have are: It may be rather tough 

to accurately identify edges in crop photos due to the complex textures, overlapping structures (such as leaves, 

stems, and fruits), and distracting environmental factors like shadows, dirt, or water droplets. When it comes to 

disease diagnosis, generic algorithms that rely just on intensity-based edge detection tend to miss segment areas 

with subtle color changes. Traditional segmentation techniques provide less-than-ideal feature extraction since they 

aren't designed to work in tandem with deep learning models for jobs like disease prediction.  

PROPOSED METHODOLOGY  

In this section the proposed enhanced image segmentation using swarm-based algorithm and modified ResNet-39 

architecture is described. 

4.1 Swarm based color edge segmentation 

In this section, the image preprocessing techniques and the proposed swarm-based edge segmentation for color 

images are described. 

4.1.1 Image preprocessing  

The first stage is obtaining the leaf picture and doing pre-processing to highlight essential elements. Image scaling, 

the use of smoothing techniques, and noise reduction are some of the tasks that are included in this operation. The 

goal is to improve clarity. The employment of a Gaussian filter, as seen in equation (1), is one method that may be 

utilized to achieve smoothing. 

𝐼𝑚𝑔𝑠(𝑖, 𝑗) =
1

2×𝜋×𝜎2  𝑒
(− 

𝑖2+𝑗2

2×𝜎2 )∗𝐼𝑚𝑔(𝑖,𝑗)
   (1) 

4.1.2 Color conversion 

In the next step, the RGB picture is converted into the CIE Lab colour space, where the letter L represents the 

degree of brightness and the letters x and y represent the degree of chromaticity. Additionally, the identification of 

colour edges is made easier by this change. There are three channels that are used in the CIE Lab colour space in 

order to separate colour information. Through the process of divorcing colour from intensity, this approach 

improves edge recognition and makes it easier to identify changes in colour. The equations (2) through (4) provide 

a formal outline of the process of conversion. 

𝐿∗ = 116 × 𝑓 (
𝐽

𝐽𝑛
) − 16      (2) 

𝑥∗ = 500 [𝑓 (
𝐼

𝐼𝑛
) − 𝑓 (

𝐽

𝐽𝑛
)]     (3) 

𝑦∗ = 200 [𝑓 (
𝐼

𝐼𝑛
) − 𝑓 (

𝐾

𝐾𝑛
)]     (4) 

where 𝐼, 𝐽, 𝑎𝑛𝑑 𝐾 are reference values. 

4.1.3 Computation of Gradience 

In order to identify edges, the amplitude of the gradient is determined for each color channel according to 

equations (5) to (7). 

𝐺𝐿(𝑖, 𝑗) = √(
𝜕𝐿∗

𝜕𝑖
)

2

+ (
𝜕𝐿∗

𝜕𝑗
)

2

     (5) 

𝐺𝑥(𝑖, 𝑗) = √(
𝜕𝑥∗

𝜕𝑖
)

2

+ (
𝜕𝑥∗

𝜕𝑗
)

2

     (6) 

𝐺𝑦(𝑖, 𝑗) = √(
𝜕𝑦∗

𝜕𝑖
)

2

+ (
𝜕𝑦∗

𝜕𝑗
)

2

     (7) 

And the computation of single gradient of the image is calculated as 
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𝐺(𝑖, 𝑗) =  √𝐺𝐿(𝑖, 𝑗)2 + 𝐺𝑥(𝑖, 𝑗)2 + 𝐺𝑦(𝑖, 𝑗)2    (8) 

4.1.4 Threshold calculation 

The application of thresholding to the combined gradient magnitude picture, as indicated in equation (9), results in 

the generation of a binary edge map. Through the use of adaptive thresholding, the threshold value is constantly 

adjusted depending on local fluctuations in illumination and contrast, which ultimately results in segmentation that 

is more precise. In contrast to a single global threshold, this technique successfully controls irregularities in lighting 

and various textures, which results in an improvement in the recognition of features in pictures that are composed 

of several layers. 

