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Nowadays, yellow rust is a type of condition having a huge domain triggering excessive adverse 

effects on wheat. Manually addressing wheat yellow rust using the standard approach is not 

highly effective. In order to enhance this condition, a Deep Learning (DL)-based method was 

applied in this analysis to identify wheat yellow rust from the Yellow Rust-19 dataset leaf 

images.  The solution offered was constructed using the Optimized Feature-Augmented 

Convolutional Neural Network (OFAC-Net) model to classify R (Minor infection), MR (Small 

and Medium Infection), MR-MS (Moderate Resistance and Susceptible), MS (Medium 

Infection), and S (Major signs of infection), aiming to improve the efficiency of detecting and 

classifying yellow rust in wheat leaf images. The implemented OFAC-Net models integrate 

Principal Component Analysis (PCA) used for feature extraction and reduce the dimensionality, 

alongside hybrid feature selection techniques utilizing the Whale Optimization Algorithm 

(WOA) and Firefly Algorithm (FFA) to refine the extracted features and boost accuracy. This 

combination addresses existing challenges and improves classification performance, with the 

results being classified through a Convolutional Neural Network (CNN). The implemented 

model attained a classification Accuracy of 98%, Precision of 98.76%, Recall of 99%, and Mean 

Square Error (MSE) of 1.98%. The dataset, curated from the several severity levels of yellow 

rust disease, in wheat, consists of a total of  15,000 wheat leaf images. It was designed to 

support the classification tasks, with leaf images evenly divided across severity levels of yellow 

rust disease in wheat. These results highlight the techniques` superiority over traditional 

machine learning (ML) techniques and other advanced models. The proposed OFAC-Net model 

is a promising solution for real-time agricultural applications, offering both high performance 

and computational efficiency suitable for mobile and edge devices. 

Keywords: Yellow Rust Disease in Wheat, Deep Learning (DL), Optimized Feature-

Augmented Convolutional Neural Network (OFAC-Net) Model, Convolutional Neural Networks 

(CNN). 

 

INTRODUCTION 

Wheat, a keystone of global agriculture, is a primary source of food and industrial raw materials, playing a pivotal 

role in food security and economic stability. Wheat rust diseases are among the primary biotic factors contributing 

to the instability in crop production (welling & C.R., 2011). However, wheat plants show great sensitivity to various 

diseases that threaten yield and quality, with the rust, triggered by the Puccinia striiformis fungus, being among the 

most destructive. This disease is characterized by its rapid spread under favorable conditions and significant impact 

on wheat production (Sabenca& Ribeiro, 2021). Infected plants experience stunted growth, lower grain quality, and 

substantial yield losses if left untreated. Traditional methods for assessing yellow rust severity, such as visual 

inspection, are not only subjective and error-prone but also time-consuming, leading to ineffective disease 

management and potential economic losses (Chai & Senay, 2022). It is essential to create accurate, effective, and 

automated systems for the early identification and categorization of wheat yellow rust disease. 
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In the last few decades, creative solutions to agricultural problems have been made possible by developments in AI 

and computer vision. The identification and categorization of plant diseases can now be automated with great 

success thanks to ML and DL techniques (Biel &Jaroszewska, 2021). Techniques leveraging hyper spectral and 

multispectral imaging, combined with regression and classification algorithms, have shown promise in assessing 

wheat disease severity (Yao & Li, 2021). However, these techniques may face limitations like high costs, 

computational complexity, and resource-intensive data processing, making them less practical for real-time 

applications, particularly on mobile or edge devices. To stop the spread of the disease and increase wheat yield and 

quality, a thorough evaluation of the disease severity is critical (Igam, 2021). Traditional manual diagnostic 

methods are time-intensive, labour-intensive, subjective, and prone to error, while advanced biochemical 

techniques like polymerase chain reaction (PCR) offer precision but are costly and time-consuming (Arosova & 

Ripl, 2018). A promising approach for quick, accurate, and automated disease assessment is the combination of ML 

and incorporating remote sensing tools. Tools like hyper spectral, multispectral, and RGB imaging exploit the 

spectral and color characteristics of plant leaves to detect diseases. These approaches, combined with regression 

models have shown great promise (Dixit & Nema, 2018). However, high costs, complex data processing 

requirements, and the limitations of traditional DL networks such as large computational demands and extended 

training times remain significant barriers to their widespread adoption, particularly for mobile and real-time 

applications.   

Recently one research has focused on overcoming the challenges of traditional DL models by developing an 

optimized GhostNetV2 model designed for mobile and edge applications. This model integrated channel 

rearrangement operations, replaced initial layers with Fused-MBConv for improved training efficiency, and utilized 

the Efficient Channel Attention (ECA) mechanism to enhance its ability to identify diseases. The approach proved 

to be an efficient and lightweight solution for real-time disease detection (Li & Fang, 2023).   

Another study has made significant advancements in computational approaches for detecting wheat yellow rust. 

