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Background: Considering the importance of drug therapy as a dominant approach in cancer 

treatment, monotherapy has been successful in advancing disease treatments, but its 

effectiveness can be limited due to different drug responses. To overcome these challenges, the 

drug combination strategy involving the use of multiple drugs to treat a specific disease has been 

advocated. 

Objective: The objective of this research was to investigate the use of Hyper Graph Neural 

Networks (HGNNs) in modeling and predicting the interactions between drug combinations and 

their consequent effects on certain cell lines. 

Method: The methodology involved extensive data preprocessing, exploratory data analysis 

(EDA), and the implementation of an HGNN model tailored to capture the complex inter-

relations of multidimensional data. The Ex-HGNN model showed superior performance metrics, 

including high accuracy, precision, recall, and F1-scores, and portrayed efficiency in categorizing 

drug interactions and their effects as either synergistic or antagonistic. A critical detail of this 

study was the implementation of explainable AI approaches, such as SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations). These methods 

brought transparency into the decisions of the Ex-HGNN model, rendering them more 

interpretable and trustworthy. They allowed insight into the contribution of individual features 

on the prediction decisions of the Ex-HGNN model, an essential component in the field of drug 

efficiency analysis. 

Results: Experimental results validated the proposed drug synergy prediction model and its 

significant enhancement compared to state-of-the-art methods. 

Conclusion: These findings provide a stepping-stone for future research using machine learning 

and deep learning approaches in resolving other drug-related issues. This work demonstrates 

the effectiveness of Hyper Graph neural network modeling for high-dimensional data analysis 

and emphasizes the importance of explainable artificial intelligence in the fields of healthcare 

and precision medicine. 

Keywords: Graph Neural Networks, Hyper Graph, Deep learning, Explainable AI, Drug 

Synergy, Attention mechanism. 

 

INTRODUCTION 

Drug therapy is a predominant approach in treating cancer in clinical settings. The array of anticancer drugs has 
expanded significantly to meet clinical needs, with numerous effective single drugs being utilized in cancer 
treatments. While monotherapy has been instrumental in advancing disease treatments, its effectiveness can be 
limited due to varying drug responses, including issues like toxicity and drug resistance [1]. In the 
pharmaceutical sector, ongoing research into small molecules aims to enhance products and customer 
satisfaction, leveraging their simplicity in chemical synthesis and cost-effectiveness in derivative preparation. 
Although the competition from generics and the complicated data necessary at the time of the release of original 
small molecules may appear to slow down the industry, it continues to grow, and there is an ever-growing need 
for new innovative solutions that compensate for the disadvantages of low molecular weight and the limited 
opportunities for knowledge exchange [2]. Small molecules act based on their conformation and reactivity, while 
huge-dimensional biomolecules like proteins and nucleic acids involve their tremendous structures for stability 
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and function [3]. Despite the molecular complexity of their pharmacokinetics, several biomolecules, such as 
insulin and adalimumab, have become excellently commercialized drugs. Advocates of drug combinations argue 
that these challenges can be abated by such an option. This method is essential for multiple drug treatments for 
a specific disease [4]. The reason why drug combinations are used in practice is that they can treat different 
molecules and pathways simultaneously, which also has several beneficial factors, such as being a more effective 
treatment, having more tolerable side effects, and encountering less drug resistance [5,6]. Therefore, due to the 
problems caused by the variability in drug response, drug combinations are becoming an increasingly at tractive 
strategy. 

An increasing number of approaches for finding drug combinations that existing clinical trials limit have 
emerged. Indeed, clinical trials, although they provide invaluable data, have low throughput due to high time 
consumption and substantial funding requirements and are prone to the unnecessary risk of therapy for patients 
[7]. As an alternative, high-throughput screenings are now widely used [8]. Simply put, using robotics to screen 
thousands of various chemical and biological substances for affinity to particular biomolecules simultaneously 
provides quicker identification of drug combinations that are likely to be effective. On the other hand, this 
method requires an in-depth understanding of all mechanisms of in-vivo action of drug molecules to apply all 
possible combinations for all diseases, which is not possible [9]. Therefore, computational methods were added 
to cover this part of the work. These include systems biology methods [10], kinetic models strategies, and, most 
relevant for this case, machine learning [12]. Due to the advances in algorithms and AI, pharmacokinetics allow 
for virtually predicting how the drug molecule behaves in our bodies by optimizing drug delivery systems for 
efficient and selective therapy, predicting profiles to define accurate dosing regimens personalized for a specific 
patient. Such techniques help to detect and design better drug interactions, improve the availability of drugs for 
metabolism, schedules of intake and doses, and thus are not prone to the bias inherent in socio-economic data. 

