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The rapid growth of Android applications has resulted in an increase in security 

concerns, specifically malware attacks. Traditional signature-based and heuristic 

detection technologies fail to keep up with the changing nature of malware. To 

address this issue, deep learning-based algorithms provide a viable solution by 

utilizing sophisticated feature extraction and classification techniques to improve 

detection accuracy. This paper presented an Improved Chimp Optimization 

Algorithm-based CNN-LSTM (IChOA-CNN-LSTM) technique for detecting Android 

malware. The procedure starts with an Android malware dataset, which goes through 

data pre-processing to clean and modify it for best analysis. To extract significant 

characteristics, a feature selection procedure is used in conjunction with an opcode-

based model. Furthermore, the IChOA-CNN-LSTM technique uses the IChOA-CNN-

LSTM methodology to improve malware detection. The model improves feature 

selection by combining an enhanced transformer with an RNN model and a softmax 

function for better classification. Finally, the Snake Optimizer Algorithm (SOA) is 

used to fine-tune parameters for the best detection performance. Extensive 

experimental findings show that the IChOA-CNN-LSTM technique is successful for 

detecting Android malware. The system's performance is measured using key 

measures like accuracy, precision, recall, and F-score in addition to a strong malware 

detection architecture. 
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Improved Chimp Optimization Algorithm (IChOA), Opcode-based model, 
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Introduction 

 In recent years, practically every member of society has developed a daily need for the Internet. 

This is due to the fact that practically everything becomes difficult without the Internet, including 

marketing, social media, online banking, and health-related tasks. Because of how quickly the Internet 

has expanded, criminals are now committing crimes online rather than in person. Malicious software is 

commonly used by thieves to initiate cyberattacks on target machines. Computers, smartphones, 

computer networks, and other devices that intentionally install dangerous payloads are referred to as 

malware. Trojan horses, worms, ransomware, rootkits, and viruses are just a few of the many distinct 

types of malware. Malware was first developed with minimal objectives in mind, which made detection 

easier. Traditional (basic) malware is the term used to describe this type of malware. Malware that is 

more harmful and harder to identify than older malware is known as "next-generation" malware. 
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Malware that is capable of running in kernel mode is now categorized as such. When running in kernel 

mode, this kind of malware can readily bypass firewalls, antivirus software, and other security 

measures. In the digital era, security breaches brought on by malicious software (malware) attacks are 

becoming more frequent, which is a serious security risk. Current methods for detecting malware are 

based on the static and dynamic analysis of malware signatures and behavior patterns, which is time-

consuming and has not been proven to be effective in real-time detection of new infections [1]. Android 

malware infiltrates and functions on cellphones without the users' awareness or approval. It poses 

serious risks to consumers, including advanced fraud and the loss of personal data. Scholars and 

professionals have offered a number of strategies to counter these dangers [2]. Using association rule 

analysis, one can uncover intriguing connections between data sets, such as benign and malicious [3]. 

The GWOANL-SMDC detection procedure is used for software malware detection and classification. 

First, for feature selection, the GWOANL-SMDC technique uses the NCM model [4]. According to 

performance validation, the DLBITM-AMD approach outperformed current Android malware 

recognition models with an accuracy value of 97.26% [5]. 

Contribution of this Work 

The following are the key phases of the suggested approach, for further information: 

1. Proposed an IChOA based CNN-LSTM approach for enhanced Android malware detection. 

2. Utilizes an opcode-based model for effective feature selection, improving classification performance. 

3. Enhances feature extraction by combining an improved transformer with an RNN model and a softmax 

function. 

4. Fine-tunes model parameters using SOA to achieve better detection accuracy. Validates the model using 

key metrics include accuracy, precision, recall, and F-score to demonstrate its effectiveness. 

The following is describes the way the paper is established: Section 1 illustrates the introduction. Section 

2 describes the relevant works. The proposed approaches are described in Section 3, the experiment's 

results are displayed in Section 4, and a conclusion and recommendations for further research are made 

in Section 5. 

