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Next-generation information technology (IT) and artificial intelligence (AI) can support 

environmental improvement, climate change response, and the conservation and efficient use 

of resources for green transformation, potentially impacting the Sustainable Development 

Goals (SDGs). This study estimates the impact of AI on five SDGs using provincial panel data 

from 2006 to 2018. The estimation results indicate that AI makes a significant contribution 

to sustainable development, a finding that has been confirmed through a series of robustness 

tests. Furthermore, the mechanistic analysis demonstrates that AI primarily promotes 

sustainable development by enhancing energy structure and technological innovation. The 

greater the reduction in dependence on fossil fuels and the higher the degree of technological 

innovation, tthe greater the effectiveness of AI in promoting sustainable development. 

Furthermore, the regional heterogeneity test revealed that the effect  in enhancing 

sustainability achieved by AI is most effective in the central and western regions, with the 

eastern region following closely behind. 

Keywords: artificial intelligence; sustainable development goals; energy efficiency; 
technological innovation. 

 

INTRODUCTION 

Artificial Intelligence (AI) emerges as a pivotal technological breakthrough, instrumental in navigating the 
intricate challenges that characterize the contemporary era. Its significance is notably acknowledged in 
propelling the United Nations' Sustainable Development Goals (SDGs) within the 2030 Agenda, aiming to 
address a vast array of global concerns. Among these are forest conservation, sustainable energy advocacy, 
climate change combat, and marine ecosystem preservation, growing increasingly critical amidst swift industrial 
and urban expansion (United Nations,2020; Goralski et al.,2020).  

The prevailing worldwide trend towards resource depletion, surpassing natural regeneration rates, precipitates 
scarcity and environmental degradation. This consumption model, exceeding Earth's restorative capacities, 
foreshadows resource depletion and potential ecological crisis. Consequently, the formulation and deployment 
of sustainable resource management strategies emerge as imperative. Such strategies, augmented by AI 
technologies, facilitate optimized resource distribution, enhanced recycling endeavors, and the promotion of a 
circular economy. This integration ensures the enduring sustainability and resilience of global ecosystems and 
communities (Al-Sharafi et al.,2023; Xiang et al.,2021). 
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AI transcends environmental stewardship, enhancing human resource management through precise talent 
acquisition and the formulation of dynamic HR strategies (Kumar et al.,2022). Its capacity to boost productivity 
and foster synergies between AI and human collaborators significantly benefits business outcomes. In the 
agricultural sector, AI's role in augmenting crop yields via predictive analytics and precision farming optimizes 
resource utilization and minimizes environmental footprint (Fan & Colleagues,2023). Within healthcare, AI-
driven innovations in disease diagnosis, treatment planning, and patient care management elevate health 
outcomes and facilitate equitable healthcare access (Lee & Yan,2024). Moreover, AI's application in monitoring 
and addressing natural disasters, alongside its capabilities in detecting illegal activities such as poaching and 
deforestation, underscores its potential in environmental conservation and the advancement of smart, 
sustainable urban development (Pan and Nishant.,2023).  

AI is pivotal in the transition towards sustainable energy systems, leveraging new data on renewable resources 
to navigate towards sustainable development by mid-century. This trajectory aligns with the SDGs, 
underscoring the importance of AI in preserving ecological balance for future generations (Gielen et al.,2019). 
The strategic integration of AI into sustainable development efforts is crucial for the achievement of the SDGs 
and the preservation of the planet's ecological integrity. In China, given the regional disparities in economic 
growth and resource management strategies, scrutinizing AI's influence on the SDGs is imperative. 
Comprehensive research into AI's integration is essential for balancing economic advancement with ecosystem 
conservation (Kumar et al.,2022; Vinuesa et al.,2020), addressing the critical issues of environmental pollution 
and ecological deterioration (Zhang & Wen,2008). 

The application of AI in the energy sector is marked by enhanced optimization of energy production, 
distribution, and consumption processes, which is instrumental in reducing greenhouse gas emissions and 
advocating for clean energy alternatives. AI's application extends to augmenting resource utilization efficiency, 
refining waste management operations, and bolstering biodiversity conservation initiatives, all pivotal to 
sustainable development (Fan & Colleagues,2023). Within China, AI's deployment in environmental 
management and resource optimization emerges as critically vital. This technology enables environmental 
quality monitoring, pollution trend forecasting, and the development of efficacious environmental mitigation 
strategies. AI's integration into these spheres is expected to drive notable progress in environmental governance, 
reinforcing China's commitment to sustainable development (Pan and Nishant.,2023).  

Given China's complex economic landscape, diverse resource management approaches, and varying provincial 
environmental conditions, a thorough examination of AI applications and their impacts on the SDGs is 
indispensable. Such an examination is crucial to fine-tune the balance between economic growth and 
environmental conservation, underscoring AI's essential contribution to sustainable development (Balsalobre  
et al.,2023). China's central provinces exhibit a focused application of AI within the energy sector, employing 
statistical analysis and forecasting to elevate the efficiency of energy consumption and production. Emphasizing 
renewable energy management, this strategic application of AI aligns with the SDGs’ agenda for transitioning 
to sustainable energy systems, thereby enhancing energy infrastructure optimization (Kumar et al.,2022; 
Gonzalez et al.,2023). China's eastern provinces prioritize smart city development, positioning AI as 
foundational to sustainable urban living. AI's impact on urban innovation, planning, and design is paramount, 
promoting sustainable economic and social development. This initiative corresponds with the SDGs' broader 
objective of fostering sustainable cities and communities (Allam & Jones,2021).  

AI's integration into China's energy strategy significantly contributes to the optimization of energy production, 
distribution, and consumption processes. It aids in reducing greenhouse gas emissions and advancing clean 
energy solutions, in line with SDG 7's aim to ensure universal access to affordable, reliable, sustainable, and 
modern energy (United Nations,2020). The strategic implementation of AI in environmental management and 
resource optimization is expected to considerably improve environmental governance and reinforce China's 
commitment to sustainable development. By harnessing AI's potential, China is poised to effectively manage the 
dynamic between economic expansion and environmental preservation, securing a sustainable future in 
harmony with the SDGs' comprehensive goals (Lee & Yan,2024; Pan and Nishant.,2023).  

AI has become a pivotal area of academic investigation, with a growing body of research assessing its global 
impact on the SDGs. This research underscores AI's transformative potential in business operations and its 
capacity to address pressing societal challenges, particularly in the realm of sustainability (Lee & Yan,2024; Di 
et al,.,2020). AI's significant role in facilitating the SDGs, especially in the areas of renewable energy and 
environmental health, is well-documented, with its direct influence on the majority of the 169 SDGs (Fan & 
Colleagues,2023). The resource conservation capabilities of AI technologies have also been acknowledged (Said 
et al.,2023). 

The academic narrative is crafted with clarity, objectivity, and professionalism, employing a formal tone and a 
judicious selection of technical vocabulary. The research adheres to traditional academic formatting, ensuring 
uniformity in citation and reference styles. The presentation is systematically organized to establish a coherent 
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and logical progression of ideas, with each concept flowing smoothly to the next. The content is subject to 
rigorous proofreading to ensure linguistic precision (Gonzalez et al.,2023). In terms of policy implications, the 
research offers empirical insights that support the Chinese government's efforts to integrate AI with sustainable 
development initiatives. Such evidence can guide the government in policy formulation and strategic planning, 
directing AI technologies towards goals such as environmental conservation, resource optimization, and other 
pertinent areas, thereby aiding in the achievement of the SDGs (Kumar et al.,2022; Di et al.,2020).  

The subsequent sections of the manuscript are methodically arranged as follows: Section 2 compiles a 
comprehensive literature review, Section 3 delineates the research methodology, encompassing the analytical 
approach, data sources, and sample description. Section 4 exhibits the outcomes of the fundamental regression 
and heterogeneity analyses. Section 5 critically appraises the empirical findings and acknowledges the study's 
limitations, while Section 6 encapsulates the salient points and proffers recommendations for future 
considerations. 

2. Literature Review 

The emergence of AI signifies a transformative phase, reshaping the socio-economic landscape through 
information technology advancements. This evolution towards digital and intelligent ecosystems presents 
diverse opportunities and challenges, meriting scholarly investigation. Academia often delineates three 
principal themes to scrutinize AI's intricate nexus with sustainable development. This inquiry delves into the 
dynamics of this relationship, especially within the Chinese milieu, formulating hypotheses grounded in 
contemporary scholarly discourse and empirical data. 

An expanding academic consensus acknowledges AI's beneficial contribution to sustainable development. 
Celebrated for its pivotal role across economic, social, and environmental realms, AI's positive impact is 
substantiated by comprehensive studies (Gielen et al.,2019; Zhang & Wen,2008; Mhlanga,2022a; Hannan et 
al.,2021). The literature underscores AI's significant influence on sustainable progress, with applications 
permeating various domains. Exploration into AI technology life cycles and strategic technology selection from 
an extensive patent pool to achieve sustainability goals is anticipated to revolutionize the industrial framework 
and catalyze innovative business paradigms (Goralski et al.,2020). 

AI's efficacy in public safety, notably in crime deterrence via image recognition technologies, is profound. 
Investigations reveal AI's extensive and complex applications in this sphere, including the development of smart 
city projects aimed at bolstering urban safety and convenience (Lee & Oh,2020). Additionally, AI aids 
sustainable development by enabling efficient supply-demand alignment through big data analytics, thus 
enhancing sustainable investment proliferation (Pan and Nishant.,2023; Zhao & Gómez,2023; Truby,2020).  

The Chinese government's proactive stance in deploying AI for sustainable development articulates ambitious 
policies towards achieving global preeminence in both spheres. Despite advancements in several SDGs, there's 
recognition of AI's role in expediting overall progress towards the SDGs. Strategically aligning AI technologies 
to bridge SDG disparities and pinpointing priority sectors for scaling feasible solutions are vital for optimizing 
AI's capacity to fulfill the SDGs (Kumar et al.,2022; Vinuesa et al.,2020). 

Siddharth Chatterjee, the United Nations Resident Coordinator in China, highlighted AI's pivotal role in 
realizing the SDGs, while stressing the importance of ethical and responsible AI development to protect human 
rights and ensure social and environmental sustainability (United Nations,2020). The United Nations Industrial 
Development Organization's initiative, "Investment Promotion 4.0," demonstrates the exploration of advanced 
digital technologies, including AI, to foster investments aligned with the SDGs (Vinuesa et al.,2020; Di et 
al.,2020).   

AI emerges as a critical enabler for sustainable local policies, utilizing technological progress to achieve 
environmental and societal goals (Goralski et al.,2020). Its applications span policy optimization, resource 
management, and public service enhancement, illustrating a comprehensive support system for sustainable 
development. Despite AI's considerable potential, the need for regulatory frameworks to manage its use 
responsibly remains, emphasizing alignment with principles of safety and sustainability (Truby,2020; El et 
al.,2023).  