𝑇(𝑖, 𝑗) = 𝜇𝐺(𝑖, 𝑗) + 𝑘 × 𝜎𝐺(𝑖, 𝑗)    (9) 

4.1.5 Refinement of edges 

In the field of image processing, morphological procedures such as dilation and erosion assume an extremely 

important significance. For the purpose of improving edges by reducing noise and filling in gaps, these techniques 

are absolutely necessary. Through the process of erosion, the size of foreground objects is decreased, and sharp 

edges are smoothed down, which ultimately results in a detection layer that is thinner. By filling up empty areas 

and joining segments that were previously separated, dilatation, on the other hand, contributes to the expansion of 

boundaries. It is essential to do these processes in order to enhance the accuracy of detecting systems. Dilation is 

used to guarantee that the representation is continuous and linked, while erosion is used to eliminate superfluous 

noise and surplus information from the boundaries of the representation. Morphological methods such as erosion 

and dilation are used in order to efficiently fill gaps, reduce noise, and improve edges; these techniques are also 

utilized. 

𝐸(𝐼𝑚𝑔) = 𝐼𝑚𝑔 − 𝐵      (10) 

𝐷(𝐸) = 𝐸 + 𝐵       (11) 

where 𝐸 𝑎𝑛𝑑 𝐼𝑚𝑔 are the eroded and dilated image. 

 

4.2 Oppositional Crow Search algorithm for edge optimization 

4.2.1 Learning via Oppositional search 

By taking into account the present answer and its inverse concurrently, Oppositional Learning (OL) improves the 

search process' efficiency [24]. By increasing the size of the search space, this method speeds up the convergence 

process. In order to find the best possible solutions, OL compares a certain hyperparameter configuration with its 

inverse. Take 𝑋 as an example. If 𝑥 and 𝑦 are the lower and upper limits of 𝑋, the formula  

𝑋𝑜 = 𝑥 + 𝑦 − 𝑋       (12) 

may be used to get the opposite number 𝑋0. 

4.2.2 Algorithm of Crow Search 

The CSA takes its cues from the crow's ingenious behavior, including its habit of storing food in inconspicuous 

locations and then finding it at a later time [25]. Potential solutions, or "crows" in this technique, are really just 

collections of edges of the image. The crows remember their finest "hiding spot" (the greatest solution they've found 

so far) and utilize that knowledge to find even better ones. Exploration, probing uncharted territory, and 

exploitation, or honing down on promising leads, are both essential parts of the search process. The equation 

determines the new solution location for the following iteration: 

𝑃𝑖 = 𝑃𝑖 + 𝑟3 × (𝑀𝑖 − 𝑃𝑖)     (13) 

In this case, 𝑃 stands for the present solution, while 𝑀 is a randomly chosen solution from the population. Because 

of this adaptive strategy, the algorithm can traverse the solution space with ease. 

4.2.3 Oppositional Crow Search Algorithm  

Crow Search Algorithm (CSA) when combined with Oppositional Learning might significantly enhance the process 

of optimizing image edge recognition. The identification of sudden intensity changes is essential to the processes of 

segmentation and feature extraction. Image edge recognition is dependent on this detection. In contrast, in order to 
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achieve accurate edge detection, it is often essential to make adjustments to a variety of hyperparameters, such as 

the settings for the filter and the thresholds. This challenge is addressed by the Oppositional Crow Search 

Algorithm (OCSA), which incorporates the most advantageous aspects of both the OL and CSA algorithms. OL 

accelerates the convergence of the optimization process by simultaneously evaluating two viable solutions to the 

problem at hand. Being able to explore a bigger search space owing to its dual evaluation technique, the method has 

a greater probability of discovering the optimal parameter configurations for edge detection. This is because the 

method can search a larger search space. When used to the processing of images, OL enables the algorithm to 

swiftly converge on configurations that enhance the sharpness of edges while simultaneously reducing noise. 

The Crow Search Algorithm, which has the inherent ability to strike a balance between exploring and exploiting the 

search area, is a tool that helps to improve this technique. In the context of OCSA, the term "crows" refers to 

groupings of edge-detection settings that include probable edges. In order to preserve the finest solutions that have 

been found up to this point, each crow makes use of its memory. Additionally, it searches for new configurations in 

a dynamic manner, taking into account its location in relation to other solutions in the population. OCSA identify 

robust edge pixel selections that operate well under a variety of visual circumstances, but it also ensures that local 

minima are avoided by including opposing solutions into the process of updating the crow's memory. When it 

comes to optimizing edge recognition in complicated pictures, our hybridized technique really shines. Parameter 

tuning is key due to the intricate interaction between small gradients and noise. By combining OL with CSA, we can 

optimize picture edges in a precise and adaptable manner, which will lead to better results in computer vision 

applications. 