1. Related Works 

Majid et al. [6] have proposed, the program that damages files and information systems is known 

as malware. Different strategies have been employed by adversaries and cybercriminals to disseminate 

malware for financial gain as well as other objectives. Attackers derive economic gains from such 

attacks. Kilic et al. [7] have introduced, a possible to download and install apps on Android devices 

outside of the official application store. Users' security and privacy are at risk when third-party 

environments are used to install applications. Hein et al. [8] have recommend, a symantec and F-Secure 

databases were eventually rejected due to the impracticability of autonomously gathering data from 

them. Furthermore, because the researchers created the technical specifications by hand, there were 

discrepancies in the information regarding whether or not they included the rights that the malware 

required.  

Mallidi et al. [9] have reported, the dataset that was used contained 25458 samples with 173 

characteristics (8643 malware applications and 16815 benign apps). Three datasets were created using 

the proposed feature selection process; each had 25458 samples and 5, 10, and 20 features. Abubaker 

et al. [10] have described, an accuracy of 93.73%, the BOAWFS-DT outperformed after lowering the 

features from 4115 to 518 utilizing 200 agents and 100 iterations. One significant addition of BOAWFS 

is that it improves accuracy by 1.67% while reducing feature redundancy by 87.41% for the permission-

based Android malware dataset with extremely high dimensions. Xing et al. [11] have introduced, the 

primary objective of the feature data pre-processing step is to supply input data for the neural network 

model.  
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 Alamro rt al. [12] have proposed, to achieve this, data preprocessing is done at the preliminary 

stage via the AAMD-OELAC technique in order to accomplish this. The AAMD-OELAC technique 

detects malware on Android smartphones through an ensemble learning process. Aamir et al. [13] have 

proposed, the deep learning technique known as the AMDD Lmodel is based on a convolutional neural 

network. This model detects and classifies Android malware using a variety of parameters, filter sizes, 

epoch counts, learning rates, and layers. Baink et al. [14] have recommend, from the disassembled APK, 

the permission functionality can be extracted by Android application package. Then used the Frequent 

Pattern (FP) Growth method to find the most prevalent and similar pairings of legitimate permissions. 

Kim et al. [15] have presented, use a variety of characteristics to provide a multifaceted explanation of 

Android app functionality. Existence-based feature extraction or similarity-based feature extraction is 

used to enhance features for efficient feature representation in malware detection.  

Iadarola et al. [16] have suggested, to capture local spatial correlations, the system combines CNNs 

and LSTM neurons, uses NLP techniques as a baseline, and learns from successive long-term 

dependencies. Mahindru et al. [17] have introduced, to employ five distinct feature selection strategies 

to empirically test 1,20,000 Android apps. Principal Component Analysis (PCA) developed a collection 

of features that allow for the detection of 94% of Android malware from physical apps. Bayazit et al. 

[18] have proposed, with an accuracy rate of 98.85%, experimental data demonstrate that the BiLSTM 

model works better than earlier RNN-based deep learning algorithm modes. Wasif et al. [19] 

have presented, the model displays its efficacy in accurately differentiating between harmful and benign 

applications with a multiclass accuracy rate of 95.61%, which is revolutionary [19]. 

2. Proposed system 

A thorough process for detecting Android malware utilizing an IChOA–CNN-LSTM method is 

shown in Figure 1. An Android malware dataset, which includes both harmful and benign apps, is fed 

into the procedure at the start. The pre-processing procedure is used to clean and convert the raw data 

for better analysis, ensuring data quality. An opcode-based approach is used to pick features after pre-

processing, extracting pertinent data to aid in distinguishing between malicious and trustworthy apps. 

The IChOA–CNN-LSTM model is used to detect Android malware after the important features have 

been chosen. At this point, CNNs are employed to extract features. In the meantime, LSTM controls the 

sequential dependencies in the data to increase the accuracy of classification. In order to improve the 

model's performance, the features are further selected. By fine-tuning crucial parameters, the SOA is 

utilized for hyperparameter optimization, which increases detection efficiency. Finally, some key 

measures that are utilized to evaluate the effectiveness of the proposed approach include accuracy, 

precision, recall, and F-score. These precautions guarantee a solid and efficient malware detection 

system that can accurately identify harmful Android apps. 
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Figure 1. The IChOA–CNN-LSTM algorithm's overall flow for detecting Android malware 

2.1. Data pre-processing  

Cleaning is the initial stage in data preprocessing, which can enhance the dataset's quality. 