The study proposed an ML framework that classified infection types using texture features combined with 

classifiers like CatBoost and XGBoost. The study demonstrated the effectiveness of these techniques and 

highlighted the potential for enhanced accuracy by leveraging larger datasets and DL models (Shafi & Mumtaz, 

2021).   

The Optimized Feature-Augmented Convolutional Neural Network (OFAC-Net) model defines various benefits over 

existing techniques. It improves the efficiency, robustness, and accuracy rate of the implemented model. The 

objectives include analyzing existing approaches to wheat yellow rust detection, enhancing image pre-processing 

techniques, integrating advanced DL methods like PCA, WAO+FFA, and CNN for superior detection and 

classification, and validating the proposed model using standard metrics. By using lightweight CNN architectures to 

detect and manage wheat yellow rust, the study seeks to enhance precision agriculture by providing an accurate, 

scalable, and affordable solution. By integrating advanced image pre-processing techniques and optimizing feature 

augmentation within the CNN framework, OFAC-Net seeks to improve disease detection accuracy, support timely 

intervention, and ultimately enhance wheat yield and quality. 

This research article is structured as trails: Section 2, relevant research on the detection of wheat yellow rust 

disease is reviewed. Section 3 describes the suggested approach for creating the OFAC-Net model. The outcomes of 

the experiment and the dataset analysis are shown in Section 4. Section 5 wraps up with key findings and 

suggestions for future research. 

RELATED WORKS 

A few literature reviews for the yellow rust disease in wheat utilizing other techniques are discussed below:  

In yellow rust disease in wheat image identification, recent research employing machine and DL techniques has 

demonstrated encouraging outcomes in precisely detecting and forecasting the disease, assisting farmers in taking 

prompt preventive action. Since the effectiveness of these models depends on the dataset, future studies may result 

in more economical and efficient techniques for agricultural disease identification. To improve the precision and 

dependability of detection models, researchers must keep gathering and improving data, and cooperation between 

agricultural and technological specialists might result in creative solutions. (Li & Fang, 2023) described the safety 

of wheat crops as being threatened by the worldwide disease known as wheat yellow rust. Symptoms appear in the 

middle and late phases, but they are hard to spot in the early stages. Due to their complexity and resource 
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requirements, traditional DL network models are challenging to implement on edge and mobile terminals. To 

overcome these problems, this paper suggests an enhanced GhostNetV2 strategy. The Fused-MBConv approach 

outperforms GhostNetV2 in terms of accuracy rate (95.44%), improves group communication, and drastically cuts 

training time (37.49%). This leads to faster and more accurate detection than previous lightweight model 

approaches. Shafi & Mumtaz et.al., (2021) described Wheat as a staple crop in Pakistan and is significantly affected 

by rust disease, a harmful fungal disease that can reduce yield by 20-30%. Food security is seriously threatened by 

wheat rust's quick spread, which makes accurate infection-type identification essential for efficient control. Using a 

dataset from mobile cameras and a variety of methods, an ML framework was created to categorize the different 

types of rust infection. CatBoost's 92.30% accuracy over GLCM texture characteristics should help agricultural 

communities detect yellow rust early and manage crop productivity.  

Hayıt, Tolga; Erbay, Hasan; Varçın, Fatih, st. al., (2023) described a terrible disease that has a major effect on 

wheat quality and productivity is yellow rust. Fungicides, suitable farming methods, and resistant cultivars can all 

help control it. The texture of wheat leaves is deformed, so early identification is essential. In recent advances in 

image analysis, deep features are extracted using CNN, yet the GLCM is still a classic texture feature descriptor. The 

study examined the application of pre-trained DenseNet by integrating textural and deep characteristics. Using a 

variety of color spaces and classification techniques, different models were developed for the Yellow-Rust-19 

dataset. The CNN-CGLCM HSV model, which combined HSV and the SVM reached an accuracy of 92.4%. (Shafi , 

Mumtaz, and Mahmood, 2023) described four forms of wheat rust disease that have been identified and 

categorized using a proposed system: susceptible, resistant, moderate, and healthy. The goal was to reduce the 5.5 

million tonnes of wheat that were lost each year. They utilized DL classifiers and achieved 96% accuracy. The study 

evaluates these classifiers based on accuracy, memory usage, and prediction time to help the farming community 

implement preventative actions and enhance wheat yield and quality.  

Mandava & Vinta et al. (2024) described a major problem for the world's wheat sector as yellow rust disease, which 

is brought on by Puccinia striiformis. This study explores the possibilities of several methods for identifying and 

categorizing wheat yellow rust illness. Three cutting-edge CNN models were employed to evaluate wheat leaf 

photos and extract pertinent characteristics. Both healthy and afflicted plants are included in the extensive dataset 

of annotated wheat pictures used to enhance the algorithms. The findings demonstrate that CNN models based on 

DL perform better than conventional ML methods in identifying and categorizing wheat yellow rust illness.  