The objective function is defined as 

𝑓(𝐸) = ∑ (∇𝐼𝑚𝑔(𝑎, 𝑏). 𝐶(𝑎, 𝑏)) − 𝜆.(𝑎,𝑏)∈𝐸 ∑ (𝐷(𝑎, 𝑏))(𝑎,𝑏)∈𝜕𝐸   (14) 

Algorithm: EesOCSO for edge optimization  

𝐿𝐵, 𝑈𝐵: Lower and upper bounds of the solution space. 

𝑓: Objective function for edge detection (e.g., edge clarity score). 

𝑁𝑃: Population size (number of crows).  

𝐼𝑇  : Maximum number of iterations. 

𝑡 : Current iteration, initialized to 0. 

𝑑: Dimension of the solution (parameters for edge detection, e.g., threshold values). 

 

Begin: 

 

// Initialize the Population 

    For each crow 𝑖 in 1: 𝑁𝑃 

        For each dimension 𝑗 in 1: 𝑑 

         𝑃{𝑖,𝑗}  =  𝐿𝐵{𝑗} + (𝑈𝐵{𝑗} − 𝐿𝐵{𝑗})  ∗  𝑟𝑎𝑛𝑑() 

        End for 

    End for 

// Compute Oppositional Solutions 

    For each crow 𝑖 in 1: 𝑁𝑃 

        For each dimension 𝑗 in 1: 𝑑 

         𝑃
{𝑜{𝑖,𝑗}}

 =  𝐿𝐵{𝑗}  +  𝑈𝐵{𝑗}  −  𝑃{𝑖,𝑗} 

        End for 

    End for 

 

// Evaluate Fitness: 

    For each crow 𝑖 in 1: 𝑁𝑃 

         𝐹𝑖  =  𝑓(𝑃𝑖), 𝐹{𝑜𝑖}  =  𝑓(𝑃{𝑜𝑖}) 

         𝑃𝑖  =  𝑎𝑟𝑔𝑚𝑎𝑥(𝐹𝑖, 𝐹{𝑜𝑖}) 

    End for 
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// Initialize Best Solutions 

    Set 𝐵𝑃  =  𝑃 (initial best solutions are the current population). 

 

 while 𝑡 <=  𝐼𝑇  

    For each crow 𝑖 in 1: 𝑁𝑃 

         𝑀 =  𝑃(𝑟𝑎𝑛𝑑𝑖(1: 𝑁𝑃)) 

        Update the position of the crow 

            if 𝑟1  <  𝑟2  

                   𝑃𝑖  =  𝑃𝑖  +  𝑟3  ∗  (𝑀𝑖  −  𝑃𝑖) 

            Else 

                  𝑃𝑇  =  𝑃𝑖  +  𝑟_3 ∗  (𝑀𝑖  −  𝑃𝑖) 

                  𝑃𝑖  =  𝐿𝐵 +  𝑈𝐵 −  𝑃𝑇  

            End if 

    End for 

   

// Evaluate Fitness for Updated Population 

    For each crow 𝑖 in 1: 𝑁𝑃 

       𝐹𝑖  =  𝑓(𝑃𝑖) 

    End for. 

  

// Update Best Solutions 

    For each crow 𝑖 in 1: 𝑁𝑃 

       if 𝐹𝑖 is better than the previous best 

         𝐵{𝑃𝑖}  =  𝑃𝑖 

     End for. 

    

    Increment t by 1. 

 

End 

Output: 𝐵𝑃  

Algorithm 1: EesOCSO for edge optimization 

 

4.3 Modified ResNet-39 for Classification 

ResNet-39 is a customized version of the ResNet family that was built for use in circumstances when it is of the 

highest significance to strike a balance between the efficiency of computational operation and the precision of the 

results. The high computational cost of classic deep designs, such as ResNet-50, renders them unsuitable for use in 

real-time applications or in environments with limited hardware resources. However, these designs provide good 

accuracy, they continue to be used. There is a possibility that ResNet-34 and other shallower topologies are not 

capable of accurately capturing complex hierarchical properties. With the goal of bridging this gap, ResNet-39 

presents a mid-tier design that achieves a balance between depth and efficiency. The system is capable of managing 

datasets that are relatively difficult and have sufficient capacity, while at the same time being lightweight enough to 

function in situations where resources are constrained, such as mobile or edge devices. 