In healthcare, AI's integration, particularly machine learning, hinges on trust as a foundational element for 
attaining the SDGs, ensuring improved service delivery and health outcomes (Holzinger et al.,2023). The World 
Economic Forum underscores AI's broad role in sustainable development, addressing challenges such as climate 
change, biodiversity, public health, and resource management, highlighting its capability to address 
environmental challenges and advance sustainable futures (Allam & Jones,2021; Leal et al.,2023; D’Amore et 
al.,2022). 

AI's vital contribution to economic, social, and environmental sustainability is essential for achieving the SDGs 
(Ozmen et al.,2023). However, the detailed impact of AI's technological progress and its influence on sustainable 
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development across China's varied provinces calls for further investigation to understand its uniform or diverse 
effects across different regions (Wang et al.,2023). 

China's strategic focus on AI signifies an essential opportunity to address demographic changes, environmental 
sustainability, and economic transformation crucial for its ongoing prosperity. Leading globally in AI innovation 
(see Figure 1~4), China has outpaced the United States and Japan in AI patent applications, with nearly 30,000 
filings in 2022, representing over 40% of global AI patent submissions, as reported by the World Intellectual 
Property Organisation (WIPO). Conversely, the United States experienced a 5.5% annual decline in AI patent 
applications during the same period. 

 
 

Figure. 1 AI patent’s Number in China Figure. 2 AI patent’s Number in US 

  

Figure. 3 AI patent’s Number in Japan Figure. 4 AI patent’s Number in Korea 

As reported by Wisdom bud, the global tally of AI core technology patent filings surpassed 1.33 million by 
September 1, 2022, with China accounting for approximately 57% of these submissions, demonstrating the 
nation's commitment to technological innovation. This trend indicates China's significant contributions to the 
AI field, evidencing its determination to lead in innovation and technology advancement. The decline in AI 
patent applications in the United States, Japan, and Korea highlights the necessity for these nations to reassess 
their AI strategies to remain competitive globally. 

China's continuous growth in AI patent filings underscores its ambition to pioneer the next era of technological 
innovations and sustainable economic growth. The range of AI technologies covered by Chinese patents, from 
machine learning to autonomous systems, suggests a broad impact across various sectors, potentially 
revolutionizing healthcare, finance, manufacturing, and urban governance. This innovation is supported by 
substantial investments in education and professional development, preparing a skilled workforce to sustain 
China's leadership in AI. 

These dynamics urge other countries to recognize China's rising dominance in AI and formulate strategic 
responses that capitalize on their research, innovation, and industrial strengths. The competition for AI 
supremacy extends beyond technological leadership, influencing economic, societal, and geopolitical outcomes. 
Therefore, a strategic and proactive approach to AI development is crucial for shaping future growth trajectories. 
China's strategic focus on AI marks a pivotal shift toward addressing key national priorities, including 
demographic changes and environmental sustainability. This disparity in innovation paths underscores the 
urgent need for other nations to revisit their AI strategies to ensure global competitiveness. 

China's dominance in AI patent filings signals its potential leadership in driving future technological 
breakthroughs and sustainable economic growth. The array of patents spans across machine learning, 
computational models, natural language processing, and autonomous systems, promising transformative 
impacts across healthcare, finance, manufacturing, and urban governance. China's focus on AI research is 
bolstered by significant investments in education and talent development, ensuring a continuous supply of 
skilled professionals to support its AI evolution. This scenario poses a challenge for other nations, urging them 
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to strategize by leveraging their strengths in research and innovation to navigate the global competition for AI 
supremacy. This competition extends beyond technological dominance, influencing economic, societal, and 
geopolitical landscapes, highlighting the necessity for a strategic, informed approach to AI development. 

The global AI patent landscape demonstrates a sharp focus on domains crucial for advancing automatic speech 
recognition, computer vision, robotic engineering, and machine learning technologies (Abioye et al.,2021). 
Contrastingly, China’s contribution to AI's intellectual property predominantly revolves around enhancing data 
processing and digital information transmission systems, underscoring its strategic and technological directives 
within the AI arena (Ahmed et al.,2022).  

China’s prominence in the AI industry is unmistakable, with its enterprises ranking second worldwide by volume. 
Beijing, in particular, has emerged as a critical nucleus for AI innovation, indicative of the city’s role as a cradle 
for pioneering efforts (Jan et al.,2023). As of mid-2018, the global count of AI enterprises reached 4,925, with 
Chinese firms contributing to 1,011, affirming China's significant role in the AI industry. Other cities like 
Shanghai, Shenzhen, and Hangzhou also play pivotal roles in housing major AI enterprise clusters (Li et 
al.,2021). 

In fostering innovation and steering the application of AI technologies towards catalyzing high-quality economic 
growth, China’s government has enacted a series of comprehensive policies. These initiatives aim to create an 
environment conducive to AI innovation while ensuring the ethical deployment of AI applications. In 2022, the 
Ministry of Science and Technology (MOST), the Ministry of Industry and Information Technology (MIIT), and 
other departments jointly introduced the Guiding Opinions on Accelerating Scenario Innovation. This effort 
was expanded in 2023 with the introduction of the Interim Measures for the Management of Generative 
Artificial Intelligence Services by the State Net Information Office (SNIO) and other departments, reflecting 
China's commitment to aligning AI development with its national development goals and ethical standards (Paul 
et al.,2022).  

In recent years, a significant shift towards proactive policymaking at the local government level has been 
observed, aiming to enhance artificial intelligence (AI) capabilities across various regions in China. Since 2020, 
Shandong, Anhui, and Guangdong provinces have taken the lead, implementing a wide range of policies to 
cultivate an AI-conducive environment and address regional economic needs (Zhao et al.,2021). 

These regions exhibit a deliberate approach to AI development, strategically aligning their economic strengths 
with AI technological goals. Zhejiang, Guangdong, and Jiangsu provinces, in particular, have established 
specific targets for the advancement of AI chip technology by 2025, marking a pivotal aspect of their strategic 
planning (Wang et al.,2022).  

Guangdong Province aims to position itself at the forefront of AI chip technology. It has initiated strategies to 
accelerate the growth of integrated circuits and crucial industry chain components (Li & Zhou,2023). These 
strategies include supporting projects that enhance the resilience of the industrial chain and encourage leading 
enterprises to drive forward innovations in key areas such as core sensors and projects akin to China Resources 
Microelectronics. 

In contrast, Zhejiang Province has focused on the standardization of memory chips, microcontrollers, and 
specialized integrated circuits. The province is dedicated to developing a comprehensive set of standards that 
encompass IC design rules, tools, manufacturing processes, and product applications, with the goal of creating 
a well-defined framework for the AI chip ecosystem (Hu & Wang,2022).  

The concerted efforts of Guangdong and Zhejiang provinces to expand their AI capabilities reflect a collective 
goal to strengthen national innovation. By emphasizing AI chip development and standardization, these 
provinces aim to secure a crucial role in the global AI landscape, with the potential to influence the direction of 
technological progress and economic growth on an international scale (Chen & Huang,2021).  

The synergy between artificial intelligence (AI) in China and the sustainable development objectives across its 
provinces offers profound insights into AI's instrumental role in fostering environmental and urban 
management. The inception of sustainable development policies in 2015 was a pivotal moment for China, 
marking a commitment to address the environmental adversities spawned by rapid industrialization and 
urbanization, such as escalating pollution levels and potential resource shortages (Zhang et al.,2019; Shen et 
al.,2005). AI stands out as a pivotal tool in mitigating these environmental challenges, underscored by its 
efficiency and analytical prowess, which are critical in the journey towards sustainable development amid the 
fast-paced evolution of electronic information (Thamik & Wu,2022; Kharchenko et al.,2022).  

AI's application transcends various sectors, significantly aiding environmental surveillance through leveraging 
big data and sophisticated algorithms to forecast environmental trends and optimize resource distribution. This, 
in turn, enhances urban management strategies across provinces, facilitating a better allocation and utilization 
of resources (Sanchez et al.,2023; Feng & Xu,1999). Moreover, AI plays a critical role in climate and weather 
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research, aiding in greenhouse gas emission studies and enhancing air quality through the analysis of real-time 
data (Kaack et al.,2022; Cheong et al.,2022). Additionally, AI addresses information asymmetry and cognitive 
biases, thereby refining decision-making processes in environmental governance and propelling urban centers 
towards sustainable development via more intelligent energy use (Fazal et al.,2018; Şerban & Lytras,2020).  

The innovative essence of AI not only facilitates the reconfiguration and integration of novel elements but also 
accelerates the development of green technologies within the industrial sector. This progression supports a 
transition towards a more sustainable and eco-friendlier industrial framework, exemplifying AI's transformative 
potential in aligning China's technological advancements with its sustainability goals. 

AI emerges as a pivotal force in propelling sustainable development, manifesting its influence through two 
principal mechanisms: the optimization of energy structures and the facilitation of technological innovation. 
This duality not only underscores AI's instrumental role in promoting ecological integrity but also in advancing 
high-quality developmental paradigms. 

At the core of sustainable development lies the imperative to enhance energy efficiency and transition towards 
renewable energy sources. AI's role in this domain is critical, as evidenced by its ability to significantly reduce 
carbon footprints (Ahmad et al.,2022). Particularly in China, the application of AI presents transformative 
solutions to the historically inefficient utilization of fossil fuels, characterized by substantial energy losses across 
extraction, processing, and consumption phases (Xu & Song,2023). Through strategies that amplify energy 
productivity, reduce fossil fuel dependency, and promote integrated green AI approaches, AI champions 
sustainable urban development (Yigitcanlar et al.,2021).  

Beyond energy, AI's contribution to green technological innovations marks a critical pathway for constructing 
an ecological civilization and fostering high-quality development. By leveraging green technologies, companies 
can optimize resource utilization, diminish reliance on non-renewable energy sources, and thereby enhance the 
energy structure while curbing emissions (Jia & Wang,2024). Notwithstanding the challenges of financial 
outlays, market uncertainties, and extensive research cycles associated with green technology innovation, AI 
equips enterprises with the tools to innovate production processes. Through automating the collection and 
analysis of market demand data, employing intelligent strategies to rectify market trend discrepancies, and 
bolstering enterprise agility, AI stands as a beacon for technological innovation (Jia & Wang,2024; Dong et 
al.,2020).  

In essence, AI's dual impact on sustainable development encompasses both the amelioration of energy 
utilization and the stimulation of technological innovation. Positioned as a quintessential enabler in the journey 
towards environmental sustainability and economic prosperity, AI heralds a transformative era in sustainable 
development. Through its application, AI not only addresses the immediate challenges of energy efficiency and 
green technological advancement but also lays the groundwork for a sustainable future, underscoring its 
indispensable role in shaping a greener, more technologically advanced society. 

Based on the comprehensive analysis provided earlier, we formulate the following enhanced hypotheses and 
present the underlying reasons: 

Hypothesis 1 (H1): AI plays a significant role in advancing sustainable development across various sectors, 
including energy efficiency, technological innovation, and urban management. 

AI's capacity to analyze large datasets, optimize resource allocation, and forecast environmental trends 
enhances energy efficiency and promotes the use of renewable resources. Its role in automating and refining 
production processes, along with driving green technological innovations, directly contributes to the ecological 
and economic aspects of sustainable development. 