Kumar & Kukreja et al., (2023) described a severe fungal problem, wheat rust illnesses result in 15%–20% annual 

crop quality losses. Early detection can improve the quality of wheat production, but identifying these illnesses is 

time-consuming and expensive. A model called the cross-entropy SVM (CE-SVM) is suggested as a solution to this 

problem. This method put on region extraction CNN for wheat plant patch extraction using 2300 secondary source 

photos that have been enhanced using flipping, cropping, and rotation procedures. The CE-SVM Gaussian kernel 

function outperforms histogram equalization in wheat stripe rust illness classification with an accuracy of 93.60%.  

Genaev & Skolotnevaet al. (2021) established a method for detecting five fungal diseases, including powdery 

mildew, yellow rust, and septoria. In the Wheat Fungus Diseases (WFD2020) dataset, 2,414 input photos were 

successfully labeled with the disease type. As per the picture hashing method, a technique was implemented to 

regulate the dissoluteness of the data training. The authors used the Efficient Net model to create a CNN-based 

disease detection technique. The suggested model performed better, achieving 0.942.  

Mumtaz & Maqsood,et al. (2023) outlined how to use DL and image processing (IP) techniques to address wheat 

crop problems. To differentiate wheat stripe rust, the authors created several IP and DL techniques. Several IP 

techniques were needed, including segmentation, cropping, Visual Atmospheric Resistance Index (VARI) 

computation, and single and dual-band processing. These techniques were combined with several DL techniques, 

including TL and additional CNN techniques. The suggested model's results were acquired using the dataset and 

confirmed to achieve the images. The dataset was used to obtain the findings of the suggested model, which showed 

that it could produce the images. At 84.10%, the suggested model performed better.  

Schirrmann & Landwehr, et al. (2021) described an image classifier for symptom detection based on a deep RNN 

model. For this motive, massive databases were used for implementation. Image classification was conducted with 

224x224 pixel patches, and the testing phase was completed using the classifier. The presentation of the advanced 
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model was attained with 90% accuracy. So, the proposed development for the training and testing image 

recognition processes was deployed based on DL for disease detection.  

Bukhari & Mumtaz, et al.(2021) developed a realistic analysis model for analyzing and assessing several 

segmentation methods using Grab-cut, Watershed, and U2-Net. These methods were utilized to detect rust 

statistics to create numerous datasets. Consequently, the ResNet-18 was used to evaluate the control of 

segmentation scheduled classification performance. The classification of the proposed model reached 96.19% using 

a dataset segmented through U2-Net. The investigation primarily influences segmentation on accurately 

interpreting wheat stripe rust and disease.  

Deng & Zhou., et al. (2022) highlighted Wheat strip rust as a serious foliar disease because of its detrimental effects 

on wheat yield. To track the prevalence of wheat rust illnesses, a perfect assessment of the disease's severity was 

cultivated during the seasonal stage. The authors suggested a paradigm for rust analysis to address these problems. 

The segmentation of wheat rust states was utilized in the study to identify illnesses, and the former approach 

proved to be the most effective. On an actual dataset, the former approach obtained 72.60% of the F1-score. The 

study discovered that minority class detection was impacted by unbalanced data, necessitating revaluation and loss 

function remedies.  

Pan & Gao.,et al. (2021) highlighted the main problems caused by yellow rust infection in wheat cultivation. Yellow 

rust detection methods that were done by hand were ineffective and time-consuming. To detect diseases, the 

scientists created a DL model that they applied to unmanned aerial vehicle (UAV) imagery. The "pyramid scene 

parsing network (PSPNet)" is the name given to the suggested semantic segmentation method. They provided 

superior classification, and the SVM technique was used to address labeling problems in sizable image datasets. 

Accordingly, the suggested PSPNet model uses the SVM approach to achieve 94% accuracy. 

After the analysis, the above survey defined that DL-based and SVM methods suffered from misclassification, 

labeling problems, over fitting, and time complexity problems. Thus, a few categories of wheat leaf images are still 

restricted due to an insufficient quality of training data. On the other hand, the performance metrics are accuracy 

was calculated as relatively minimal, and the MSE rate was calculated as maximum. To overcome these issues and 

gaps, this proposed work is an OFAC-Net model with hybrid optimization Whale+FFA method to identify multi-

class classification issues of the yellow rust disease in the wheat image dataset. 

METHODOLOGY 

This section outlines the step-by-step approach for developing the proposed OFAC-Net model, ensuring a 

systematic flow from data preparation to model evaluation for accurate and efficient classification, as shown in 

Figure 1. 

In this research paper, initially, the YELLOW-RUST-19 dataset, containing categorized images of wheat leaves with 

varying severity levels, is uploaded and prepared for analysis. The dataset is pre-processed with steps such as image 

resizing, converting RGB to grayscale, and applying filtration techniques to ensure high-quality input data. To 

extract essential features, PCA is applied, minimizing the dimensionality of the data. These extracted features are 

further optimized using a hybrid approach combining the WAO and FFA. The optimized features are labeled and 

organized into feature vectors, which are subsequently fed into an enhanced CNN model designed to classify wheat 

yellow rust effectively. The trained CNN model is then loaded, and the optimized feature vectors are tested to 

validate the system’s performance. Finally, the model classifies the input samples into predefined categories, such 

as healthy or various severity levels of yellow rust, providing accurate and reliable predictions. This methodology 

ensures a robust framework for efficient detection and classification of wheat yellow rust, addressing critical 

challenges in traditional detection techniques. 