An architecture with 34 layers that is relatively deep is known as ResNet-34. This design is particularly useful for 

situations in which reducing processing costs is of the highest significance. Although it performs well for general-

purpose photo recognition, it may not be able to handle datasets that need more in-depth feature extraction. The 

50-layer ResNet-50 model, on the other hand, makes use of bottleneck layers in order to tackle complex tasks with 

more precision. However, this comes at the expense of increasing demands for processing and memory. A balance 

between the two extremes, ResNet-39 gives a better feature extraction than ResNet-34 while consuming less 

resources than ResNet-50. Its 39 layers offer a compromise between the two extremes. It is a feasible option to 

shallower models for applications that need decent processing efficiency in addition to greater accuracy. This is 

because of the rationale stated above. 
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Figure 1: Modified ResNet-39 architecture 

 

EXPERIMENTAL ANALYSIS 

This section comprises of the experimental setup, performance metrices and experimental results and its 

interpretations. 

5.1 Experimental Setup 

Python 3.7 was used to construct the proposed model, and Keras and TensorFlow were used to complete the 

implementation of the Modified ResNet-39 architecture. Among the 4,188 photographs that comprise the collection 

are depictions of a variety of circumstances, such as healthy leaves, rust, blight, and grey leaf spot. The photographs 

were obtained from a public resource. We compare the model's results to those of Inception-v3 represented as M1, 

ResNet-50 as M2, VGG-19 as M3, VGG-16 as M4, and O-CSO-CNN as M5. There are ten distinct configurations in 

the dataset that are used for training and testing. The classification ratios are as follows: D1 is 85% training and 15% 

testing, D2 is 80% training and 20% testing, D3 is 75% training and 25% testing, D4 is 70% training and 30% 

testing, D5 is 65% training and 35% testing, D6 is 60% training and 40% testing, D7 is 55% training and 45% 

testing and D8 is 50% training and 50% testing. Standard performance metrices such as precision, recall, F1-Score 

and Accuracy are used to evaluate the performance of the proposed model. 

5.2 Experimental Results 

Table 1: Experimental results of EesCSO-ResNet-39 w.r.t. Precision 

Precision M1 M2 M3 M4 M5 
EesCSO-

ResNet 

D1 93.98 96.15 96.47 95.81 98.79 99.28 

D2 93.05 95.21 96.49 95.08 98.64 99.08 

D3 92.69 94.66 96.39 95.27 97.65 97.87 

D4 92.09 93.92 95.72 94.37 97.46 97.76 

D5 91.96 93.71 94.97 93.01 96.98 97.47 

D6 90.79 92.84 94.47 91.08 96.92 97.15 

D7 89.94 91.57 94.53 90.65 96.11 96.33 

D8 89.02 91.23 91.83 90.53 96.01 96.28 

 

Table 1 indicates the experimental results of Precision on eight splits of the dataset. Comparing the results of 

EesCSO-ResNet-39 with other methods, the proposed model outperforms in most of the cases. On Comparing 
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results of D1, EesCSO-ResNet-39 outperforms M1 with 5.34%, M2 with 3.15%, M3 with 2.83%, M4 with 3.49% and 

M5 with 0.49%. On Comparing results of D2 EesCSO-ResNet-39 outperforms M1 with 6.08%, M2 with 3.91%, M3 

with 2.61%, M4 with 4.03% and M5 with 0.44%. On Comparing results of D3, EesCSO-ResNet-39 outperforms M1 

with 5.29%, M2 with 3.28%, M3 with 1.52%, M4 with 2.65% and M5 with 0.23%. On Comparing results of D4, 

EesCSO-ResNet-39 outperforms M1 with 5.8%, M2 with 3.94%, M3 with 2.09%, M4 with 3.47% and M5 with 

0.31%.  

 

Figure 2: Graphical representation of results in Table 1 

 

On Comparing results of D5, EesCSO-ResNet-39 outperforms M1 with 5.65%, M2 with 3.86%, M3 with 2.57%, M4 

with 4.58% and M5 with 0.51%. On Comparing results of D6, EesCSO-ResNet-39 outperforms M1 with 6.55%, M2 

with 4.43%, M3 with 2.76%, M4 with 6.24% and M5 with 0.23%. Comparing results of D7, EesCSO-ResNet-39 

outperforms M1 with 6.63%, M2 with 4.95%, M3 with 1.87%, M4 with 5.9% and M5 with 0.23%. On Comparing 

results of D8, EesCSO-ResNet-39 outperforms M1 with 7.54%, M2 with 5.25%, M3 with 4.62%, M4 with 5.98% and 

M5 with 0.28%.  