Duplicate values are eliminated and missing values are handled in this stage. The dataset utilized for 

training and testing included a variety of ransomware and non-ransomware samples, each of which was 

meticulously tagged to capture unique behavioral characteristics seen in modern settings. Techniques 

for feature scaling and normalization made ensuring that samples were consistent, which helped to 

maintain input representation consistency across the model's architecture. The application of 

dimensionality reduction, principal component analysis (PCA) in particular, to condense high-

dimensional data greatly improved computational efficiency without causing a major loss of 

information. 

 The integrity of the classification results was maintained by using data balancing strategies including 

oversampling and undersampling to handle class imbalances between malware and benign samples. 

Extreme behavioral aberrations, or outliers, were purposefully kept in the dataset to improve the 

model's ability to detect unusual malware activity. By combining and converting indications into 

composite measures that fully captured ransomware behavioral patterns, feature engineering 

significantly improved the dataset. The actual implementation of DeepCodeLock in settings with high 

Input: Training Dataset 

(Android Malware Dataset) 

Data Pre-Processing  

 

Performance Measures:  

Accuracy, Precision, Recall, F-

Score 

Android Malware 

Detection Process using 

(IChOA–CNN-LSTM 

model) 

Hyperparameter 

Tuning Process using 

(SOA) 

Feature Selection Process 

(opcode-based model) 



Journal of Information Systems Engineering and Management 
2025, 10(3) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

591 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

data throughput was made easier by this preprocessing approach, which significantly improved model 

accuracy. 

2.2. Feature Selection in Opcode-based model 

Feature selection methods were used to lower the dimensionality and improve classification 

performance due to the high dimensionality of opcode-based feature vectors. The ability of each 

attribute to differentiate between malware and benign samples was ranked using the Chi-Square test. 

Features with low Chi-Square scores that made minimal contributions to the classification job were 

eliminated, whereas those with high values were kept. Figure 2 shows this procedure, which reduced 

the model's complexity and increased its efficiency without sacrificing detection accuracy by filtering 

characteristics according to statistical significance and eliminating those that were unnecessary.  

 

Figure 2. Feature selection process for reducing dimensionality and improving detection accuracy 

To evaluate the entropy reduction attained by individual features, Information Gain, another feature 

selection technique, was applied. The model was made more interpretable and generalizable by giving 

priority to features that helped reduce the uncertainty in malware classification. This stage balanced 

classification accuracy and processing economy by ensuring that only the most pertinent features were 

kept. Furthermore, feature selection ensured that the model retained generality across unknown data 

by lowering the chance of overfitting. Both the overall efficacy of predictions and the speed of model 

training were significantly enhanced by the chosen features. 

2.3. Proposed Android Malware Detection Process using IChOA–CNN-LSTM 

algorithm 

 Feature selection is followed by the detection of the extracted features 〖CD〗_n^fea using the 

IChOA–CNN-LSTM approach. Long Short-Term Memory (LSTM) and Convolution Neural Networks 

(CNN) are combined to form CNN-LSTM. Predicting the expected output is challenging since the CNN-

LSTM model's weight values are initialized randomly, increasing the loss function. To improve the 

weight values produced in the convolution layer and increase the model's classification accuracy, the 

CNN-LSTM and IChOA hybridize. The present ChOA enhances the chimpanzees' foraging approach by 

utilizing the Basin chaotic map. In Figure 3, the proposed detection system's construction is displayed. 
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Figure 3. Establishment of IChOA-CNN-LSTM model 

Input Layer 

An artificial neural network's initial layer of nodes is referred to as the input layer. Input data from the 

external environment is received by this layer. 

Convolution Layer 

The following is the expression for the convolution between the input features and the kernels [20] of 

the convolution layer: 

𝐶𝑙(𝑓𝑚(𝑖)) = 𝐶𝐷𝑛
𝑓𝑒𝑎

∗ ℎ𝑛(𝜑(𝑓𝑚(𝑖)))                                                        (1) 

Where, 𝐶𝑙(𝑓𝑚(𝑖)) is represents the feature map that was found using kernels 𝜑, and ℎ𝑛 corresponds to 

the activation function that is not linear. 