Data Collection 
 

 For this research, the Yellow-Rust-19 dataset (Kaggle.com,2025) sourced from Kaggle, was employed to 

support the detection and classification of wheat yellow rust. Developed by a collaborative team of researchers from 

Turkey and domain experts, this dataset is specifically curated to advance studies on wheat diseases. The pre-

processed section comprises 15,000 images, distributed equally among six categories as shown in Table 1, with each 

category containing 2,500 images. It includes both raw and pre-processed images of wheat leaves, classified into 

healthy and yellow rust-infected categories based on different severity levels, as shown in Figure 2. 
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Figure 1 Flowchart for the Proposed Method 

Table 1 Image details of the dataset used 

Category Full Form Pre-Processed Images Raw Images 

0 Healthy 2500 205 

R Resistant 2500 361 

MR Moderately Resistant 2500 564 

MRMS Moderately Resistant to Susceptible 2500 1135 

MS Moderately Susceptible 2500 1795 

S Susceptible 2500 1361 

Total  15,000 5421 

 

Figure 2 Wheat Leaf image of each category  

No 
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Pre-processing 

After the data collection, pre-processing is applied in this section. To ensure the efficiency of the 

implemented model, pre-processing steps were applied to the images from the YELLOW-RUST-19 dataset. Initially, 

all dataset images are resized with a uniform resolution of 256*256 pixels, standardizing their dimensions for 

consistent input into the model. Following this, the RGB to Gray image conversion simplifies the data and reduces 

computational complexity while retaining essential texture information. Noise within the images, such as salt-and-

pepper noise potentially caused by environmental factors or data acquisition processes, was identified and 

addressed using a median filter. This filtration technique effectively removed irrelevant artefacts while preserving 

the quality of the image features critical for accurate yellow rust detection. These pre-processing procedures 

enhanced the dataset’s suitability for training and evaluation, forming a solid foundation for the subsequent DL-

based analysis. Figure 3 defines the representation of the pre-process outcome.  Figure 3(i) shows the uploaded 

input image, Figure 3(ii) represents the resized image in 256*256 dimensions, Figure 3(iii) grayscale converted 

image to reduce the colour dimensions, Figure 3(iv) represents the distorted image with artificial noises, and Figure 

3(v) defines the noise-free image or filtered image. 

 

  
(i)  (ii) 

  
(iii) (iv) 

 
(v) 

Figure 3 (i) Input Image (ii) Resize Image (iii) Grayscale Image (iv) Noise Image, and (v) Filter Image 

Feature Extraction 

 After pre-processing, processed data is served into the feature extraction procedure to extract the reliable 

features. The main objective of feature extraction is important for extracting reliable features required for 

classification. The proposed PCA algorithm helps enhance the efficiency of yellow rust disease in wheat leaf image 

detection systems by optimizing the computational complexity and potentially improving the accuracy rate. It is a 

popular method for simplifying large datasets while maintaining important patterns and features by reducing their 

dimensionality.  In this study, PCA was employed as a key feature extraction method to identify the most significant 

components in the wheat yellow rust images, thereby reducing the number of variables without sacrificing critical 

information. The grayscale images from the pre-processed dataset were standardized. Every feature is given a mean 

of zero and a standard deviation (SD) of one through standardization, which keeps any one feature from controlling 

the principal components because of different scales (Sarkar. S., 2022). 

 

Figure 4 Extracted Feature Values 
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After standardization, PCA was applied to compute the covariance matrix, which encapsulates the relationships 

between various features in the dataset. The principal components are linear combinations of the original features 

capturing the highest variance and were then selected. A subset of these components was chosen based on the 

explained variance ratio, ensuring that the reduced feature set retained a significant portion of the total variance. 

Figure 4 illustrates the outcome of the extracted features. 

The PCA algorithm 1 (Karamizadeh & Abdullah., et al. ,2013) involves the following steps: 

Algorithm 1: PCA algorithm  

1:  Vector Representation of  leaf images 
Signify the set of M images (B1, B2, B3,….., BM) of size N×N as column or row vectors of size N2. 

2:  Compute the Average leaf image 
Calculate the average image (μ) of the training set using the formula: 

 μ =
1

𝑀
∑ 𝐵𝑛

𝑀
𝑛=1                          (1) 

3:  Difference Vector Calculation 
For each image in the training set, compute the difference vector (Wi) by    subtracting the average image 
(μ): 

 𝑊𝑖 = 𝐵𝑖 − μ                           (2) 
4:  Compute the covariance matrix 

From the covariance matrix (C) using the difference vectors (W1, W2, W3,.…………., WM): 
𝐶 = 𝐴𝐴𝑇 = ∑ 𝑤𝑛𝑤𝑛

𝑇𝑀
𝑛=1            (3) 

 
Here, A=[W1, W2, W3………, Wn] represents a matrix formed by concatenating the difference vectors. 