Hypothesis 2 ( H2 ): The advancement of AI technology fosters a shift towards renewable energy sources, 
decreasing reliance on traditional fossil fuels, and thereby amplifies its effectiveness in promoting sustainable 
development. 

By optimizing energy consumption patterns and improving energy productivity, AI mitigates the inefficiencies 
associated with fossil fuel utilization. Through intelligent energy management systems and predictive analytics, 
AI facilitates the transition to cleaner energy sources, reducing carbon emissions and enhancing energy 
sustainability. 

Hypothesis 3 (H3): AI accelerates sustainable development by catalyzing technological innovation, with regions 
at lower technological levels poised to gain more significantly due to the latecomer advantage. 

Regions with underdeveloped technological infrastructures have a unique opportunity to leapfrog to advanced 
AI-driven solutions, bypassing intermediary stages of technological evolution. This latecomer advantage allows 
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for the rapid adoption of AI technologies, which can lead to substantial improvements in energy efficiency, 
environmental management, and economic growth, thereby contributing to sustainable development goals. 

3. Methodology 

This study examines the impact of AI on sustainable development across China's provinces, using a balanced 
panel dataset covering 30 regions from 2006 to 2018, excluding Tibet, Hong Kong, Macao, and Taiwan due to 
data limitations. The dataset selection is strategic to align with the study's goals, sourcing variables from 
authoritative publications such as various China Statistical Yearbooks and supplemented by data from the 
National Bureau of Statistics (NBS) and EPS databases, along with historical inputs from the International 
Federation of Robotics (IFR). To address gaps in data, linear interpolation is employed, preserving dataset 
integrity. Furthermore, to counter heteroscedasticity and enhance the reliability of the analysis, a 
transformational approach is utilized by log-transforming certain variables. This rigorous methodology 
facilitates a nuanced understanding of AI’s contribution to sustainable development within these regions. 

This study delves into the practical application of the United Nations' SDGs, encompassing seventeen expansive 
objectives primarily targeted at national levels. Recent literature underscores the significance of these SDGs 
within local governance, blending theoretical and empirical insights to advocate for their municipal-level 
applicability (Wang et al.,2022; Abraham,2021). Due to the scope of available data, our analysis concentrates 
on five particular SDGs—emphasizing clean water, sustainable urban development, responsible consumption, 
climate action, and the conservation of terrestrial ecosystems—as systematically categorized in Table 1.  

To gauge advancements towards these specified SDGs, our research employs the entropy weight method for 
constructing a Sustainable Development Index (SDG Index). This technique, widely recognized for its efficacy 
in developing various indices including the SDG Index (Abraham,2021; Wang  et al.,2022), engages minimum-
maximum normalization to translate raw data into dimensionless, comparable indices. The methodological 
process unfolds as follows: (1) Data Normalization: Initial transformation of raw data through minimum-
maximum normalization renders it into dimensionless units, facilitating uniform comparison across different 
indicators. (2) Entropy Value Calculation: Subsequent computation of each indicator's entropy value reflects 
data dispersion, indicating the relative importance of each indicator within the overall index. (3) Weight 
Assignment: Determination of individual indicator weights based on their entropy values, where indicators with 
higher entropy signify more uniform data distribution and hence, hold lesser weight within the index. (4) Index 
Compilation: The final step aggregates these normalized values, weighted according to their significance, to 
derive the comprehensive SDG Index, thereby offering a holistic measure of sustainable development 
progression. 

Table 1.Five Sustainable Development Goals (SDGs) and Metrics 

SDG Benchmark 

SDG6 : Clean 
Water and 
Sanitation 

- Total domestic water use  

（Source: China Provincial Statistical Panel Database） 
 - Daily urban wastewater treatment capacity 

（Source: China Provincial Statistical Panel Database） 

SDG11 : 
Sustainable 
Cities and 
Communities 

- Greening coverage of built-up areas  

（Source: China Provincial Statistical Panel Database） 
- Area of roads swept and cleaned  

（Source: China Provincial Statistical Panel Database） 

 - Per capita non-hazardous domestic waste disposal  

（Source: China Provincial Statistical Panel Database） 

 - Public transport accessibility index 

（Source: China Provincial Statistical Panel Database） 

SDG12 : 
Responsible 
Consumption 
and 
Production 

- Ammonia emissions per capita  

（Source: China Provincial Statistical Panel Database） 

- Sulfur dioxide emissions per capita  

（Source: China Provincial Statistical Panel Database） 
- General solid waste generation per capita  

(Source：China Elastic Database) 

- Hazardous waste generation per capita  

(Source：China Elastic Database) 

- CO2 per capita 
(Source: China Carbon Accounting Database) 
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SDG13 : 
Climate 
Action 

- Sulfur dioxide emissions  

（Source: China National Bureau of Statistics） 
- Total non-renewable energy consumption 

（Source: China National Bureau of Statistics） 

- NOX emissions 

（Source: China National Bureau of Statistics） 

- Fume and dust emissions 

（Source: China National Bureau of Statistics） 

- Renewable energy share in total energy consumption 

（Source: China National Bureau of Statistics） 

SDG15 : Life 
on Land 
(Terrestrial 
Organisms) 

- Forest cover 

（Source: China National Bureau of Statistics） 

- Afforestation area as a proportion of forest area 

（Source: China National Bureau of Statistics） 
- Percentage of investment in ecological construction and protection  

（Source: China National Bureau of Statistics） 

- Protected areas as a percentage of total land area 

（Source: China National Bureau of Statistics） 

In the realm of data science, the process of standardization is crucial for eliminating the influence of external 
factors such as the magnitude and scale of indicators. This study carefully selects both positive and negative 
indicators for in-depth analysis. In this paper, y

t,i,j
 represents the standardized score of the jth indicator for the 

ith object in year t, while xt,i,j denotes the raw value of the jth indicator for the ith object in the same year. 

For positive indicators, the calculation method for the standardized score is as follows:  

y
t,i,j

=(xt,i,j − min xt,i,j) (max xt,i,j − min xt,i,j)⁄  (1) 

For negative indicators, the standardized score is calculated using the formula: 

y
t,i,j

=(max xt,i,j − xt,i,j) (max xt,i,j − min xt,i,j)⁄  (2) 

After the data standardization, a “0” value may appear. To avoid adverse effects on subsequent models, this 
study makes a minor adjustment to the standardized data by incrementing each value by 0.00000001 units. 

This data standardization process not only helps ensure consistency and comparability of the data but is also 
vital for the subsequent data analysis and model-building processes. Through such processing, differences 
between data values can be effectively minimized, enhancing the accuracy and reliability of model analyses. 
Moreover, this process emphasizes the importance of data preprocessing, demonstrating the rigorous attitude 
towards precision and detail handling in the field of data science. In summary, the standardization method 
described in this paper not only elevates the professionalism and theoretical depth of data handling but also 
provides a solid foundation for subsequent data analysis, ensuring the accuracy and reliability of research 
outcomes. 

In the context of data normalization, the process entails the adjustment of raw data to a common scale, 
facilitating a meaningful comparison across different dimensions. In this scenario, the sample comprises a 
collection of data spanning d years and m provinces. The normalized value, represented as p

t,i,j
, is calculated by 

dividing the raw value y
t,i,j

 by the sum of all raw values y
t,i,j

 across the entire dataset, as delineated by the formula: 

p
t,i,j

=y
t,i,j

∑ ∑ y
t,i,j

m
i=1

d
t=1⁄  (3) 

This methodology ensures that the resultant normalized values are reflective of the relative importance or 
contribution of each data point within the broader context of the dataset. The normalized values are thus 
bounded within a specific range, typically between 0 and 1, which allows for a direct comparison of the 
magnitude or influence of each element, irrespective of the initial scale of measurement. In the realm of 
quantitative analysis, the determination of indicator weights is a pivotal step to ensure the accuracy and 
relevance of composite index assessments. To achieve this, the calculation of information entropy and 
differentiation coefficient is employed to ascertain the relative importance of each indicator within a given 
dataset. 

Information entropy, denoted by Ej , quantifies the degree of uncertainty or disorder within the data. It is 

calculated using the formula: 
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Ej=−k ∑ ∑ pt,i,jln(pt,i,j)
m
i=1

d
t=1  (4) 

where k is a constant equal to 1, and pt,i,j represents the normalized value of the indicator for the jth attribute 

across the sample of d years and m cities. 

Subsequently, the entropy weight value, denoted by Wj, is derived from the information entropy. This weight 

reflects the significance of each indicator in shaping the overall assessment. The entropy weight is calculated as: 

Wj=(1 − Ej) [∑ pt,i,j(1 − Ej)
m
j=1 ]⁄  (5) 

The weights thus determined facilitate a more nuanced interpretation of the composite index, as they account 
for the inherent variability and discrimination power of the underlying indicators. This methodology is 
particularly useful in multi-criteria decision-making scenarios, where a balanced and informed evaluation is 
paramount. The integration of information entropy and differentiation coefficient into the weight determination 
process enhances the robustness of the analysis by minimizing the influence of extraneous factors and 
emphasizing the indicators that contribute most significantly to the variance within the dataset. Consequently, 
decision-makers can rely on these weights to guide the prioritization of actions and resources in response to the 
assessed conditions. 

The section delineates the methodology for the formulation of a composite index, which serves as a quantitative 
metric for assessing sustainability. This is achieved through the aggregation of various indicators weighted 
according to their relative importance in the context of the sustainability assessment. The mathematical 
expression for calculating the sustainability index, denoted as Zt,i,j,  is as follows: 

Zt,i,j=∑ Wj
m
j=1 Yt,i,j (6) 

In this equation, Wj represents the weight assigned to the j-th indicator, reflecting its significance in the overall 

sustainability evaluation. Yt,i,j signifies the score of the i-th indicator for the j-th evaluation unit, standardized 

on a scale from 0 to 100 to ensure consistency in measurement across different indicators. The product of Wj 

and Yt,i,j is then summed across all m indicators to yield the composite sustainability index Zt.i,j, the results in 

sustainability score for each SDGS by equation (1)-(6). Therefore, the variable SDG6, SDG11, SDG12, SDG13 and 
SDG15 is calculated. 

Esit,i=∑ Wθ
m
θ=1 Yt,i,θ (7) 

Wθ represents the fraction Zt,i,j derived from each SDG objective, again brought into the results of equations (1)-

(5), θ represents one of SDG6 , SDG11 , SDG12 , SDG13  and SDG15 , is consistent with the above equations. Yt,i,θ 

represents the score after the Zt,i,j is normalized by equations (1)-(2). Through equations (7), the final composite 

sustainability index Esii,t is obtained. (See Table 2) 

Table 2  Variables Descriptive Statistics 

Variables Definition Source 

Esii,t Sustainability index of five SDGs 
The entropy weight 
method 

ln Aii,t 
The installation density of industrial robots in various provinces is 
logarithmic processed 

International Federation 
of Robotics (IFR). 