Pooling Layer: 

Following convolution, pooling is the following stage, which eliminates superfluous features from the 

features map to reduce its size. This is accomplished by the network using the max-pooling function 

which is represented as, 

𝑃𝑙(𝑓𝑚(𝑖)) = 𝜁𝑚𝑃𝑛
(𝐶𝑙(𝑓𝑚(𝑖)))                                                             (2) 

Where, 𝑃𝑙(𝑓𝑚(𝑖)) indicates that the feature map has been pooled, and 𝜁𝑚𝑃𝑛
 indicates that the max-pooling 

function was employed to make the feature map less dimensional. The behavior of each memory cell is 

then altered by feeding the pooled feature map 𝐶𝑙(𝑓𝑚(𝑖)) into the various LSTM gates. 
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Fully Connected Layer 

At each layer, the entirely linked layer is found using the formula below: 

𝑓𝑐𝑙 = ℎ𝑛(Ω𝑓𝑐𝑂𝑔(𝑚) + 𝑣𝑓𝑐)                                                     (3) 

Where, ℎ𝑛 represents the activation function, the bias value is 𝑣𝑓𝑐, and the completely connected layer, 

the weight matrix is Ω𝑓𝑐. 

Output layer 

A neural network's output layer, which generates the network's classifications or predictions, is its last 

layer. It converts the data into a format that can be used after receiving it from the earlier levels. 

2.3.1. Improved Chimp Optimization Algorithm (IChOA) 

 The ChOA was developed with inspiration from chimpanzees' foraging habits. The chimp is a 

mammal that is most similar to the human. They are boisterous, gregarious, inquisitive, and intelligent. 

A variety of groups, each with a certain number of members, make up the community in which 

chimpanzees reside. By employing the Basin chaotic map, the current ChOA improves the slow 

convergence rate and high entrapment in local optima in the chimps' hunting process. Each tribe has 

varying levels of hunting ability. The methodology begins with the initial chimp population and yields 

arbitrary solutions like, 

𝜑𝑛 = {𝜑1, 𝜑2, 𝜑3, … , 𝜑𝑁}                                                  (4) 

The coefficient vectors are calculated as, 

𝜁 = 𝛼(2𝛾1 − 1)                                                                       (5) 

𝜀 = 2𝛾2                                                                                   (6) 

𝛿 = 𝐶ℎ𝑡𝑣𝑒𝑐
𝐵                                                                               (7) 

Where, 𝛼 declines nonlinearly with each repetition throughout the exploration and exploitation stages. 

𝐶ℎ𝑡𝑣𝑒𝑐
𝐵 , while the random vectors 𝜏, 𝛾1, 𝛾2 are extracted from the intervals [0,1]. 

Chimpanzees have the ability to switch to chaotic behavior in order to obtain social rewards during the 

last stages of hunting. Chimp's location can be updated throughout this phase by switching between 

normal and chaotic behavior. The update for the position can be expressed as: 

𝜑𝑐ℎ(𝜏 + 1) = {
𝜑𝑝𝑟(𝜏 + 1) − 𝑟. 𝑠

𝐶ℎ𝑡𝑣𝑒𝑐
𝐵

             
𝑖𝑓(𝜑 < 0.5)
𝑖𝑓(𝜑 > 0.5)

                               (8) 

Where, f ∈ (0, 1) is a representation of the random vector used to calculate the likelihood of selecting 

the update behavior. When an attack is nearing its conclusion, chimpanzees use chaotic maps to tackle 

sluggish convergence rate issues and local optima. This generates the optimal weight values. Algorithm 

1, which describes the fundamental steps in the procedure, is shown below together with the proposed 

IChOA–CNN-LSTM pseudo code. The proposed IChOA-CNN-LSTM employs a number of classification 

layers and optimizes the convolution layer's weight values based on the loss function using the IChOA 

technique. 

Input: Selected Futures 𝐶𝐷𝑛
𝑓𝑒𝑎

 

Output: Detected output 

Begin 

          Set up the convolution, pooling, fully linked, and input feature layers, and weight 

          value 𝜑𝑛, and loss 
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          Compute convolution layer 𝐶𝑙(𝑓𝑚(𝑖)) 

          Compute pooling layer 𝑃𝑙(𝑓𝑚(𝑖)) 

          Compute LSTM layer 𝑓𝑔(𝑚), 𝐼𝑔(𝑚), 𝐶𝑠(𝑚), 𝑂𝑔(𝑚) 

          Compute fully connected layer 𝑓𝑐𝑙 

          Check loss Function 

          If (𝑙𝑜𝑠𝑠 > 𝑡ℎ𝑟) 