Machine Learning (ML) has a special advantage in the modeling part compared to others. These methods can 
learn and comprehend the collective meaningfulness of a drug, which allows predicting the combinational effect 
of synergic drugs through in silico studies. The fact that ludicrously fast, affordable, and doctor-permitting AI 
predictive powers significantly cut drug trials cost and resources indicates the effectiveness of AI -based 
predictors and additionally shows their applicability. This development eventually led to the accelerated growth 
of machine learning and its application in drug combination discovery. Machine learning has made an exciting 
leap to drug combination research. Machine learning algorithms utilized in drug combination prediction exist 
in two forms, namely classical machine learning and deep learning. Classical methods are prevalent. For 
example, Li et al. developed a random forest-based model to predict synergistic anticancer pairs using drug-
target networks and drug-induced gene expression profiles [13]. Sidorov et al. used an XGBoost model provided 
separately for each cell line [14], which in some cases decreases the model’s general consistency due to the 
differences between cell lines. Julkunen et al. presented comboFM [15], which can predict the responses to novel 
drug pairs and new concentrations utilizing factorization machines while considering cell -context interactions. 
At the same time, deep learning methods, which do not require manual feature construction, extract patterns 
directly from the input data. These include convolutional neural networks [16], recurrent neural architectures 
[17], and attention approaches, widely used in computer image recognition and natural language processing. 
This approach has become successful in drug networks prediction. Authors developed DeepSynergy [7], a 
feedforward network model that outperformed traditional machine learning models in predicting drug pairs. 
The study authors also developed GraphSynergy, which outperformed the pairwise model, using the spatial 
graph convolutional network to encode the structural relations between modules in protein -protein interaction 
networks [18]. Moreover, an attempt to forecast drug pair interactions in cancer cell lines based on the graph 
convolutional network was made [19]. In late August 2021, the DeepDDS [20] model was presented, using GNN 
for drug prediction. This innovative architecture uses RDKit to transform SMILES-strings into molecular 
graphs, which encodes both compound structure information and the gene expression pattern to search 
synergistic drug pairs. 

Despite these technological advancements, there are still shortcomings. By using a black-box approach, feature 
extraction of these models does not fully exploit the information of SMILES representation. Additionally, the 
fusion methods, which are usually nothing but simple concatenation of drug and cell line features, mostly do 
not fully express the great interaction between these features. 

RELATED WORK 

In [21], the authors introduce the innovative approach named SynPred that addresses the issue of cancer’s 
heterogeneity and the complexity of human biology and genomic variability. The research is situated in the high-
throughput screening technologies orthogonal to the ability and well-known ability to produce enormous multi-omics 
data at scale across different populations and cell types, particularly in the context of cancer research. Considering 
the fact that analyzing such data is a complex and challenging process due to the complex nature of cancer and 
biological diversity, they propose the reimagined schema of the drug discovery development pipeline. It advances the 
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drug discovery development pipeline with the power of AI by allowing it to understand the relevant biological 
information and experimentally evaluate new ways to create anti-cancer therapies. SynPred is originally an 
interdisciplinary approach that uses the custom-designed ensembles of AI algorithms that can understand and 
correlate the omics data with the experimentally measured biophysical properties to predict the synergy between the 
drugs in anticancer situations. It also ensures accuracy of prediction with performance metrics of 0.85 of accuracy, 
0.77 of precision, and its analogy, 0.75 of recall, 0.82 of AUROC (Area Under the Receiver Operating Characteristics), 
and 0.76 of F1-score that were validated on an independent test set. The method is interpretable due to the use of the 
latest and most successful methodologies to ensure the feature importance in the context of the results application. 