Table 2: Experimental results of O-CSO-CNN w.r.t. Recall 

Recall M1 M2 M3 M4 M5 
EesCSO-

ResNet 

D1 89.90 95.55 93.46 92.43 97.78 98.13 

D2 89.56 94.44 92.60 91.59 97.42 97.75 

D3 89.48 94.34 92.30 90.27 96.57 97.02 

D4 89.54 93.90 91.62 89.75 96.39 96.83 

D5 88.92 93.52 89.95 89.51 96.19 96.53 

D6 87.34 92.25 90.13 89.40 95.55 95.81 

D7 87.38 92.08 90.05 89.03 95.48 95.95 

D8 86.55 91.85 88.87 88.66 95.10 95.43 

 

Table 2 indicates the experimental results of Recall on eight splits of the dataset. On comparing the results of 

EesCSO-ResNet-39 with other methods, the proposed model outperforms in most of the cases. On Comparing 

results of D1, EesCSO-ResNet-39 outperforms M1 with 8.38%, M2 with 2.63%, M3 with 4.76%, M4 with 5.8% and 

M5 with 0.36%. On Comparing results of D2 EesCSO-ResNet-39 outperforms M1 with 8.38%, M2 with 3.39%, M3 

with 5.27%, M4 with 6.31% and M5 with 0.34%. On Comparing results of D3, EesCSO-ResNet-39 outperforms M1 

with 7.77%, M2 with 2.77%, M3 with 4.87%, M4 with 6.96% and M5 with 0.46%. On Comparing results of D4, 
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EesCSO-ResNet-39 outperforms M1 with 7.53%, M2 with 3.03%, M3 with 5.39%, M4 with 7.31% and M5 with 

0.45%.  

 

Figure 3: Graphical representation of results in Table 1 

 

On Comparing results of D5, EesCSO-ResNet-39 outperforms M1 with 7.89%, M2 with 3.12%, M3 with 6.82%, M4 

with 7.28% and M5 with 0.35%. On Comparing results of D6, EesCSO-ResNet-39 outperforms M1 with 8.84%, M2 

with 3.72%, M3 with 5.93%, M4 with 6.69% and M5 with 0.27%. On Comparing results of D7, EesCSO-ResNet-39 

outperforms M1 with 8.93%, M2 with 4.03%, M3 with 6.15%, M4 with 7.21% and M5 with 0.48%. On Comparing 

results of D8, EesCSO-ResNet-39 outperforms M1 with 9.31%, M2 with 3.75%, M3 with 6.87%, M4 with 7.09% and 

M5 with 0.34%.  

Table 3: Experimental results of O-CSO-CNN w.r.t. F1-Score 

 M1 M2 M3 M4 M5 

EesCSO-

ResNet 

D1 91.90 95.85 94.94 94.09 98.28 98.70 

D2 91.27 94.82 94.51 93.30 98.03 98.41 

D3 91.06 94.50 94.30 92.70 97.11 97.44 

D4 90.80 93.91 93.62 92.01 96.92 97.29 

D5 90.42 93.62 92.39 91.22 96.58 97.00 

D6 89.03 92.54 92.25 90.23 96.23 96.47 

D7 88.64 91.82 92.23 89.83 95.80 96.14 

D8 87.77 91.54 90.33 89.59 95.55 95.85 

 

Table 3 indicates the experimental results of F1-Score on eight splits of the dataset. On comparing the results of 

EesCSO-ResNet-39 with other methods, the proposed model outperforms in most of the cases. On Comparing 

results of D1, EesCSO-ResNet-39 outperforms M1 with 6.89%, M2 with 2.89%, M3 with 3.81%, M4 with 4.67% and 

M5 with 0.42%. On Comparing results of D2 EesCSO-ResNet-39 outperforms M1 with 7.25%, M2 with 3.65%, M3 

with 3.97%, M4 with 5.19% and M5 with 0.39%. On Comparing results of D3, EesCSO-ResNet-39 outperforms M1 

with 6.55%, M2 with 3.02%, M3 with 3.23%, M4 with 4.87% and M5 with 0.35%. On Comparing results of D4, 

EesCSO-ResNet-39 outperforms M1 with 6.68%, M2 with 3.48%, M3 with 3.77%, M4 with 5.44% and M5 with 