                     Initialize population 𝜑𝑛, coefficient vector 𝜀, 𝜁, 𝛿 s, maximum number of iteration  

                   𝜏𝑚𝑎𝑥  

                  Calculate fitness for each chimp 

                    Set 𝜏 = 0 

                    While (𝜏 ≤ 𝜏𝑚𝑎𝑥) 

                               Update 𝜀, 𝜁, 𝛿 

                               Update position using 𝑃(𝐴,𝐶,𝐵,𝐷) 

                        Evaluate fitness of the position of chimps 

                                        If 𝜑 < 0.5&&𝜀 ∈ (0,1){ 

                                        Update position of the Chimp using 𝜑𝑝𝑟(𝜏 + 1) − 𝑟. 𝑠 

                                   } 

                                   Else{ 

                                      Update position of the Chimp using 𝐶ℎ𝑡𝑣𝑒𝑐
𝐵  

                                  }End if 

                           Update 𝜀, 𝜁, 𝛿  

                        Calculate fitness of the current position of the Chimp 

              Ser 𝜏 = 𝜏 + 1 

             End while 

            Return optimized weights  

      Else 

             Indicate that the output is the final result. 

      End if  

End 

 

Algorithm 1. A pseudocode for the proposed IChOA-CNN-LSTM technique 

2.4. SOA-based parameter tuning 

For the classification method37, the optimal parameter is finally chosen using the SOA 

methodology. Because the SOA technique is effective at exploring and adapting to high-dimensional 

spaces, it is used to optimize classification parameters. By effectively exploring intrinsic parameter 
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landscapes and avoiding local minima, the SOA model dynamically searches for optimal solutions by 

mimicking snake behavior, in contrast to traditional approaches. This adaptive strategy enhances 

classification accuracy by selecting robust and precise parameters.  

Initialization 

The optimizer issue solution is related to the snake's placement in SOA; the grade of the solution is 

indicated by the modest function values, and each snake section is selected at random. An arbitrary 

population is produced by the SOA, which is similar to heuristic methods. The formulation is as follows: 

𝑋𝑖 = 𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                                            (9) 

Where, 𝑋𝑖 shows where the snake is, 𝑟 is a randomly generated number, and 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 are the top 

and lower limits, respectively. 

Grouping of snakes 

Snake N's population has been divided into two groups: males and females. Both sets' mathematical 

formulations are provided below: 

𝑁𝑚 =
𝑁

2
                                                                                (10) 

𝑁𝑓 = 𝑁 − 𝑁𝑚                                                                      (11) 

Where, 𝑁 represents all of the different snakes, whereas 𝑁𝑚 and 𝑁𝑓 stand for the number of male and 

female snakes, respectively. 

The effectiveness of SOA is significantly impacted by the FF. The SOA states that the main requirement 

for creating the FF in this study is precision, which is explained below. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max (𝑃)                                                                    (12) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                   (13) 

Here, TP shows the actual positive value, while FP represents the false positive value. 

2.5. Performance evaluation 

Accuracy is defined as the proportion of accurately detected instances within the total number of 

instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                      (14) 

The recall calculates the percentage of affirmative cases that are accurately classified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                       (15) 

Out of all occurrences that are expected to be positive, the accuracy metric measures the percentage of 

correctly predicted positive cases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                      (16) 

The F1-score is an estimate that takes the harmonic mean of precision and recall into account. 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                              (17) 

Experimental result and discussion 

In this part, the IChOA-CNN-LSTM approach's Android malware recognition findings are validated 

using the 7500-case database listed in Table 1. The detection results are analyzed using a set of measures 

called recall, accuracy, precision, and F-score. 
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Table 1. Details on database 

Classes No.of instantances 

Benign 5000 

Malware 2500 

Total Instances 7500 

 

 

Figure 4. Confusion matrix for IChOA-CNN-LSTM model-based malware detection 

The confusion matrices generated by the IChOA-CNN-LSTM model are shown in Figure 4 at a 

ratio of 70:30 for the training phase (TRAP) to the testing phase. The findings demonstrate that IChOA-

CNN-LSTM is capable of efficiently identifying both benign and malicious samples across all classes.  