5:  Determine eigenvectors and eigenvalues 
Compute eigenvectors (UL) and eigenvalues (𝜆L) of the covariance matrix (C). 

6:  Generate Feature Space and Weights 
Construct the feature space for image classification by measuring the weights (ΩT): 

 Ω𝑇 = [𝑤1, 𝑤2, 𝑤3 … … … , 𝑤𝑀`] 
Where Hk is given by: 

            𝐻𝑘 = 𝑈𝑘
𝑇 (B−μ),            k=1, 2,……,M`  

Projecting the original data onto the principal components enabled PCA to reduce the high-dimensional 

image data into a concise set of features. These extracted features were subsequently used as input for further 

analysis and classification tasks, helping the model to focus on the most informative aspects of the images while 

reducing computational complexity for the subsequent DL models. 

Feature Selection 

The feature-extracted data is fed into the feature selection procedure to choose the reliable features. The 

main objective of feature selection is an important for address a minimum no. of reliable and important features 

compulsory for classification. The implemented Whale+Firefly algorithms help enhance the efficacy of detection 

systems by optimizing the computational complexity and improving the accuracy rate.  These are classified into 

different models: Filter, Wrapper, and embedded. Feature selection and optimization are crucial steps in improving 

the performance of ML models, especially in complex datasets like wheat yellow rust detection. In this study, the 

WAO combined with the FFA was used to enhance feature selection and optimization. The hybrid WAO+FFA 

approach helps in identifying the most relevant features and optimizing the model's parameters, which can lead to 

better classification accuracy and model efficiency. 

Whale Optimization Algorithm (WOA) 

The procedure starts with the identification of a subset of features extracted through PCA. WAO is an optimization 

technique inspired by the chasing nature of whales, where each whale searches for a target by exploring the search 

space and updating their position toward the best solution (Mohammed & Umar., 2019). In the WAO algorithm, 

whales are initialized randomly within the search space, representing potential solutions for the feature selection 

problem. They update their locations depending on the distance to the best solution found, using a combination of 

exploration and exploitation strategies (Rana & Latiff., 2020). Algorithm 2 defines the Whale optimizer steps. 
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Arithmetical method and optimization algorithm 

This sub-section outlines the arithmetical method of encircling prey, the spiral bubble-net feeding 

maneuver, and the initial exploration process for prey.  The optimization method (Mirjalli, S., 2016) is then 

implemented.  

 Encircling Prey 

Humpback whales can be reliable in identifying the position of their prey and encircle them. Similarly, the 

Whale algorithm, since the optimized solution in the search space is unidentified earlier, supposes that the recent 

best candidate solution either corresponds to the target prey or is near to the optimal target. After verification, the 

enduring agents update their locations by affecting the fitness search agent. This procedure is defined by the below-

defined equations.  

𝑑′ = |𝑐′. 𝑥′∗ (𝑇) − 𝑥′ ∗ (𝑇)|     (1) 

𝑥′ ∗ (𝑇 + 1) =  𝑥′∗ (𝑇) − 𝑎′. 𝑑′    (2) 

Here,  in Equations (1) and (2) T define the recent epoch, a' and d' are coefficient vectors, x*  is the 

position_vector of the reliable solution attained so far, x' is the position_vector, | | represents the absolute value, 

and . is the multiplication of the element by element. The vector a' and c' are evaluated as follows:  

𝑎′ = 2𝐴′ . 𝑅′ − 𝐴′   (3) 

𝑐′ = 2. 𝑅′                  (4) 

 In Equations (3) and (4) A' is linearly reduced from 2-0 over the source of epochs, and R' is a kind of 

random vector in 0,1.  

 Exploitation Phase  

This arithmetical model simulates the bubble net behavior of humpback whales, and two methods are 

described below:  

Shrinking Encircling Mechanism: This nature is attained by reducing the value of A'   in the 

Equation (3). Variation range of   a' is also reduced by A'.     

Spiral updation locations:  This method initially evaluates the distance between the whale and prey 

locations. 

Algorithm 2: Whale optimization algorithm (WOA)  
Initial_data: no.of whales in the pack “n”, control_coefficient “au”, and max_iterations (m_itr).  
Outcome:  Gbest whale location, 𝑦𝑏𝑒𝑠𝑡, and fit (𝑦𝑏𝑒𝑠𝑡) best fitness value.  
Start  
Generate init_pop of n whale. 𝑦𝑖  (i= 1,2,3,….n) 
Set itr_counter 𝐶𝑛𝑡 = 0 
Evaluate the fitness of each whale 
Verify the best_whale depends on the fitness that is 𝑦𝑏𝑒𝑠𝑡  
While (𝐶𝑛𝑡 < m_itr) 
    For each whale do  
        Evaluate  “au” a and c by eqs (1) and (2) 
If (randval <0.5)  
If (|a| <1) 
  Update the position of the recent whale  
Else if (|a| >=1) 
Choose a random whale, Yran  