0.38%.  
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Figure 4: Graphical representation of results in Table 3 

 

Comparing results of D5, EesCSO-ResNet-39 outperforms M1 with 6.79%, M2 with 3.49%, M3 with 4.75%, M4 with 

5.96% and M5 with 0.43%. On Comparing results of D6, EesCSO-ResNet-39 outperforms M1 with 7.72%, M2 with 

4.07%, M3 with 4.38%, M4 with 6.47% and M5 with 0.25%. On Comparing results of D7, EesCSO-ResNet-39 

outperforms M1 with 7.8%, M2 with 4.49%, M3 with 4.06%, M4 with 6.56% and M5 with 0.36%. On Comparing 

results of D8, EesCSO-ResNet-39 outperforms M1 with 8.44%, M2 with 4.5%, M3 with 5.77%, M4 with 6.54% and 

M5 with 0.31%.  

Table 4: Experimental results of O-CSO-CNN w.r.t. Accuracy 

 M1 M2 M3 M4 M5 

EesCSO-

ResNet 

D1 84.94 91.34 88.67 88.40 97.99 98.28 

D2 84.48 91.45 88.04 88.02 97.44 97.78 

D3 84.39 91.18 87.82 86.22 96.34 96.77 

D4 83.04 90.87 87.22 84.94 95.85 96.14 

D5 81.72 90.60 87.39 84.43 95.25 95.46 

D6 81.86 90.68 86.50 83.83 94.84 95.09 

D7 80.45 88.50 86.46 83.48 94.53 94.97 

D8 80.41 88.43 86.03 83.31 93.65 94.12 

 

Table 4 indicates the experimental results of Accuracy on eight splits of the dataset. On comparing the results of 

EesCSO-ResNet-39 with other methods, the proposed model outperforms in most of the cases. On Comparing 

results of D1, EesCSO-ResNet-39 outperforms M1 with 13.57%, M2 with 7.06%, M3 with 9.77%, M4 with 10.05% 

and M5 with 0.29%. On Comparing results of D2 EesCSO-ResNet-39 outperforms M1 with 13.61%, M2 with 6.48%, 

M3 with 9.96%, M4 with 9.98% and M5 with 0.35%. On Comparing results of D3, EesCSO-ResNet-39 outperforms 

M1 with 12.8%, M2 with 5.78%, M3 with 9.26%, M4 with 10.9% and M5 with 0.45%. On Comparing results of D4, 

EesCSO-ResNet-39 outperforms M1 with 13.63%, M2 with 5.49%, M3 with 9.28%, M4 with 11.65% and M5 with 

0.3%.  
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Figure 5: Graphical representation of results in Table 4 

 

On Comparing results of D5, EesCSO-ResNet-39 outperforms M1 with 14.39%, M2 with 5.1%, M3 with 8.45%, M4 

with 11.56% and M5 with 0.22%. On Comparing results of D6, EesCSO-ResNet-39 outperforms M1 with 13.91%, M2 

with 4.64%, M3 with 9.03%, M4 with 11.84% and M5 with 0.26%. On Comparing results of D7, EesCSO-ResNet-39 

outperforms M1 with 15.29%, M2 with 6.81%, M3 with 8.96%, M4 with 12.1% and M5 with 0.47%. On Comparing 

results of D8, EesCSO-ResNet-39 outperforms M1 with 14.57%, M2 with 6.05%, M3 with 8.6%, M4 with 11.49% and 

M5 with 0.5%.  

CONCLUSION 

To accurately predict crop disease, this study introduces a new framework that combines a modified ResNet-39 

architecture with an improved swarm-based color edge segmentation technique. Even in low-contrast or noisy 

environments, the suggested segmentation process accurately identifies diseased areas by combining crow search 

optimization with opposing learning to collect color and edge characteristics. Optimizing computational efficiency 

and predictive accuracy, the redesigned ResNet-39 architecture significantly improves performance, making it ideal 

for situations with limited resources. Results from experiments show that the suggested framework achieves better 

accuracy, precision, and recall across several crop disease datasets than both conventional approaches and cutting-

edge deep learning models. A streamlined pipeline with little computing overhead and strong detection capabilities 

is achieved by integrating the segmentation and prediction components. Integrating the framework with smart 

farming solutions based on the internet of things (IoT) and extending it to handle more crop kinds and diseases are 

potential areas of future effort. 
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