In [22], the authors highlight the pressing issue of fungal diseases that have become the leading cause of hospital-
acquired infections with high mortality. They note the increasing problem of fungal diseases drug resistance due to 
the intensive use of the drugs. They address the issue by proposing the synergy drug combinations that increase drug 
efficacy and reduce the dose rate and, consequently, the toxicity. The computational identification of the drug 
combination hinges on their new hypothesis: the drugs that work in drug combinations that yield synergy together 
tend to be similar, which also applies to the inverse situation. The novel algorithm that captures the hypothesis called 
Network-based Laplacian Regularized Least Square Synergistic drug combination prediction is developed, which is 
fed the type of data that ensures the prediction, including the existing knowledge, drug-target interaction and drug-
chemical structure data. The application on the antifungal drug synergy predictions showed promising results, both 
in the cross-validation and independent predictions. The biological laboratory experiments on the fungal pathogen 
Candida albicans further revealed that 7 out of the 13 predicted drug combinations outperformed the rest. The study 
is aimed to provide the potent and efficient strategy to identify the three potential synergistic combinations in 
antifungal therapy problem, which could be beneficial to the antifungal treatment. The authors in [23] delve into the 
realm of cancer treatment, focusing on the challenge of identifying novel synergistic drug combinations amid the vast 
combinatorial possibilities. They recognize the potential of computational methods as a more efficient alternative to 
traditional approaches, particularly in light of the substantial data from large-scale combination screenings now 
available. Their research introduces an innovative application of Deep Learning to drug synergy prediction, a domain 

where it had not been previously employed, through their development of ’DeepSynergy.’ Remarkably, 
DeepSynergy surpassed other methodologies, showing a 7.2% improvement over the next best method in predicting 
new drug combinations within the studied scope of drugs and cell lines. This superiority was evidenced by a mean 
Pearson correlation coefficient of 0.73 between measured and predicted values. When applied to classify these novel 
combinations, DeepSynergy demonstrated a high predictive performance with an AUC (Area Under the Curve) of 
0.90. However, the authors also observed that all compared methods, including DeepSynergy, exhibited limited 
predictive capabilities when applied to drugs or cell lines outside the dataset, suggesting a need for more diverse and 
expansive data. In conclusion, the authors posit that DeepSynergy could be a highly valuable tool in the selection of 
new synergistic drug combinations, offering a significant advancement in the field of cancer treatment. The authors 
in [24] also conducted a study to address drug resistance experienced in cancer therapy, presenting drug 
combinations as capable of eliminating or mitigating the challenge. They, however, proposed that it was impractical 
to experimentally screen all the existing combinations since the number of drugs that exist and the different ways to 
their combination were numerous, and very few resources are available. Considering that, the authors proposed a 
computational methodology of predicting the possible and promising drug combinations that will offer a solution of 
discovery for new combination therapies in cancer treatment. A research by the authors in [25] proposed that out of 
most of the therapeutic strategies, drug combinations presented the model promising potential to obtain better 
outcomes in many instances. Despite the numerous advantages which it has, the authors noted that it was impossible 
to test all possible drug combinations to know their synergism roles using existing high-throughput technologies due 
to the large combinatorial space which contributed to the number of combinations which required tests. The authors 
proposed a novel method called MatchMaker that was used to potentially predict promising combinations for cancer 
therapy. The novel method of interpretation worked within the learning networks and was developed for chemical 
models in biology using the dual new information that entailed drug structure and cell line expression by the authors 
of the study. This study, therefore, presented the use of the largest available dataset for drug combinations known as 
DrugComb. In comparison to the current models, MatchMaker and the rest of the models presented better results in 
the outcome. The authors discussed the capability of the MatchMaker model to perform tests on any possible drug 
combination which presented their Model’s results 20% more correlated and 40% less or more improved than the 
mean squared error compared to all the other models. The rest of the structurally challenging pairs of cells the authors 
screened approximately analyzed the impossible pairs to test to present a new dataset of pairs to the users. The 
authors [26] reviewed the complex challenge that drug resistance in cancer therapy yields due to signaling pathways 
and discovering that modeling pathways using deep learning would eliminate drug resistance more conveniently. 
Unlike most of the models created by the others, the interpretable limits met the Mechanisms of Synergy, which are 
more straightforward to kill in the clinical setting. 