Update the location of the recent whale 
End if  
Else if (randval >= 0.5) 
Update the location of the recent whale  
End if  
End for 
Evaluate the best of all whales 
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Update the value of 𝑦𝑏𝑒𝑠𝑡  depends on the fitness 
++ The recent itr 𝐶𝑛𝑡   by 1 
End while  
Return the best_location, 𝑦𝑏𝑒𝑠𝑡  
End  
 

Firefly Algorithm (FFA) 

However, to further improve the optimization process, the FFA is integrated into WAO. FFA has the 

flashing behavior of fireflies, where brighter fireflies attract others, leading to a convergence towards the most 

optimal solutions. In the context of feature selection, the WAO+FFA algorithm works in two phases. During the 

exploration phase, the algorithm searches the feature space for promising areas by randomly selecting solutions. In 

the exploitation phase, it intensifies the search for the best solutions, fine-tuning the feature selection process. The 

result is a set of optimized features that are highly relevant to the detection and classification of wheat yellow rust.  

An adaption of the real nature of the firefly (FF) in a method is too difficult; the following verified 

principles are measured by applying the FFA:  

• All FFs are males and females.  

• Their attraction is relative to their brightness, and  

• The brightness of a FF is influenced by the landscape of the objective function (OF).   

Algorithm 3 is defined below in the detailed description and working of the whole algorithm. 

Algorithm 3: Firefly Algorithm   (FFA)  
Input data: firefly population X = (X1, X2, …… Xn) and objective function F (Xi).  
Outcome: best solution Xb and its value FMin  = min (F(Xb)).  
Create init_pop 𝑋𝑜 = 𝑋1

𝑜 …….. 𝑋𝑁
𝑜  

F(Xo i)  = calculate novel sol and update light_intensity.  
Set T = 0 (iteration counter) 
While T <max_gen, repeat: 
      For each firefly  i=1 to n do 
          For each firefly j =1 to n do 
                If the light intensity IIj > IIj   then 
                    Move Firefly i towards Firefly j using a uniform distribution.  
           End if  
           Calculate new sol F(XT i) and update light intensity  
      End for  
      Rank FF and explore the best           
      Increment iteration: T = T+1 
End while.  

Once the optimal features have been identified, the selected feature set is passed on to the classification 

model. This ensures that the model is trained with a more efficient, smaller set of features, which not only improves 

computational efficiency but also enhances the accuracy of the classification process. The WAO+FFA method 

efficiently manages the balance between exploration and exploitation, ensuring a thorough search of the feature 

space while honing in on the best features for the task at hand.  

In the optimized feature extraction process, labeling feature values (eigenvalues) and vectors (eigenvectors) 

are essential for organizing and interpreting extracted features. Eigenvalues indicate the variance explained by each 

principal component, ranked to prioritize components with higher variance. Corresponding eigenvectors define the 

directions of maximum variance in the feature space. Each eigenvalue and eigenvector is labelled systematically 

(e.g., Eigenvalue 1, Feature Vector 1) to guide dimensionality reduction. The transformed data, represented by 

labeled principal components (e.g., Principal Component 1), retains the most significant features for analysis and 

classification, ensuring model interpretability and effectiveness. 
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Enhanced DL model using CNN 

In the enhanced DL model, CNNs are employed to significantly improve the classification and 

categorization of wheat yellow rust disease. In image recognition tasks, CNNs are very effective because they can 

automatically extract spatial hierarchies of features from input images. In this context, CNNs are used to learn the 

underlying patterns and textures associated with healthy and diseased wheat leaves, specifically targeting yellow 

rust infection. The CNN model employs convolutional (CL), pooling (PL), and fully connected layers (FCL) to use 

filters to identify fundamental features in input images, such as edges, corners, and textures. PLs are employed to 

reduce computational costs and maintain essential spatial information in the images. The full CLs of the network 

combine learned features to predict the type of infection or the severity of the disease (Hemalatha &Karthik., 2022). 

Training is done by utilizing a dataset of wheat leaf images, and the CNN automatically adjusts its filters during 

training through back propagation to minimize the classification error. By using deep architectures with more 

layers and filters, the CNN is capable of learning more complex patterns, making it robust in distinguishing 

between different severity levels of yellow rust infection. 

By removing the need for manual feature engineering and carrying out feature extraction and classification 

straight from raw images, the improved CNN model simplifies detection. This model is optimized for real-time 

applications in agricultural disease management because it can achieve higher accuracy by utilizing data 

augmentation and transfer learning techniques. 

Proposed OFAC-Net Model 

The OFAC-Net model is designed to improve the efficiency and accuracy of wheat yellow rust disease 

identification and classification. This advanced model integrates PCA, WOA+FFA, and CNN to leverage the 

strengths of each technique.  The process begins with PCA for dimensionality reduction, extracting the most 

significant features from the pre-processed dataset. PCA minimizes redundant information while retaining critical 

patterns, reducing computational complexity for subsequent stages.   