Trai,t 
Trade openness of various provinces in China: total trade import and 
export volume of each province in China/GDP of each province in 
China 

China Provincial 
Statistical Panel 
Database 

Urbi,t 
Urbanization in various provinces of China: year-end urban 
population in each province of China/total population in each 
province of China 

ln Edui,t 
Education quality in various provinces of China: Enrollment 
numbers of higher education institutions divided by province and 
logarithmic processing 

ln Popi,t 
Annual resident population of various provinces in China, and 
logarithmic processing 

ln PIAi,t The number of people with Internet access above the scale National Bureau of 
Statistics of China. ln CCi,t Coal consumption 
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ln PAi,t The number of patent applications from industrial enterprises 
China Provincial 
Statistical Panel 
Database 

This index encapsulates the multidimensional aspects of sustainability, offering a holistic measure that 
facilitates comparison and analysis across different entities or time periods. In crafting this index, meticulous 
attention is directed towards the selection and weighting of indicators, which are foundational to the integrity 
and applicability of the sustainability index. The process underscores the importance of a robust methodological 
framework that not only incorporates a comprehensive suite of relevant indicators but also assigns weights that 
accurately reflect their respective contributions to the overarching sustainability goals. This approach ensures 
that the composite index serves as a reliable and insightful tool for sustainability assessment, enabling 
stakeholders to identify areas of strength and opportunities for improvement. 

In the discourse on the advancement of AI, the utilization of industrial robots emerges as a pivotal indicator. 
This study adopts the metric of installation density of industrial robots as a tangible measure to assess the 
progression of AI across various regions. The installation density of industrial robots, symbolized by Aii,t, serves 

as a quantifiable representation of AI development within a specified province (i) and time period (t). It is 
calculated using the following expression: 

Aii,t=∑ Rj,t × Ii,j,tj   

Where Aii,t delineates the installed density of industrial robots in province i during period t, Rj,t represents the 

installed density of industrial robots within industry j  for the corresponding year t , and Ii,j,t  indicates the 

proportion of employees in industry j within province i for the year t, specifically the ratio of industry-specific 
employment to the total employed population within the province.  

This approach relies on data concerning the installed capacity of industrial robots across 14 distinct industries 
as reported by the International Federation of Robotics (IFR). By correlating this data with the National 
Economic Industry Classification and Codes (GB/4754-2011), encompassing 13-43 subdivided industries, an 
estimation of the installed capacity of industrial robots for each industry within China is achieved. The installed 
capacity is then divided by the total number of employees within each respective industry to ascertain the robot 
density from 2006 to 2018. 

The variable ln Aii,t , which denotes the installation density of industrial robots, is often characterized by a 

positively skewed distribution, the application of logarithmic transformation serves to mitigate this skewness, 
thereby achieving a more symmetrical distribution. Additionally, it transforms potential multiplicative 
relationships with other variables into additive ones, simplifying the modeling process. 

Recognizing the potential for estimation bias stemming from excluded variables, the study incorporates an array 
of control variables intrinsically tied to the dimensions of sustainable development. These encompass the quality 
of education (Edui,t), demographic magnitude (Popi,t), the degree of trade openness (Trai,t), and urbanization 

metrics (Urbi,t) of province i in period t, each meticulously quantified to elucidate their respective impacts on 

sustainability outcomes. 

Edui,t is quantified through the enrolment figures of tertiary education institutions, positing that an elevated per 

capita education quality augments the sustainability paradigm. ln Edui,t measured by enrollment numbers, may 

exhibit multiplicative relationships with other variables, log transformation not only linearizes these 
relationships but also addresses any skewness present in the data. Popi,t is gauged via the annual end-of-year 

residential counts across various regions, providing insights into demographic influences on sustainable 
development. The variable ln Popi,t, representing the annual resident population, is inherently positive and can 

encompass a wide range of values, log transformation ensures the maintenance of non-negativity and effectively 
manages the variability inherent in large population figures. 

 Trai,t is derived from the proportion of total exports and imports relative to the regional Gross Domestic Product 

(GDP), with higher ratios indicative of enhanced sustainability through global trade integration. Urbi,t  are 

assessed through the ratio of the end-of-year residential population to the overall regional populace, reflecting 
the developmental potential and the role of urbanization in shaping the interplay between AI and sustainable 
development. 

PIAi,t is the number of people with Internet access above the scale (10,000 people), is used as a tool variable, 

which is subject to positive skewness, ln PIAi,t, representing the log transformation is instrumental in addressing 

this skewness and aligns with the rationale for transforming other variables.  CCi,t is coal consumption (million 

tonnes) and PAi,t is the number of patent applications from industrial enterprises. They are treated as a cross-

multiplier for mechanism tests. To facilitate the calculation, we logarithmancies some of the variables. ln CCi,t 



24  

 

  

Yufeng Wang et al. / J INFORM SYSTEMS ENG, 10(5s) 

can manifest skewness and may exhibit multiplicative relationships with other economic indicators, log 
transformation proves beneficial in this context by normalizing the data and facilitating a more straightforward 
analysis. ln PAi,t can be substantial and positively skewed, log transformation mitigates the influence of large 

numbers, thereby achieving a more symmetrical distribution and enhancing the interpretability of the data. 

To investigate the potential impact of AI development on sustainable development, a fixed-effect model was 
used (Acemoglu & Restrepo,2020). The construction equation is as follows: 

Esii,t=β0 + β1 ln Aii,t + β2 ln Edui,t + β3 ln Popi,t + β4Trait + β5Urbitit + εit  

Where i represents province, t represents time (year), and Esii,t represents the level of sustainable development 

of province i in period t. ln Aii,t means the indicator representing the level of AI development of province i in 

period t , ln Edui,t  represents the level of education of province i  in period t , ln Popi,t  represents the level of 

population of province i in period t, Trait represents the level of trade of province i in period t, Urbit represents 
the level of urbanisation of province i in period t, εit represents the constant term, and β0 represents a constant 
term, β1, β2, β3, β4, β5represents the coefficients of the corresponding explanatory variables. 

Given the inherent uncertainty in identifying the true model within the quantitative framework, ascertaining 
the veracity of the model under investigation is unfeasible. Consequently, the implementation of robustness 
checks emerges as an imperative strategy to preclude the prospect of model misspecification. This inquiry 
advances a quartet of robustness verification techniques: altering the pivotal explanatory variables; modulating 
the temporal frequency of the dataset; leveraging the System Generalized Method of Moments (SGMM) for 
model estimation, which incorporates lagged variable terms as instrumental variables to address endogeneity; 
and employing alternative metrics for re-evaluation within the ambit of divergent modeling paradigms. 

The methodological exposition of this study is underpinned by a triad of scholarly approaches. Initially, the 
synthesis of pertinent scholarly discourse is undertaken across two thematic domains: the intersection of 
artificial intelligence with sustainable development, and the contextualization of artificial intelligence within the 
Chinese milieu. Subsequently, the amalgamation of qualitative and quantitative analytical methodologies is 
executed to furnish a more precise and succinct elucidation of conceptual quandaries, including the delineation 
and taxonomy of the SDGs and the evolutionary trajectory of artificial intelligence. Ultimately, an empirical 
investigation is undertaken to appraise the efficacy of artificial intelligence in the realization of the 
quintessential SDGs. The study extends its purview to dissect the influence of artificial intelligence on the 
sustainable development trajectory of various provinces in China, through an analytical lens focused on a 
dataset spanning the years 2006 to 2018. 

4. Result 

The descriptive statistical analyses of the sustainable development indexes are: (1) Esii,t: The mean value of 

0.223 with a standard deviation of 0.084 indicates moderate variability in the sustainability index across 
different entities or time periods. The range from 0.02 to 0.585 suggests significant differences in environmental 
sustainability performance. (2) SDG6: The mean of 0.218 with a standard deviation of 0.175 shows considerable 
variation in achieving this goal, highlighting disparities in access to clean water and sanitation across different 
regions. 

(3) SDG11: The lower mean value of 0.177 compared to other SDGs, combined with a standard deviation of 0.126, 
underscores the challenges cities face in becoming sustainable. The broad ranges from 0.015 to 0.796 indicates 
that while some communities are making significant progress, others are far behind. (4) SDG12: The high mean 
value of 0.806 with a relatively low standard deviation of 0.109 suggests that, on average, there is a strong 
movement towards responsible consumption and production, though the range indicates that some areas still 
have considerable room for improvement. 

(5) SDG13:  A mean of 0.684 and a standard deviation of 0.185 indicate varied but generally positive global efforts 
towards acting on climate change, though the substantial range reflects the different stages of climate action 
implementation across regions. (6) SDG15: The mean value of 0.219, close to that of SDG 6 and SDG 11, with a 
standard deviation of 0.083, indicates moderate variability in efforts to protect life on land. The range from 
0.005 to 0.384 suggests that terrestrial biodiversity conservation efforts vary significantly across different areas. 
(7) Descriptive statistics of SDGS indicators see Annex Table 1. 

The economic implications of these findings are multifaceted. Ensuring environmental sustainability and 
achieving the SDGs require substantial financial investments but also present significant economic 
opportunities. Investments in clean water and sanitation (SDG6) can lead to improved health outcomes and 
productivity, while sustainable cities (SDG11) can enhance economic growth and quality of life. Responsible 
consumption and production (SDG12) can drive innovation and efficiency, reducing waste and saving costs. 
Climate action (SDG13) is crucial for mitigating the economic risks posed by climate change, such as extreme 
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weather events and resource scarcity. Preserving life on land (SDG15) is vital for maintaining ecosystem services 
that underpin economic activities, including agriculture, forestry, and tourism. 

Achieving these SDGs not only addresses critical environmental and social issues but also creates economic 
value by fostering sustainable industries, creating jobs, and stimulating sustainable growth. However, the 
variability in progress highlighted by the data indicates that achieving these goals will require targeted 
investments, tailored policy interventions, and international cooperation to address the disparities and leverage 
the economic benefits of sustainability. The possible explanation is that the relevant indicators of SDG6 rely on 
the governance capacity of urbanization, and the economic conditions of different provinces and cities in China 
today vary greatly in terms of human, material, and financial resources for clean drinking water. 

The descriptive statistical analyses of the control variables are: (1) ln Aii,t: it exhibits a mean of 2.770, reflecting 

a significant emphasis on industrial automation. The standard deviation of 1.235 points to considerable 
variability in the adoption of robotics across provinces, with a broad range from 0.097 to 5.690. It highlights 
the uneven but growing adoption of automation technologies across provinces. This shift towards robotics and 
automation signifies a move towards high-value manufacturing and productivity enhancement but also 
necessitates economic adjustments in terms of labor market dynamics and skill requirements. (2) Trai,t: With a 

mean of 3.143, signifies a moderate level of trade activity relative to GDP. The large standard deviation of 3.624 
and a wide-ranging dataset from 0.175 to 17.113 underscore the disparities in trade intensity among provinces. 
Regions with higher trade openness benefit from global market access and economic diversification, though 
they may also face greater exposure to international economic fluctuations and competition. 

(3) Urbi,t: It has a mean of 0.545, indicating a substantial proportion of the population residing in urban areas. 