Figure 5 illustrates the TRA and TES accuracy curves, which are used to measure the 

performance of the IChOA-CNN-LSTM approach of TRAP/TESP. The IChOA-CNN-LSTM system's 

solution is displayed across a large number of epochs via the TRA and TES accuracy curves. The figure 

provides important information about the ICHOA-CNN-LSTM model's learning tasks and general 

capabilities. As the epoch number increased, so did the TRA and TES accuracy curves. It has been 

demonstrated that the IChOA-CNN-LSTM methodology improves testing accuracy, allowing for the 

classification of designs in TRA and TES data.  

 

Figure 5. Accuracy curve of IChOA-CNN-LSTM methodology  
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The overall TRA and TES loss values for the IChOA-CNN-LSTM approach at the TRAP/TESP over 

epochs are shown in Figure 6. As the TRA loss decreases throughout epochs, so does the model loss. As 

the weight is changed by the algorithm to reduce the projected error, the TRA and TES data demonstrate 

a drop in loss values [21]. The degree to which the approach matches the TRA data is shown by the loss 

curves. The IChOA-CNN-LSTM model is successfully identifying the patterns in the TRA and TES data, 

as evidenced by the TRA and TES loss that progressively declines. Furthermore, it is evident that the 

IChOA-CNN-LSTM method adjusts the parameters to reduce the discrepancy between the original TRA 

labels and the forecast. 

 

Figure 6. Loss curve of IChOA-CNN-LSTM methodology  

 

Figure 7 shows the ROC curves produced by the IChOA-CNN-LSTM model, which is capable of 

classifying the data. The chart offers crucial information on the trade-off between TPR and FPR rates 

across various categorization criteria and epoch counts. It provides the precise prediction performance 

of the IChOA-CNN-LSTM method for identifying all two class labels. 
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Figure 7. ROC curve of IChOA-CNN-LSTM methodology  

Table 2. Comparative outcome of IChOA-CNN-LSTM methodology with exising systems 

Algorithm Accuracy Precision Recall F1-score 

AdaBoostMI [22] 88.40 81.70 91.93 94.25 

MLP [23] 94.10 97.10 97.90 92.35 

AAMD-OELAC [24] 96.93 97.05 89.93 95.04 

IChOA-CNN-LSTM 

(Proposed) 

99.18 99.10 99.04 99.07 

 

A comparison of the proposed and existing models' performances is shown in Table 2 and 

Figure 8. Meanwhile, the IChOA-CNN-LSTM approach increases precision by 99.10%, whilst the MLP, 

AdaBoostMI, and AAMD-OELAC strategies reduce precision by 81.70%, 97.10%, and 99.05%, 

respectively. In terms of accuracy, the IChOA-CNN-LSTM method increases precision by 99.18%, 

whereas the MLP, AdaBoostMI, and AAMD-OELAC strategies reduce accuracy by 88.40%, 98.10%, and 

98.93%, respectively.              
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Figure 8. Performance comparison between the proposed and existing models 

Based on the F1-score, the IChOA-CNN-LSTM approach achieves a higher F1-score of 99.07%, whereas 

the MLP, AdaBoostMI, and AAMD-OELAC strategies achieve lower accuracy values of 94.25%, 98.35%, 

and 99.04%. Finally, based on recall, the IPREODL technique delivers a greater value recall of 99.04%, 

whereas the MLP, AdaBoostMI, and AAMDOELAC models achieve lower values recall of 91.93%, 

97.90%, and 98.93% respectively. Thus, the IChOA-CNN-LSTM approach outperforms other models. 

Conclusion 

The proposed IChOA–CNN-LSTM approach effectively enhances Android malware detection by 

integrating an ICHOA with a CNN-LSTM framework. The opcode-based feature selection and IChOA-

CNN-LSTM technique improve the model’s ability to extract relevant features, leading to higher 

detection accuracy. Additionally, the Snake Optimizer Algorithm (SOA) optimizes parameters for better 

classification performance. In terms of accuracy (99.18%), precision (99.10%), recall (99.04), and F-

score (99.07), extensive experimental findings show that the proposed IChOA-CNN-LSTM approach 

performs better than conventional malware detection techniques, making it a reliable and effective way 

to counteract changing Android malware threats. In future incorporate larger and more diverse datasets 

to improve generalization and adaptability to emerging malware threats. 
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