The optimization phase utilizes a hybrid WOA and FFA approach to refine the feature selection process. 

WOA simulates the intelligent foraging behavior of whales, effectively encircling and converging on optimal 

solutions. FFA further enhances the process by simulating the natural attraction of fireflies, ensuring robust 

exploration and exploitation of the feature space. This dual optimization strategy guarantees the selection of only 

the most relevant and distinguishing features for the CNN model.  The CNN component, serving as the core of 

OFAC-Net, is responsible for feature extraction and classification. It is enhanced by the optimized feature set 

derived from PCA, WOA, and FFA. The CNN architecture, comprising various layers, is fine-tuned to recognize 

intricate patterns and textures indicative of healthy and diseased wheat leaves. The inclusion of deep architectures 

and advanced techniques ensures high performance, even with moderate dataset sizes.   

OFAC-Net’s integration of PCA, WOA, FFA, and CNN creates a powerful synergy, enabling precise 

identification and classification of wheat yellow rust. This technique is tailored for real-time agricultural 

applications, addressing the challenges of large-scale field deployment with its efficient and accurate design. Figure 

5 shows the classification output based on the OFAC-Net model.  

 

Figure 5 Classify the Yellow Rust Disease in Wheat leaf images 

 Performance Metrics 

The efficacy and dependability of the OFAC-Net model were thoroughly assessed using a range of metrics 

to gauge its overall performance. The metrics provide a thorough evaluation of the model’s performance, 

concentrating on error minimization, prediction reliability, and classification accuracy. 
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EXPERIMENTAL RESULTS 

In this section, experiment result analysis is confirmed using a dataset namely, the Yellow-Rust-19 dataset to carry 

out a calculation of the planned OFAC-Net model. The implementation of the research method is carried out 

utilizing MATLAB 2021a on a Windows 10 (64-bit) operating system (OS) with 8GB RAM, and an Intel Core i7 

processor. The GUI was designed as a desktop application to enhance user interactivity and simplify operational 

workflows. The model's presentation evaluation relies on a database stored in a *.mat file format. The presentation 

of the implemented model is assessed using standard performance metrics that are defined by Equations (5) to (8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (7) 

Here: Tp is True Positive, Fp is False Positive, Fn is False Negative, and Tn is True Negative. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦`𝑖 − 𝑦𝑖)

2𝑛
𝑖=1   (8) 

Here: y`i represents the predicted value, yi is the actual value, and n is the no. of samples. 
 

Qualitative and Quantitative Analysis 

 In this sub-section, a summary of the performance of the models including the implemented OFAC-Net 

model, using a variety of evaluation metrics is provided as illustrated in Tables 2, 3, and 4.  

Table 2 Performance of proposed OFAC-Net model 

Metrics Values (%) 

Accuracy 98.00 

Precision 98.76 

Recall 99.00 

MSE 1.98 

Table 2 illustrates the OFAC-Net model's performance, including a high accuracy rate of 98.00% in 

correctly classifying samples shows how well it works to reduce FPs. The recall value of 99.00% validates the 

model's resilience in detecting true positive cases. Additionally, the model demonstrated a low mean squared error 

(MSE) of 1.98, emphasizing its reliability and minimal prediction errors. Figure 6 illustrates the visual 

representation of the proposed OFAC-Net model. 

 

Figure 6 The graphical representation based on the proposed OFAC-Net model w.r.t different metrics 
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Table 3 and Figure 7 illustrate the existing GhostNet [9] model's performance metrics, with 92.56% accuracy, 

indicating its accurate classification of samples. The precision, recorded at 92.42%, indicates its effectiveness in 

reducing false positives. The model's accuracy in identifying true positive cases is emphasized by its recall value of 

92.50% and its F1 score of 92.46%. 

Table 3 Performance of GhostNet model 

Metrics Values (%) 

Accuracy 92.56 

Precision 92.42 

Recall 92.50 

F1-score 92.46 

 

 

Figure 7 Visual representation of GhostNet model 

Table 4 compares the performance of various ML models based on three feature extraction methods: 

GLCM, LBP, and GLCM-LBP. The evaluation includes each model under the different methods.  The DT model 

shows an accuracy of 81.2% with GLCM, 74.2% with LBP, and 82.6% with GLCM-LBP, indicating a noticeable 

improvement with the combined method. Precision, recall, and F1-score follow a similar trend, with GLCM-LBP 

consistently outperforming individual methods.  The RF model achieves higher accuracy across all methods, with 

90.9% for GLCM, 88.62% for LBP, and 90.30% for GLCM-LBP. Performance is also higher, reinforcing the model's 

reliability. XGBoost performs competitively, with an accuracy of 89.2% for GLCM, 87.9% for LBP, and 89.63% for 

GLCM-LBP. It exhibits balanced precision, recall, and F1-score values across the methods.   