The standard deviation of 0.138 and a narrow range from 0.275 to 0.896 suggest a general trend towards 
urbanization with minor provincial variations. This metric highlights the ongoing urban migration and the 
concentration of economic activities in urban areas, driving growth but also imposing demands on 
infrastructure, housing, and services. (4) ln Edui,t:  It has a high mean of 4.038, suggesting a strong focus on 

tertiary education. The standard deviation of 0.976 and a range from 0.846 to 5.366 reflect variations in 
educational investment and access. It points to the critical role of higher education in fostering human capital 
development essential for innovation and economic competitiveness. Variations across provinces in this regard 
may affect their ability to attract and nurture talent and technological enterprises. 

(5) ln Popi,t:  It has a mean of 7.807, indicating large population sizes with a standard deviation of 0.460. The 

dataset ranges from 6.244 to 8.749, demonstrating a moderate variation in population density across provinces. 
It points to the critical role of higher education in fostering human capital development essential for innovation 
and economic competitiveness. Variations across provinces in this regard may affect their ability to attract and 
nurture talent and technological enterprises. (6) ln PIAi,t: It has a mean of 6.934, reflecting widespread internet 

connectivity. The standard deviation of 1.049 and a range from 3.367 to 9.052 highlight the differing levels of 
digital inclusion. It reflect the scale of the labor force and consumer markets, which are vital drivers of economic 
activity. However, demographic shifts also pose challenges in terms of employment, social security, and service 
provision. 

(7) ln CCi,t: It has a mean of 9.155, pointing to significant energy use from coal. The standard deviation of 0.914 

and a range from 5.621 to 10.798 indicate variability in energy sources and environmental policies. It highlights 
the ongoing reliance on coal as a primary energy source, presenting significant challenges for sustainability and 
environmental management. Efforts to diversify energy sources and increase energy efficiency are crucial for 
sustainable development. (8) ln PAi,t: It has a mean of 8.586, suggesting a robust culture of innovation and 

intellectual property protection. The standard deviation of 1.586 and a range from 4.344 to 12.395 reflect the 
diversity in innovation capabilities across provinces. 

The dataset and observations presented elucidate the complex interplay between economic advancement and 
sustainability initiatives across the provinces of China. Embedded within these metrics is a narrative deeply 
rooted in the contemporary global shifts towards digitization, urban growth, international commerce, and 
sustainable developmental paradigms. Technological innovation, evidenced by the widespread adoption of 
industrial robots and a significant number of patent filings, alongside international trade, urban developmental 
strategies, and educational enhancements, are pivotal in augmenting both productivity and competitive edge 
within these regions. Nonetheless, such progress is not devoid of challenges. The imperative to manage 
environmental repercussions, exemplified by coal consumption rates, the necessity for equitable distribution of 
educational and technological resources, and the hurdles presented by rapid urbanization, are paramount 
concerns. The disparity in these indicators among the provinces accentuates the variegated economic terrain 
within China, highlighting the exigency for policy frameworks that are both adaptive and region-specific to 
leverage economic potentials while addressing the contingencies associated with sustainability and equitable 
progression. 
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Illustratively, the period from 2006 to 2018 marked a notable surge in AI development within China's provinces, 
with a pronounced acceleration in the eastern coastal and central provinces (See Figure 5 and 6). This trend is 
attributable not to an overt dominance but to the geographical positioning and economic stature of these regions, 
fostering a conducive environment for AI integration and advancement. Predominantly, these regions have 
demonstrated a propensity towards the utilization of AI in the conceptualization and execution of smart city 
initiatives. Such a strategic inclination towards embedding AI technologies in urban management and 
infrastructural frameworks not only augments operational efficiency and intelligence but also propels a cycle of 
sustainable development. Concurrently, the industrial sectors in these locales exhibit a readiness towards digital 
transformation and the modernization of erstwhile conventional practices, spurred by a multitude of application 
scenarios and necessities. In particular, the application of AI technologies has been instrumental in elevating 
manufacturing processes, enhancing product quality, and thereby, catalyzing industrial refinement and 
transition. 

  

Figure.5 AI Index in 2006 Figure.6 AI Index in 2018 

4.1. Benchmark Regression 

In the preparatory phase of the benchmark regression analysis, an examination for multicollinearity among the 
explanatory variables was conducted, ensuring the robustness of the regression framework. Subsequent to this, 
a Hausman specification test was employed to determine the optimal model between a fixed effects and a 
random effects framework for the analysis. The outcome of the Hausman test, indicated by a p-value of 0.0000, 
led to the rejection of the null hypothesis, thereby substantiating the preference for a fixed effects model as the 
more suitable approach for this investigation. 

The empirical findings of the benchmark regression analysis are delineated in Table 5, where Esii,t  as the 

dependent variable. The study harnesses four distinct estimation methodologies. Initially, the Pooled Ordinary 
Least Squares (Pooled OLS) technique is utilized, with the derived outcomes encapsulated within the inaugural 
column of Table 5. To address potential heteroskedasticity issues, the model estimation proceeded through the 
application of the Feasible Generalised Least Squares (FGLS) method, the results of which are cataloged in the 
second column of the same table. Further, an adjustment for individual-specific effects within the 
comprehensive sample was achieved through the implementation of a fixed effects (FE) strategy, with the 
corresponding results presented in the third column of Table 5. Culminating the methodological approach, the 
model estimation was refined through a two-way fixed effects (Bidirectional FE) technique, incorporating 
controls for both individual and temporal effects, the outcomes of which are displayed in the fourth column of 
Table 5. 

Table 3 Benchmark regression results 

Coefficient Pooled OLS FGLS FE Bidirectional FE 

βln Aii,t
 0.038*** 0.013** 0.018*** 0.031*** 

 (0.003) (0.005) (0.003) (0.004) 
βln Edui,t

 0.039*** 0.039*** -0.083*** -0.01 

 (0.003) (0.003) (0.014) (0.010) 
βln Popi,t

 -0.033*** -0.005* -0.012* -0.007* 

 (0.006) (0.003) (0.006) (0.004) 
βTrai,t

 0.020*** 0.003*** -0.006*** -0.007*** 

 (0.001) (0.001) (0.001) (0.001) 
βUrbi,t

 -0.349*** 0.048 0.213*** 0.151*** 

 (0.042) (0.030) (0.069) (0.054) 



27  

 

  

Yufeng Wang et al. / J INFORM SYSTEMS ENG, 10(5s) 

β0 0.344*** 0.051*** 0.506*** 0.221*** 
 (0.050) (0.029) (0.071) (0.052) 

R2 0.626 0.841 0.572 0.842 

Notes:Standard errors in parentheses.* p < 0.1,** p < 0.05,*** p < 0.01. 

From Table 3, the coefficients and their economic significance are: (1) βln Aii,t
: The positive coefficients across all 

models, with values ranging from 0.013 to 0.038, signify that an increase in the density of industrial robots is 
consistently associated with an improvement in SDG performance. This supports H1 . This suggests that 
technological adoption and automation within industries contribute positively to achieving sustainable 
development goals, likely through enhanced productivity and efficiency. 

(2) βln Edui,t
: The coefficients for education quality exhibit variation across models, ranging from -0.083 to 0.039. 

The negative coefficients in the FE and Bidirectional FE models indicate that beyond a certain threshold, 
increases in education quality might not uniformly contribute to SDG performance, possibly due to the complex 
dynamics between education investment and immediate sustainable outcomes. However, the positive 
coefficients in the Pooled OLS and FGLS models highlight the fundamental role of education in fostering 
sustainable development. 

(3) βln Popi,t
: Negative coefficients for population across all models, with values from -0.005 to -0.033, suggest 

that higher population levels may pose challenges to sustainable development, possibly due to increased 
resource demand and environmental pressures. 

(4) βTrai,t
: The transition from positive coefficients in the Pooled OLS and FGLS models to negative in the FE 

and Bidirectional FE models illustrates that while trade openness can initially promote SDG performance 
through economic growth and technology transfer, it might also introduce sustainability challenges, such as 
environmental degradation and increased inequality, requiring careful management. 

(5) βUrbi,t
: Urbanization shows a negative impact on SDG performance in Pooled OLS but a positive impact in 

FGLS, FE and Bidirectional FE models. This reversal underscores the dual nature of urbanization, where, 
despite its association with economic development, challenges in sustainable urban planning and resource 
management can affect SDG outcomes. The positive coefficients in the FE and Bidirectional FE models may 
reflect the benefits of well-managed urban growth, such as improved infrastructure and services that contribute 
to sustainability. 

(6) β0  and R2 : The intercepts indicate the baseline SDG performance across models, with the R^2 values 
demonstrating the proportion of variance in the SDG performance explained by the models. Notably, the 
Bidirectional FE model, with an R^2 of 0.842, provides the most comprehensive explanation of SDG 
performance variability, highlighting the significance of accounting for both individual and time effects in 
understanding the determinants of sustainable development. 

4.2. Robustness Tests 

To enhance the integrity and accuracy of the findings delineated in the benchmark regression analysis, this 
investigation employed a multifaceted robustness testing framework, as outlined in Table 4. This rigorous 
approach encompasses four distinct methodologies aimed at mitigating potential biases and ensuring the 
reliability of the results. Initially, the analysis proceeded with a recalibration of the key explanatory variables, 
specifically opting for “the number of industrial robotic devices (ln RBi,t)” as an alternative metric to re-evaluate 

the model. This adjustment serves to assess the consistency of the model’s outcomes considering variations in 
the explanatory variables. Subsequently, the temporal scope of the study sample underwent refinement to 
address and rectify potential biases stemming from sample extremes. This entailed the customization of the 
“sustainability index (Esiwi,t)”, thereby ensuring that the temporal dimension of the data does not skew the 

estimation results. 

Table 4 Robustness test results 

Explanatory Variable ln RBi,t Esiwi,t GMMi,t REi,t 

Coefficient 

βln Aii,t
 1.193*** 0.028*** 0.050*** 0.038*** 

 (0.045) (0.004) (0.008) (0.005) 
βln Edui,t

 0.400*** -0.027*** 0.040*** 0.024*** 

 (0.107) (0.010) (0.003) (0.007) 
βln Popi,t

 -0.015 -0.008** -0.034*** -0.006 

 (0.042) (0.004) (0.005) (0.004) 
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βTrai,t
 -0.043*** -0.005*** 0.023*** -0.006*** 

 (0.009) (0.001) (0.002) (0.001) 
βUrbi,t

 2.428*** 0.172*** -0.392*** 0.159*** 

 (0.566) (0.051) (0.040) (0.047) 
β0 1.855*** 0.279*** 0.332*** 0.081* 

 (0.547) (0.049) (0.056) (0.047) 

Year fixed Y Y Y Y 

Individual fixed Y Y Y Y 

R2 0.989 0.844 0.713 0.834 

Notes:Standard errors in parentheses.* p < 0.1,** p < 0.05,*** p < 0.01. 

In addressing the critical concern of endogeneity, the study leveraged the “System Generalised Method of 
Moments (GMMi,t)”. This methodological choice involves the incorporation of lagged terms of the variables as 

instrumental variables, thus providing a robust framework for estimating the model while mitigating 
endogeneity issues. The final strand of the robustness testing entailed the reevaluation of the model using a 
random effects framework, denoted as “REi,t ”. This alternative approach allows for the examination of the 

consistency and reliability of the model’s findings across different statistical methodologies. 