In [27], the authors proposed an approach of applying a type of Recurrent Neural Network, Long Short-Term 
Memory, which had its foundations trained on compilations and repetitions to address pharmacokinetic and 
pharmacodynamic data from a model drug. Due to the scarce explorations of RNN in PK/PD data, the authors trained 
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the LSTM RNN model on data from the plasma concentration of the drug and the level of effect from one regimen. 
The LSTM model tested the predictability of PK/PD data on different regimens and showed the potential to forecast 
the PD profiles by capturing the temporal dependency in the context of indirect PK-PD. * [28] used a metric 
classification model, Side Effect Similarity, Chemical Similarity, and Target Protein Connectedness, to solve a 
complex issue of pharmacodynamic drug-drug interactions that are dependent on food or other drugs. The 
researchers compared the random forest and SVM models, utilized scaling and resampling methods to boost the 
precision of the models, and finally, the research maintained that Random Forest is the best model, which has the 
highest AUC and accuracy of 89.93% and 79.96%, respectively. 

The authors [29] aimed to develop an Xgboost model for the estimation of the Area Under the Curve of tacrolimus 
concentrations-time model using an existing population pharmacokinetic model and Monte Carlo simulation for data 
generation. Their further objective was to investigate its accuracy for comparison to the MAP-BE method across 
external datasets. By simulating 9000 profiles with the R package mrgsolve, enabling the training and test samples 
allocation, they constructed Xgboost models capable of acreage estimation using minimal concentrations. The best 
model according to the cross-validation evaluation was tested on the transplant patients’ datasets. They concluded 
that Xgboost models developed using minimal concentrations and covariates yielded AUC estimates with the lowest 
bias and RMSE; thus, they could be accurately calculated satellite data by patients. 

Table 1. Comparison of Different Techniques in Drug Synergy Prediction. 

Ref Technique  PREC  AUC-ROC ACC AU-PRC   Kappa 
[10] DeepSynergy 0.57 ±0.12 0.90±0.04 0.91±0.04 0.60±0.06 0.51±0.04 
[11] AuDNNsynergy 0.73±0.05 0.91±0.03 0.92±0.03 0.62±0.05 0.50±0.03 
[12] MatchMaker – 0.96±0.04 – 0.79±0.07 – 
[13] DeepSignalingFlow – – 0.66±0.05 – – 
[14] SynPred 0.77±0.06 0.82±0.06 0.85±0.08 – – 
[16] NLLSS – 0.91 ± 0.03 – – – 

 

MATERIALS AND METHODS 

1.1 Dataset 

The dataset that we are using includes the following components. It forms an essential part of the research, as this 
data was carefully elaborated to further investigate the efficacy of drug combinatorial therapy: the data is represented 
in DrugCombDB, a highly reputed repository and a platform designed to explore the drug synergy and antagonism 
phenomenon. Moreover, it was structured in a way that reminds time-series data that was specifically designed to 
support drug interaction research and has the following structure: 

-  ID: refers to the unique record identification that was provided to ensure traceability and the uniqueness of the 
combined drugs.  

- Drug: is the name or ID of the first drug in the combination, and it is one of the primary variables in the provided 
data.  

- Drug2: is the name or ID of the second drug in the combination, and it, in combination with the drug1 column, 
represents the respondent variable.  

- Cell line: is the type of line upon which the combined drugs’ impact was measured, and it is a characteristic similar 
to time in the time-series data as it grounds what exact biological experience is produced. 

- ZIP: the Zero Interaction Potency score, which counts the magnitude of the interaction between two drugs and 
classifies it on a specific scale as it can be × <0 – antagonistic, 0 ≤ R ≤ 10,1 – additive, and x > 10 – synergistic.  

- Classification: this is the previous column’s categorical variable that was defined according to the postcode; labels 
are ordained as it is indicated in the appropriate column; there are 3 overall categories mentioned above.  

The dataset’s uniqueness involves the consolidation of the constraints and relevant components required to 
understand the drug interaction in a holistic framework; thus, it provides a rich background for the further 
application of machine learning and identification of how the prediction fits the previously obtained model. Thus, 
the utilization of this data will enable reaching a novel high-level predictive performance in combined therapy and 
allow advancing the field of precision therapy. 