LightGBM demonstrates the highest performance, with an accuracy of 90.96% for GLCM-LBP, surpassing 

other methods and models. It also maintains consistent improvements, underscoring the effectiveness of the 

combined feature extraction approach.  This table highlights that the GLCM-LBP method generally enhances the 

performance of all models compared to using GLCM or LBP alone, while Figure 8 illustrates a graphical 

representation of the presentation. 

Table 4 Performance of various models based on three different methods 

Algorithm Accuracy Precision Recall F1-score 

GLC
M 

LBP GLCM
-LBP 

GLCM LB
P 

GLCM
-LBP 

GLC
M 

LBP GLC
M-

LBP 

GLC
M 

LBP GLC
M-

LBP 

Decision tree 
(DT) 

81.2 74.2 82.6 80 74 82 80 73 82 80 73 82 

Random 
forest (RF) 

90.9 88.62 90.30 91 88 90 90 87 89 90 88 89 

92.35

92.4

92.45

92.5

92.55

92.6

Accuracy Precision Recall F1-score

%

GhostNet
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XGBoost 89.2 87.9 89.63 89 88 89 89 86 89 89 87 89 

LightGBM 9.63 89.29 90.96 91 90 92 91 88 90 91 88 90 

Proposed 
OFAC-Net  

98.00 98.76 99.00 --- 

 

 

Figure 8 Visual representation of various models based on different extraction methods 

Table 5 Comparison Analysis Based on Implemented Models 

Metrics OFAC-Net Model Ghost Model  

Accuracy 98.00 92.56 

Precision 98.76 92.42 

Recall 99.00 92.50 

 

 

Figure 9 Comparison Analysis based Proposed Model and Existing Implemented Model 

Table 5 discusses the comparison between the implemented OFAC-Net model and the existing Ghost Model. The 

proposed model has achieved a high accuracy rate as compared with the Ghost method. The proposed model's 

highly extracted features reduce the existing challenges and improve the performance analysis which is shown in 

Figure 9. 

Discussion 

In this section, the challenges and benefits are defined in comparison to the existing techniques like Ghost 

(Li & Fang, 2023), LBP-LightGBM (Shafi & Mumtaz et.al., 2021), GLCM-LightGBM (Shafi & Mumtaz et.al., 2021), 
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etc. The overall evaluation of the models demonstrates the effectiveness of combining feature extraction techniques 

and advanced algorithms in achieving high performance. Among the methods tested, the OFAC-Net model 

consistently outperformed traditional ML techniques, including DT and RF, in accurately detecting and classifying 

wheat yellow rust disease. The results highlight the importance of selecting optimal feature extraction methods and 

robust ML models for applications requiring detailed pattern analysis in agriculture. Existing methods such as DT 

and RF, struggle with handling complex, high-dimensional data, leading to suboptimal performance due to issues 

like overfitting, lower accuracy in multi-class problems, and increased computational overhead. Models like 

XGBoost and LightGBM, while effective, still face challenges with time complexity and parameter tuning. 

The proposed OFAC-Net model overcomes these limitations by leveraging an optimized feature-augmented 

convolutional network, which effectively captures fine-grained details of wheat yellow rust disease. By 

incorporating both spatial and feature-level information, the model ensures precise classification. Additionally, its 

low MSE ensures reliable predictions with minimal computational overhead. The model demonstrated exceptional 

performance metrics, achieving 98% accuracy, 98.76% precision, 99% recall, and a 1.98% MSE rate, making it a 

promising solution for real-time wheat disease detection. Compared to traditional ML techniques like DT and RF, 

as well as advanced models like XGBoost and LightGBM, the OFAC-Net model significantly outperforms them in 

terms of classification accuracy, efficiency, and applicability to real-world scenarios. 

CONCLUSION AND FUTURE SCOPE SSION 

This research aims at the development of the OFAC-Net model, which significantly improves the identification and 

classification of wheat yellow rust. The proposed methodology integrates advanced techniques such as PCA for 

dimensionality reduction, and the hybrid optimization approach combining WOA with FFA to optimize feature 

extraction. This approach confirms, that only the most relevant and discriminative features are used, improving the 

efficiency and accuracy of the disease identification process. The OFAC-Net model utilizes a CNN to learn complex 

patterns from the image data, achieving superior performance in disease classification. 

Testing on the YELLOW-RUST-19 dataset demonstrates the effectiveness of the proposed method. The OFAC-Net 

model outperforms traditional ML techniques, such as DT and RF, as well as other advanced models like XGBoost 

and LightGBM. It achieves 98% accuracy, 98.76% precision, 99% recall, and an MSE of just 1.98%, highlighting its 

robustness and reliability in detecting wheat yellow rust with high precision. 

The outcomes of this study suggest that the OFAC-Net model is a promising solution for real-time agricultural 

applications and scalability for mobile and edge devices. We envision that the model could be further improved by 

integrating additional optimization algorithms or exploring its application to other crop diseases, thus broadening 

its potential impact on precision agriculture and disease management. 
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