From Table 4, the coefficients and their economic significance are: (1) βln Aii,t
: Across all models, the coefficient 

for technological innovation remains positive, with the highest impact noted when using the number of 
industrial robotic devices as the explanatory variable (1.193). This underscores the significant role of 
technological advancement, particularly automation, in promoting sustainable development, likely through 
increased efficiency and productivity. 

(2) βln Edui,t
: Education shows a generally positive effect on sustainable development across different estimation 

methods, except when the sustainability index is adjusted, suggesting potential short-term trade-offs between 
education investments and immediate sustainability outcomes. However, the overall positive coefficients 
highlight the importance of human capital development in achieving long-term sustainable growth. 

(3) βln Popi,t
: The population variable exhibits mixed results, with a significant negative impact in the GMM 

model, suggesting that higher population levels may pose challenges to sustainability efforts, possibly due to 
increased resource consumption and environmental pressures. 

(4) βTrai,t
:  Trade openness presents varied effects, with a notably positive impact when estimated using GMM, 

indicating that trade can contribute to sustainability under certain conditions, possibly through the diffusion of 
green technologies and practices. However, negative coefficients in other models suggest the complexity of 
managing trade's environmental impact. 

(5) βUrbi,t
: Urbanization's coefficients vary significantly across models, with a particularly positive impact when 

the focus is on industrial robotics, reflecting the potential of urban areas to leverage technology for sustainable 
urban management. Conversely, the negative coefficient in the GMM model indicates challenges related to 
urban sprawl and resource management. 

(6) β0 (Baseline Sustainability): The intercepts across models indicate the baseline level of sustainability, with 
varying degrees of significance, suggesting that inherent factors not captured by the model still play a crucial 
role in sustainable development. 

(7) Fixed Effects and R2 : The inclusion of year and individual fixed effects across all models ensures that 
unobserved heterogeneity is accounted for, enhancing the reliability of the results. The R2 values, indicating the 
proportion of variance explained by the models, vary, with the highest explanatory power observed in the model 
utilizing the number of industrial robotic devices, reinforcing the importance of technology in sustainable 
development. 

4.3. Instrumental variables regression analysis 

Addressing the intricate and potentially reciprocal causal nexus between AI development and sustainable 
development—wherein AI serves as a pivotal manifestation, yet sustainable development might concurrently 
act as an endogenous factor—this investigation adopts the instrumental variable (IV) strategy. Predicated on 
data sourced from the National Bureau of Statistics of China, this analysis designates the logarithm of the 
population with internet access (ln Popi,t) as the IV for the estimation process. The rationale behind selecting 

internet access as the instrumental variable rests on the premise that an augmented populace with internet 
connectivity furnishes a richer data repository for AI, thereby nurturing an conducive milieu for AI technological 
evolution within the region. This correlation posits that the proliferation of internet access should exhibit a 
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substantial linkage to AI development levels. Nonetheless, the escalation in internet usage aligns with a global 
trend propelled by scientific and technological advancements, maintaining an indirect association with 
sustainable development. This dynamic renders internet usage growth as an exogenous variable within this 
context. 

Table 5 delineates the outcomes derived from employing a two-stage IV estimation (2SLS) approach for AI 
analysis, whilst incorporating controls for both individual and year fixed effects (FE). From Table 5, in the initial 
phase, the logarithm of the population with internet access (ln Popi,t)) is utilized as the instrumental variable for 

AI development (ln Aii,t). The coefficient for ln Popi,t as an IV is indicating a positive and statistically significant 

relationship between the number of people with internet access and AI development. This phase underscores 
the premise that increased internet access within a population provides essential data resources, catalyzing AI 
technological progress. The inclusion of year and individual fixed effects, along with control variables, ensures 
the robustness of these findings, mitigating potential biases from unobserved heterogeneity. 

Table 5 Results of Regression Analysis of Instrumental Variables. 

 Phase I Phase II 
Explanatory Variable ln Aii,t ln Popi,t 

Coefficient 

βln Popi,t
(IV) 0.070***  

 (0.001)  
βln Aii,t

  0.117*** 

  (0.004) 
Year fixed Y Y 
Individual fixed Y Y 
Control variables Y Y 
Kleibergen-Paap  18.627 
Cragg-Donald Wald F  11.493 
F  11.49 

 Notes:Standard errors in parentheses.* p < 0.1,** p < 0.05,*** p < 0.01. 

The second phase focuses on the impact of AI development on sustainable development, with the coefficient for 
ln Aii,t standing at 0.004, also significant at the 1% level. This suggests that advancements in AI technology 

positively influence sustainable development, likely through innovations that enhance efficiency, resource 
management, and overall productivity. The presence of fixed effects and control variables in this phase too, 
ensures that the analysis accounts for both temporal and individual-specific factors, enhancing the credibility 
of the results. 

The Kleibergen-Paap statistic and the Cragg-Donald Wald F statistic, with values of 18.627 and 11.493 
respectively, along with an F statistic of 11.49, affirm the strength and validity of the instrumental variable used 
in this analysis. These statistical measures indicate that the instrument for AI development—population internet 
access—is both relevant and robust, providing a solid foundation for the IV regression analysis. 

In economic terms, the results from this two-phase IV regression analysis offer significant insights. The positive 
association between internet access and AI development highlights the critical role of digital infrastructure as a 
catalyst for technological innovation. Furthermore, the impact of AI on sustainable development underscores 
the potential of technology to drive economic growth in a manner that is both innovative and sustainable. These 
findings advocate for policies that not only promote technological advancements, such as AI, but also emphasize 
the expansion of digital access as a foundational step towards fostering an environment conducive to sustainable 
economic progress. 

This research integrates a series of analytical methods to rigorously evaluate the hypothesis positing a positive 
correlation between artificial intelligence (AI) and the achievement of the five Sustainable Development Goals 
(SDGs). Through the employment of four distinct estimation techniques, the study ascertains the contributory 
influence of AI on sustainable development. Subsequently, robustness checks are conducted utilizing the same 
number of methodologies to mitigate potential endogeneity concerns. The instrumental variable approach is 
further applied to address the issue of bidirectional causality, corroborating the initial hypothesis that AI indeed 
facilitates progress towards sustainable development. 

AI's reliance on sophisticated big data analytics to process extensive datasets underpins its pivotal role in 
enhancing sustainable development across various sectors. By optimizing resource distribution, forecasting 
environmental trends, and facilitating technological innovation, AI emerges as a crucial tool in energy 
management, public administration, and beyond. Its applications range from augmenting energy efficiency and 
advancing the adoption of renewable energy sources to driving automation and the intelligent transformation 
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of urban areas. Moreover, AI's contribution to green technological innovation underscores its capacity to 
harmonize ecological and economic dimensions of sustainability. 

The empirical findings underscore the instrumental role of AI in propelling the SDGs within Chinese provinces, 
thereby illustrating the technology's potential as a catalyst for sustainable development. Nonetheless, this 
investigation prompts further inquiry into regional and provincial disparities concerning AI's impact on SDGs. 
It raises pertinent questions regarding the variability in AI's effectiveness in promoting SDGs across different 
geographic locales, signaling the need for a nuanced understanding of AI's role in regional sustainable 
development trajectories. 

4.4. Heterogeneity analysis 

4.4.1. SDGs target heterogeneity 

The initial regression analysis reveals a notably positive association between AI and SDGs across the examined 
dataset. Notwithstanding, it emerges that the scope of SDGs and the efficacy of AI in addressing specific 
challenges exhibit variability. To delve deeper into the impact of AI development on sustainable development, 
the dataset was meticulously partitioned into five separate targets corresponding to distinct SDGs, with each 
target undergoing an independent regression analysis. The results, as detailed in Table 6, affirm the statistical 
significance across all targeted SDGs, suggesting that AI development exerts a supportive influence on the 
achievement of the SDGs. This analysis underscores AI's pivotal role as an enabler in the pursuit of sustainable 
development objectives, highlighting its potential across various domains of sustainability. 

From Table 6, AI development (βln Aii,t
) consistently shows a positive influence across all SDGs, with the 

strongest impact on SDG 13 (Climate Action) at 0.067 and the least on SDG 6 (Clean Water and Sanitation) at 
0.033. This pattern underscores AI's pivotal role in advancing sustainability goals through innovation, efficiency 
improvements, and by providing solutions to complex environmental challenges. 

Table 6 Sustainable development goal heterogeneity 

Explanatory Variable SDG6 SDG11 SDG12 SDG13 SDG15 

Coefficient 

βln Aii,t
 0.033*** 0.034*** 0.047*** 0.067*** 0.038*** 

 (0.009) (0.009) (0.008) (0.012) (0.008) 

βln Edui,t
 -0.017 0.006 -0.025 -0.019 0.049*** 

 (0.021) (0.021) (0.020) (0.027) (0.018) 

βln Popi,t
 -0.010 -0.006 -0.009 0.009 -0.016** 

 (0.021) (0.021) (0.020) (0.027) (0.018) 

βTrai,t
 -0.012*** -0.013*** -0.003 -0.003 -0.000 

 (0.002) (0.002) (0.002) (0.002) (0.002) 

βUrbi,t
 0.357*** 0.455*** -0.109 0.518*** 0.024 

 (0.109) (0.114) (0.104) (0.145) (0.096) 

β0 0.175* -0.065 1.011*** 0.364** 0.093 

 (0.106) (0.110) (0.101) (0.141) (0.093) 

Year fixed Y Y Y Y Y 

Individual fixed Y Y Y Y Y 

R2 0.545 0.767 0.829 0.665 0.375 

Notes:Standard errors in parentheses.* p < 0.1, ** p < 0.05, *** p < 0.01. 

The impact of education (βln Edui,t
) varies, with a significant positive effect on SDG 15 (Life on Land) at 0.049, 

indicating the critical role of education in biodiversity conservation and land management. Conversely, its 
negative coefficients in relation to other SDGs suggest complex dynamics between education investments and 
immediate sustainable outcomes, perhaps reflecting short-term trade-offs. The coefficient for population 
(βln Popi,t

) exhibits both negative and positive impacts, with a notable positive effect on SDG 13, suggesting that 

larger populations may drive innovations and actions beneficial to climate change mitigation. However, negative 
impacts on other SDGs indicate the challenges posed by increased demand for resources.  

Trade openness (βTrai,t
) shows a mostly negative impact on SDGs, particularly on SDG 6 and SDG 11 (Sustainable 

Cities and Communities), possibly highlighting the environmental and social pressures associated with 
increased trade activities. Urbanization (βUrbi,t

) demonstrates significant positive effects on SDGs related to 

water, sanitation, urban communities, and climate action, reflecting the potential of urban development to 
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support sustainable outcomes. However, the negative coefficient for SDG 12 (Responsible Consumption and 
Production) indicates challenges in managing consumption patterns and waste in urban settings. 

The intercepts ( β0 ) and R2  values, indicative of model fit, vary across SDGs, suggesting that while some 
sustainability goals are more directly influenced by the examined variables, others may be affected by additional, 
unexamined factors. The above empirical results further validate Hypothesis 1, which is that AI plays an 
important role in driving sustainable development in related areas such as energy efficiency and urban 
management. 