1.2 The Proposed Method 

In the Ex-HGNN, a comprehensive methodology developed by us, we present a multi-stage setup to explore the 
complication of data analysis and neural network utilization to perform classification. At first, our process is 
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initialized by data loading; nothing can be done without it. Data loading is an essential process for our work as it 
allows starting the Exploratory Data Analysis. The EDA is an essential step to highlight the core statistics, 
distributions, and common characteristics of the data set. After EDA clarifies the picture of the data, a subset is 
distinguished, implying a reduced version of the data used for computational reasons. This subset is employed for 
encoding and transformation that has to be executed before feeding the data set into the HGNN – Hyper Graph 
Neural Network. HGNN [31] is a highly powerful model working with complicated relationships and patterns. That 
is how we are able to predict our target classifications; however, all the results are visible thanks to our transparency 
instruments. The Ex-HGNN method values the transparency of models, so it relies on methodologies SHAP [32]and 
LIME [33] that open the veil of the model process and explain each predictor’s role in the final decision. In the next 
subsection, all the elements of our Ex-HGNN will be thoroughly considered for the reader to have a better 
understanding of the techniques and their application for our research. This explanation will demonstrate the 
strength of our Ex-HGNN and will create a solid base for replication and criticism. 

 

Fig. (1). General architecture of the proposed Ex-HGNN approach. 

1.3 Data Preparation and Model Training 

Based on the foundation laid by our prepossessed dataset, we now move to our data preparation for this analysis. It 
is an elaborate process with many tasks to be accomplished in tandem. The first of these tasks is the loading of our 
data into our programming environment and an exploratory data analysis, which helps us determine the basic 
statistics of our dataset, the distribution of the target variable, and the list of distinct labels in the classification 
column. Following this is the reduction of the full dataset to a representative 60% sample subset from which our Ex-
HGNN can be trained, with much greater efficiency without losing a significant amount of information. This sample 
will help us split our features and target variable accordingly, to facilitate the training session that awaits us next. 
Once we have split our features and target variable, we encode the categorical variables in the form of a One-Hot 
Encoder and change the target variable through a Label Encoder. This is important to convert our categorical items 
into data interpretable by our machine learning algorithms. We then split our encoded dataset into training and test 
sets under an equal proportion for effective learning and proper testing of our Ex-HGNN model, converting the data 
into tensors for PyTorch compatibility. Our HGNN is then modeled according to our dataset specifications, and it is 
put through several epochs using the cross-entropy loss method using the Adam optimizer to train our data. We 
normalize our data to feed into the model and print the loss every epoch to see the model performance using the AUC 
and AUPR curves, and these metrics will show the model’s overall performance in distinguishing the classes. We will 
also conduct a test at the same time, computing our accuracy and plotting for performance comparison. 

RESULTS AND DISCUSSION 

We provide our experimental details and compare the performance of the Ex-HGNN model with other benchmark 
methods. 

1.4 Evaluation Metrics and Interpretability 

Having trained our Ex-HGNN, the Hyper Graph Neural Network, the next obtuse operation is model evaluation and 
interpretability. This part is crucial for two indelible reasons. First, performance evaluation enables one to quantify 
how well our digest Ex-HGNN has precisely been able to make critical decisions. Second is the interpretability 
perspective, which allows one to appreciate the decisions that the model makes, while trying to predict. More so for 
our case because effective selection of drug combinations is NOT just the prediction but also the understanding of 
the interaction of all possible features. We first measure the performance of our HGNN. We do that using the AUC 
and the AUPR. The intendment is to tell the discriminative power of our model. Additionally, we measure the model 
accuracy on the test dataset as a straightforward measure of the system performability. We visualize the performance 
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metrics by plotting the AUC and the AUPR scores evolution against the epoch. This aleatorically shoals the learning 
capabilities of the system. There could be patterns, or the performance could just be a plateau. In essence, one should 
look at the plots to gauge the requirement of tweaking or adjusting the training process. As a matter of fact, not 
everything numerate is interpretable. As such, one ought to be yearning for interpretability. The desired aspect is 
more intrinsic, and on drug combination efficacy, explicability is as critical as prediction. We use SHAP and LIME to 
explain. In simple terms, the SHAP values for a prediction are a measure of importance of each feature to the 
prediction. SHAP values provide a singular drive of each feature across the dataset. We generate summary plots for 
this. LIME comes as a compliments of SHAP. It is just a predictor explanation but at the instance level. LIME explains 
individual predictions by approximating the interpretive model around a local region of a prediction. This way, LIME 
deliberately shows the contribution of each feature in an instance to prediction. Furthermore, we embark into a more 
in-depth investigational analysis using confusion matrices and classification report with data heatmap. Heatmaps 
help to create visual impressions of the confusion matrices. Confusion matrices, on the other hand, help to visual 
patterns on the model performability across the classifications. We finally embed advanced explanations. Deep 
SHAP, and LIME for tabular data.  

1.5 Results of Ex-HGNN 

Our experimental results represent an important milestone in validating the Ex-HGNN model. It achieved an 
outstanding test accuracy of 86.70%, an indication of the high level of capability in predicting how effective drug 
combinations are on the given cell lines outcomes. This level of precision shows the Ex-HGNN has the ability to 
generalize from training samples and accurately predict the outcome of unseen samples. More insights can be gained 
from the classification report about how the model performed in all classes. Precision is a measure of how precise the 
model is in classifying a sample as positive, while recall shows how many actual positive samples were correctly 
identified. It is vital to consider the f1-score, which is the harmonic mean of precision and recall; thus, it provides a 
balance between the two. This is essential in cases where a high level of false positives or false negatives is unwanted. 
Class 0 in this case implies non-synergistic drug combinations; the model performed with 0.89% f1-score. This shows 
that the classifier is slightly better at identifying the true negative cases and maintains a moderate precision-recall 
balance. On the other hand, class 1, which may be used to identify synergistic combinations, a precision of 86% and 
a recall of 82% was recorded, resulting in an f1-score of 0.84. Even though the performance of Ex-HGNN is still high, 
it is clear that it is less accurate in predicting true synergistic instances than non-synergistic ones. At the macro 
average level, which offers equal importance to every class, all precision, recall, and f1-scores are high at 87% and 
86%, respectively. This uniform performance of the model in all classes indicates a lack of bias towards any side. 

 

Fig. (2). Ex-HGNN performance during training 

A graphical representation of the Ex-HGNN model’s performance metrics over 20 training epochs is shown in Figure 
2. The figure comprises two plots: the top plot illustrates the progression of the AUC score [34] while the bottom one 
shows the change in the AUPR score [35] over the corresponding epochs. The AUC score plot illustrates an ascending 
curve with a series of blue markers joined by a line. The curve starts from an AUC score of around 0.82 and 
approaches an AUC score of close to 0.86 at an asymptotic level. The increasing direction of the curve implies that as 
each training epoch progresses, the Ex-HGNN model demonstrates an increased capability to differentiate between 
the classes. In other words, it becomes more likely to rank a randomly selected positive instance higher than a 
randomly selected negative instance.  

The AUPR score curve, on the other hand, is characterized by red markers and follows a similar increasing trajectory. 
The red line starts from approximately 0.72 and moves towards 0.78 at the 20th epoch. The model’s increasing 
precision and recall for the positive class are essential for cases when the positive class is of more interest, as in drug 
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combinations outcomes. Both AUC and AUPR metrics are crucial for training evaluation; AUC is used to test the 
model’s overall performance while AUPR provides information about its performance in class imbalance scenarios. 
Based on the positive trend of both plots, it is clear that the Ex-HGNN model becomes more predictive of drug 
combination outcomes as it advances through each continuous training epoch. Therefore, Figure 2 reflects the 
importance of training length for model effectiveness. In addition, it can be utilized to determine the most suitable 
point for training stops to avoid overfitting. 