4.4.2. Regional heterogeneity 

Given the expansive territorial scope of China and the resultant disparities in geographic characteristics and 
resource allocations among its provinces, the influence of AI on sustainable development exhibits regional 
variation. To elucidate these regional disparities in the impact of AI development on the Environmental 
Sustainability Index (Esii,t), this study incorporates considerations such as the spatial adjacency of provinces 

and strategic administrative frameworks. The analysis delineates the country into three distinct regional sub-
samples—eastern, central, and western—and executes separate regression analyses for each. The findings, 
encapsulated in Table 7, provide a detailed examination of the regional divergences in the relationship between 
AI advancement and sustainable development metrics, highlighting the nuanced interplay between 
technological progress and geographic as well as administrative contexts in driving sustainability outcomes 
across different regions of China. 

From Table 7, in the Eastern Region, AI's positive influence on sustainable development is denoted by a 
coefficient of 0.040 (p < 0.05), highlighting its pivotal role in driving technological innovation and efficiency. 
Education also exhibits a beneficial impact, with a coefficient of 0.043 (p < 0.1), suggesting that higher 
educational levels significantly contribute to sustainability objectives in this technologically advanced region. 
Urbanization further supports sustainability, indicated by a coefficient of 0.169 (p < 0.05), reflecting the 
effective utilization of urban development for sustainable outcomes. 

The Central Region showcases a moderate positive effect of AI on sustainability, with a coefficient of 0.023 (p < 
0.01), albeit less pronounced than in the eastern provinces. Contrarily, education here inversely relates to 
sustainability goals, indicated by a coefficient of -0.039 (p < 0.05), signifying potential challenges in leveraging 
educational advancements towards sustainability. The population variable shows a negative effect (-0.016, p < 
0.05), highlighting demographic pressures on sustainable development. 

Table 7 Regression results of fixed effects model for regional differences 

Geographic Location Eastern Central West 

Coefficient 

βln Aii,t
 0.040** 0.023*** 0.032*** 

 (0.015) (0.007) (0.007) 

βln Edui,t
 0.043* -0.039** -0.003 

 (0.023) (0.017) (0.014) 

βln Popi,t
 0.013 -0.016** -0.002 

 (0.012) (0.007) (0.005) 

βTrai,t
 -0.005*** 0.002 0.003 

 (0.001) (0.005) (0.004) 

βUrbi,t
 0.169** 0.173* 0.197 

 (0.075) (0.089) (0.164) 

β0 -0.132 0.380*** 0.084 

 (0.142) (0.082) (0.081) 

Year fixed Y Y Y 

Individual fixed Y Y Y 

N 143 130 117 

R2 0.885 0.884 0.857 

Notes:Standard errors in parentheses.* p < 0.1, ** p < 0.05, *** p < 0.01. 
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In the Western Region, AI's contribution to sustainability is positively marked with a coefficient of 0.032 (p < 
0.01), suggesting a significant but varied role compared to the eastern and central regions. Urbanization exhibits 
an emerging trend towards supporting sustainability with a coefficient of 0.197, although not statistically 
significant, indicating the potential for urban development to enhance sustainability in these geographically and 
developmentally unique provinces. The analysis across regions reveals trade openness with divergent impacts; 
it slightly negatively affects the eastern region with a coefficient of -0.005 (p < 0.01), while showing a neutral to 
mildly positive influence in the central and western regions, illustrating the complexities of economic openness 
in relation to sustainability. 

The regression outcomes, imbued with year and individual fixed effects and substantiated by R2 values of 0.885, 
0.884, and 0.857 for the eastern, central, and western regions respectively, affirm the robustness of the analysis. 
These insights accentuate the need for regionally tailored policies that consider the specific economic, social, 
and environmental contexts to effectively harness AI, education, urbanization, and trade openness in advancing 
sustainable development across China's diverse geographic landscape. 

4.5. Analysis of transmission mechanisms 

Within the literature review on AI and its implications for sustainable development, a crucial question persists 
regarding the precise mechanisms through which AI exerts its influence. Previous analyses, including 
benchmark regressions and robustness checks, have affirmed AI's potential to bolster sustainable development. 
Nonetheless, the specific channels facilitating this impact remain to be clearly delineated. In response, this 
investigation meticulously explores the avenues through which AI contributes to sustainability, identifying two 
principal mechanisms: the energy structure effect and the technological innovation effect. 

The investigation employs coal consumption (million tonnes) as a surrogate measure for energy structure, 
sourcing data from the National Bureau of Statistics of China. An interaction term, synthesizing energy structure 
and AI, was integrated into the empirical framework to ascertain the presence of the energy structure channel. 
The dataset was bifurcated based on the median energy structure in 2018, delineating regions into high and low 
coal consumption categories. This segmentation facilitates an examination of AI's influence on sustainable 
development via alterations in the energy structure. (see Table 8) 

Concurrently, to gauge the technological innovation effect, the study incorporates the number of patent 
applications by industrial enterprises as an indicator of technological innovation, drawing from the China 
Provincial Statistical Panel Database. An analogous interaction term, amalgamating technological innovation 
and AI, was incorporated into the panel econometric model to scrutinize the technological innovation channel. 
The dataset was similarly divided into subsets of regions characterized by high and low levels of technological 
innovation, predicated on the 2018 national median. This bifurcation elucidates the degree to which AI fosters 
sustainable development through stimulating technological innovation. 

Table 8 Mechanistic regression results with energy structure 

  Interaction Low CCi,t High CCi,t 

Coefficient 

βln Aii,t
 0.023*** 0.009 0.022*** 

 (0.007) (0.006) (0.005) 
βln Aii,t×ln CCi,t

 0.001**   

 (0.001)   
β0 0.219*** -0.170* 0.270*** 

 (0.061) (0.091) (0.056) 
Year fixed Y Y Y 
Individual fixed Y Y Y 
Control variables Y Y Y 

R2 0.845 0.925 0.817 

Notes:Standard errors in parentheses.* p < 0.1, ** p < 0.05, *** p < 0.01. 

Table 9 Mechanistic regression results with technological innovation 

  Interaction Low PAi,t High PAi,t 

Coefficient 

βln Aii,t
 -0.041*** 0.021*** 0.035*** 

 (0.006) (0.007) (0.006) 

βln Aii,t×ln PAi,t
 0.006***   

 (0.000)   
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β0 0.370*** 0.548*** 0.003 

 (0.045) (0.070) (0.077) 

Year fixed Y Y Y 

Individual fixed Y Y Y 

Control variables Y Y Y 

R2 0.897 0.883 0.850 

Notes:Standard errors in parentheses.* p < 0.1, ** p < 0.05, *** p < 0.01. 

Table 8 presents the results of a regression analysis designed to dissect the mechanisms through which AI 
impacts sustainable development, with a particular focus on the energy structure effect. The analysis is stratified 
into two segments based on coal consumption levels—high and low—to elucidate how AI's influence on 
sustainable development varies across different energy landscapes. 

The coefficient for AI development (βln Aii,t
) across the full sample is significant at 0.023 (p < 0.01), underscoring 

AI's positive contribution to sustainable development. This overarching impact is reflective of AI's role in 
optimizing resource allocation, enhancing energy efficiency, and fostering innovations that drive sustainability. 

The interaction term (βln Aii,t×ln CCi,t
) reveals a coefficient of 0.001 (p < 0.05), indicating that the relationship 

between AI and sustainable development is moderated by the energy structure of a region. Specifically, the 
positive interaction term suggests that in regions with higher coal consumption, AI's ability to contribute to 
sustainability is slightly enhanced, possibly through improved energy management and efficiency in high-
consumption settings. 

When examining regions categorized by their coal consumption levels, the impact of AI on sustainable 
development in high coal consumption regions (High CCi,t) remains significant at 0.022 (p < 0.01), similar to 

the overall sample. However, in low coal consumption regions (Low CCi,t), the direct impact of AI, while positive, 

is not statistically significant (0.009), suggesting that the efficacy of AI in promoting sustainability may be more 
pronounced in regions with higher energy demands. 

The intercepts (β0) for high and low coal consumption regions indicate baseline sustainability levels, with high 
coal consumption regions showing a negative intercept of -0.170 (p < 0.1), contrasting with a significantly 
positive intercept of 0.270 (p < 0.01) for low coal consumption regions. This reflects inherent differences in 
baseline sustainability conditions across regions. The R2 values of 0.925 for high coal consumption regions and 
0.817 for low coal consumption regions highlight the model's robust explanatory power, particularly in high 
consumption settings. 

In essence, these mechanistic regression results elucidate the nuanced role of AI in advancing sustainable 
development, mediated by regional energy structures. AI's significant positive impact across different coal 
consumption levels, coupled with the slight enhancement of its effect in high consumption regions through 
interaction with energy structure, underscores the technology's potential to adapt and contribute to 
sustainability goals within diverse energy contexts. These findings advocate for targeted policy formulations that 
leverage AI's capabilities in conjunction with regional energy strategies to optimize sustainability outcomes. 

Table 9 delineates the outcomes of a regression analysis aimed at unraveling the pathways through which AI 
influences sustainable development, specifically focusing on the channel of technological innovation. This 
investigation divides the sample based on the levels of patent applications to illustrate how the impact of AI on 
sustainable development diverges between regions characterized by high and low levels of technological 
innovation. 

The coefficient for AI development (βln Aii,t
) across the entire sample exhibits a negative impact at -0.041 (p < 

0.01), suggesting a complex initial relationship between AI and sustainable development. However, when 
dissected into regions of low and high patent applications, AI's impact becomes significantly positive, 0.021 (p 
< 0.01) in regions with low  PAi,t  and further amplifies to 0.035 (p < 0.01) in high  PAi,t  regions. This 

transformation underscores the pivotal role of existing technological innovation levels in magnifying AI's 
positive contributions towards sustainability goals. 

The interaction term (βln Aii,t×ln PAi,t
) presents a coefficient of 0.006 (p < 0.01), affirming the existence of a 

technological innovation channel through which AI development impacts sustainable development. The positive 
interaction suggests that regions with higher levels of patent applications, indicative of robust technological 
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innovation, experience an enhanced beneficial impact of AI on sustainable development. This finding highlights 
the synergistic effect between AI and technological innovation in fostering sustainability. 

The intercepts (β0) differ significantly across regions, with a notably high intercept of 0.548 (p < 0.01) for 
regions with low PAi,t, contrasting with an essentially neutral intercept of 0.003 for high PAi,t  regions. This 

indicates differences in baseline sustainability conditions, with low PAi,t regions having a higher starting point 

in sustainable development metrics. The R2 values — 0.897 for the entire sample, 0.883 for low PAi,t regions, 

and 0.850 for high PAi,t  regions — underscore the model's substantial explanatory power, particularly 

highlighting the pronounced role of technological innovation in regions already active in patenting. 

These mechanistic regression results elucidate the nuanced manner in which AI propels sustainable 
development through the technological innovation channel. AI's significant positive influence in regions with 
heightened levels of patent applications reveals the technology's capacity to synergize with existing innovation 
ecosystems to advance sustainability. The distinct impact of AI in regions categorized by the intensity of 
technological innovation underscores the necessity for policies that not only foster AI development but also 
bolster the innovation infrastructure to maximize AI's potential for sustainable development. 

The analyses yield robust empirical support for H2 and H3, elucidating the multifaceted role of AI in enhancing 
sustainable development. Under H2, AI emerges as a pivotal force in catalyzing the shift towards cleaner energy 
sources. By refining energy consumption frameworks and bolstering energy productivity, AI significantly 
curtails carbon emissions and augments the sustainability of energy systems. This underscores AI's capacity to 
act as a lever for environmental sustainability by streamlining energy use and facilitating a transition to 
renewable energy sources. 

In the context of H3, regions characterized by nascent technological infrastructures stand to benefit from a 
distinct "latecomer advantage." This advantage positions such regions to swiftly integrate AI technologies, 
thereby leapfrogging traditional developmental trajectories. The swift incorporation of AI not only elevates 
energy efficiency but also bolsters environmental stewardship and propels economic expansion. Consequently, 
these regions experience accelerated progress towards fulfilling the SDGs, illustrating AI's transformative 
potential in bridging technological gaps and fostering comprehensive sustainable development. 

Together, these findings articulate the dual role of AI as both a catalyst for clean energy transition and a bridge 
for technological advancement in underdeveloped regions. By optimizing energy systems and offering a pathway 
for rapid technological adoption, AI substantiates its critical contribution to achieving sustainable development 
across diverse regional contexts. This highlights the necessity for policies that harness AI's potential to address 
global sustainability challenges, emphasizing its strategic deployment in energy management and technological 
modernization to advance the global sustainability agenda. 

5. Discussion 

Employing a fixed-effects model complemented by a comprehensive suite of robustness and heterogeneity 
assessments, this investigation delineates the influence of AI on the attainment of select SDGs: SDG6, SDG11, 
SDG12 , SDG13  and SDG15 . The empirical findings underscore AI's capacity to significantly bolster these SDG 
composite indices, a conclusion reinforced through meticulous robustness analyses. AI's prowess in navigating 
complex challenges and spearheading intelligent transformations across various sectors is well-documented, 
notably its pivotal role in fostering the symbiosis between urban governance and sustainable development 
within the ambit of smart cities, thereby propelling the fulfillment of SDGs. Its wide-ranging utility underscores 
its indispensability in societal contexts. 

Furthermore, the heterogeneity analysis reveals uniformity in AI's enhancement of SDGs, juxtaposed with 
discernible regional heterogeneity concerning AI's impact on sustainable development—markedly pronounced 
in the central and western regions, comparatively less so in the eastern regions. The central and western regions, 
characterized by their resource richness and prevalence of traditional energy sectors, are witnessing an 
augmentation in green innovation capacities attributed to AI advancements and technological progressions. 
Conversely, the eastern region, despite its technological prowess in green innovation, encompasses enterprises 
predominantly at varying stages of green transition. 

The corpus of empirical evidence advocates for AI's instrumental role in promoting sustainable development 
through enabling energy structure transformation and catalyzing green technological innovation, notably in 
clean energy utilization. The inverse correlation between reliance on non-renewable energy sources and the 
extent of technological innovation accentuates AI's efficacy in advancing sustainability. Specifically, AI's 
application in optimizing resource allocation, amending energy frameworks, curtailing pollutant emissions, and 
ultimately, advancing sustainable development trajectories is noteworthy. Concurrently, AI fosters innovation 
through green technology, integrating high-level technological insights, multi-criteria analysis, and decision 
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support systems into the decision-making fabric, thereby enhancing the development of sustainability 
indicators and fortifying environmental conservation and sustainable planning efforts. 

This investigation elucidates AI's pivotal role in advancing environmental enhancement, climate action, and 
resource preservation—key pillars of the SDGs. It advocates for fostering cross-disciplinary collaboration among 
computer science, environmental science, and sociology to propel comprehensive theoretical research and 
innovation. Significantly, AI's contributions, especially pronounced in China's central and western regions, 
fortify the energy infrastructure, and catalyze technological advancements. These insights are instrumental in 
shaping strategies for AI's integration into national and regional development agendas, aligning with the 2030 
Agenda for Sustainable Development's objectives. 

The research presented delves into the instrumental role of Artificial Intelligence (AI) in advancing the 
Sustainable Development Goals (SDGs), unveiling a spectrum of strategic implications for governments, 
businesses, and the academic community. 

Governments are positioned to spearhead the integration of AI within clean energy initiatives, enhancing energy 
efficiency and the transition to renewable resources. Such integration necessitates supportive policies, including 
incentives for AI-infused clean energy projects. Additionally, there's an imperative to bridge technological 
divides, especially in regions lagging in infrastructural development, by fostering AI adoption through improved 
internet access, AI literacy programs, and financial incentives targeting sustainability-focused AI solutions. The 
application of AI in environmental management and economic strategies further underscores its potential in 
fostering eco-friendly growth. Establishing AI-driven economic zones and fostering public-private research 
consortia can catalyze high-impact sustainability innovations, from carbon capture technologies to AI for 
sustainable agriculture. 

The study offers critical guidance and decision-making support for Chinese policymakers. It underscores the 
imperative for judicious regulation to mitigate potential adverse impacts of AI applications on environmental, 
societal, and economic fronts. This encompasses formulating policies on data privacy, fairness, transparency, 
and accountability. Additionally, incentivizing AI research and innovation in sustainability-focused areas 
through R&D funding, tax benefits, and intellectual property rights protection is crucial. Furthermore, engaging 
in international collaborations to address global sustainability challenges could accelerate the deployment of 
AI-driven solutions. 

For the corporate sector, investing in AI for enhancing energy and resource efficiency stands out as a pivotal 
strategy, particularly within the energy domain. Companies are encouraged to leverage AI as a catalyst for 
technological innovation, developing new products and services that align with sustainability objectives. The 
adoption of AI in urban development and infrastructure projects can significantly contribute to sustainable 
cities and communities. Moreover, embedding AI ethics within corporate sustainability initiatives and exploring 
decentralized AI platforms for community-led sustainability projects underline the versatile applications of AI 
in driving sustainable development. 

For Chinese enterprises, social entities, and various stakeholders, the study's outcomes suggest adherence to 
ethical standards by AI professionals, focusing on environmentally friendly algorithms, energy conservation, 
and social equity. Entrepreneurs and startups are encouraged to leverage AI for addressing sustainability 
challenges, including resource management and clean energy, while prioritizing long-term societal and 
environmental impacts over immediate financial returns. Additionally, educators and researchers should 
nurture students' consciousness of sustainable development and spearhead innovative AI solutions for 
sustainability issues, promoting frontier research in these domains. 

In the academic realm, there's a call for deepened research into the specific mechanisms through which AI 
impacts SDGs, emphasizing the need for empirical studies to quantify AI's contributions across various sectors. 
Investigating regional variations in AI's impact on sustainability can provide insights into customizing AI 
applications to address local challenges effectively. Furthermore, exploring the intersection of AI and 
indigenous knowledge systems offers a novel approach to sustainability, integrating traditional practices with 
technological innovation. Initiating longitudinal studies on AI's impact on SDGs and exploring AI's role in 
influencing sustainable behaviors through personalized recommendations and gamification are highlighted as 
key research directions. 

Notwithstanding, this study acknowledges limitations, including the need for refined SDG measurement 
methodologies due to data constraints. Furthermore, the specific mechanisms underlying the observed 
heterogeneity, particularly the trade-offs among individual SDGs, warrant deeper exploration. Lastly, given AI's 
nascent stage and its potential for growth, its long-term ramifications on sustainable development remain an 
open question for future inquiry. 
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6. Conclusion 

This study examines the influence of AI on the achievement of sustainable development goals (SDGs) within 
China's provinces from 2006 to 2018, concentrating on five critical SDGs: clean water and sanitation (SDG 6), 
sustainable cities and communities (SDG 11), responsible consumption and production (SDG 12), climate action 
(SDG 13), and life on land (SDG 15). The study employs provincial panel data and integrates multiple 
econometric models, including fixed effects, pooled OLS, FGLS, and instrumental variables regression. The 
analysis is fortified by robustness tests and heterogeneity analysis to ensure the validity and reliability of the 
findings. 

The analysis demonstrates that AI substantially enhances sustainable development across China's provinces by 
augmenting energy efficiency and driving technological innovation. The impact is most significant in the central 
and western regions, with the eastern region also showing considerable benefits, reflecting regional disparities 
in AI's effectiveness. AI exerts a positive influence on all five SDGs, with the most pronounced effect observed 
in climate action (SDG 13) and the least in clean water and sanitation (SDG 6). The role of AI in urban 
management and infrastructure emerges as essential for promoting sustainable urban development. 

The research advocates for the strategic deployment of AI to exploit its potential in improving energy efficiency 
and fostering technological innovation, particularly in regions with high energy consumption. It recommends 
increased investment in AI-driven technological advancements to enhance sustainable development outcomes, 
especially in areas with underdeveloped technological infrastructure. The study highlights the necessity of 
addressing regional disparities through localized policy interventions, emphasizing targeted support for central 
and western regions to maximize the benefits of AI for sustainable development. The findings underscore AI's 
pivotal role in advancing sustainable development in China, calling for region-specific policies and substantial 
investment in AI technologies to achieve the SDGs comprehensively. 
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Annex Table 1 Descriptive statistics of SDGS indicators 

SDG Benchmark Mean Dev Min Max 

SDG6 
Total domestic water use 465.426 405.000 13.5 2297.7 

Daily urban wastewater treatment 
capacity 

255666.7 188331.4 16000 1021000 

SDG11 

Greening coverage of built-up areas 7.662 7.983 0.27 48.54 

Area of roads swept and cleaned 20115.79 18858.17 1193 132135 

Per capita non-hazardous domestic 
waste disposal 

0.001 0.0007 0.000168 0.004 

Public transport accessibility index 0.016 0.012 1232 0.0645 

SDG12 

Ammonia emissions per capita 0.001 0.0007 456 0.003 

Sulfur dioxide emissions per capita 3.145 4.284365 2751708 30.172 

General solid waste generation per 
capita 

0.035 0.084416 1639 0.865 

Hazardous waste generation per capita 61.452 43.98736 0.27 196.2 

CO2 per capita 17145.78 12382.28 754.33 63324.97 

SDG13 

Sulfur dioxide emissions 71.816 47.34847 4.91 204.68 

Total non-renewable energy 
consumption 

44.836 35.70075 -28.91 179.77 

NOX emissions 33.304 17.92963 4 66.8 

Fume and dust emissions 3.903 3.368 665805 20.239 

Renewable energy share in total energy 
consumption 

1.386 0.705 0.3 4.387 

SDG15 

Forest cover 465.426 405.000 13.5 2297.7 

Afforestation area as a proportion of 
forest area 

255666.7 188331.4 16000 1021000 

Percentage of investment in ecological 
construction and protection 

7.662 7.983 0.27 48.54 

Protected areas as a percentage of total 
land area 

20115.79 18858.17 1193 132135 
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