1.6 Explainable AI Results 

Figure 3 showcases the outcome of the SHAP analysis. The force plot makes an impression and provides a more 
detailed understanding as to how the model’s prediction for one particular instance is affected by each feature. The 
force plot visualizes the dynamics of feature interaction by means of push and pull, with the base value on the dashed 
line. This value serves as the reference point and is the mean prediction of the Ex-HGNN model for all data points. 
Then, all features are measured relative to the base. The final prediction for the instance, f(x), is equal to the individual 
contributions of SHAP values corresponding to all features. In this force plot, ‘HS 578t’ cell line and ‘ADM 
HYDROCHLORIDE’ drug exhibit a negative influence, as the red bars extend to the left. The probability of target 
class prediction decreases, while it decreases. However, ‘MERCAPTOPURINE’ drug is shown with the blue bar that 
extends to the right. Hence, the probability of the target class prediction increases. The additive nature of the SHAP 
values is evident in the visualization, where each feature's impact is aggregated to arrive at the final prediction. The 
juxtaposition of red and blue bars encapsulates the individual and conflicting impacts of features, with the 
culmination of these effects represented by the f(x) value on the plot.  SHAP's interpretability enables stakeholders 
to comprehend the decision-making process of the Ex-HGNN model, offering transparency into which features are 
most significant in predictions and providing valuable insights for further investigation or decision-making. This is 
particularly useful in critical fields such as drug discovery, where understanding the rationale behind a model's 
prediction is as crucial as the prediction's accuracy. 

 

Fig. (3). SHAPE results 

The result of LIME (Local Interpretable Model-agnostic Explanations) provides an accessible and understandable 
breakdown of the model's predictions, as evidenced by Figures 4, 5, and 6. In Figure 4, the illustrated bar chart 
quantifies the prediction probabilities for different classes, where the outcome 'antagonism' is significantly more 
likely with a high probability of 0.97. This indicates the model's strong prediction bias towards 'antagonism'. In stark 
contrast, 'synergy' is deemed much less likely with a minimal probability of 0.03, and the probabilities for all other 
outcomes are zero, suggesting they are not considered plausible by the model. 

The accompanying decision rules provide a clear breakdown of how certain features influence the classification. 
These rules, visualized as a series of thresholds, offer insight into the logic behind the model's predictions. For 
instance, a feature threshold rule such as 'Cell line_A2780 <= 0.00' indicates that the absence (or a value less than 
or equal to zero) of the A2780 cell line is a strong indicator for predicting 'antagonism'. Similarly, thresholds for drug 
features like 'Drug2_MERCAPTOPURINE' set to 0.00 also contribute to this prediction outcome. 

 

Fig. (4). Lime class Antagonism 

Figure 5 presents a predictive analysis focused on the class 'synergy' with a graphical representation of the model's 
prediction probabilities and contributing features. The probability for 'synergy' is determined to be 0.66, suggesting 
a favorable likelihood according to the model's inference, whereas 'antagonism' has a notably lower probability of 
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0.34, with no probability allocated to other potential outcomes. The figure also illustrates decision rules tied to 
specific feature thresholds which guide the model's prediction. A notable decision rule for 'synergy' shows that if 'Cell 
line_A2780' is less than or equal to 0.00, the model is more inclined to predict 'synergy'. 

Below the decision rules, a color-coded feature impact chart displays the features along with their corresponding 
values. The cell lines A2780 and ZR751 are both shown with values of 0.00, indicating that their state does not directly 
sway the prediction towards 'synergy'. Similarly, the drugs ELOXATIN (TN), TOPOTECAN HYDROCHLORIDE, and 
CHLORAMBUCIL are also assigned values of 0.00, emphasizing that, in this instance, they do not individually 
influence the prediction of 'synergy'. 

 

Fig. (5). Lime class Synergy 

Figure 6 illustrates a LIME bar chart providing a local explanation for the class 'synergy'. In this chart, the horizontal 
bars represent the weight of each feature's contribution to the model's prediction that a specific instance falls within 
the 'synergy' class. The red bar corresponds to the cell line A2780, indicating a significant negative impact on the 
synergy prediction when its value is less than or equal to zero. Conversely, the green bars associated with the cell line 
ZR751, the drugs ELOXATIN (TN), TOPOTECAN HYDROCHLORIDE, and CHLORAMBUCIL, each represent a 
positive contribution towards the prediction of synergy, also under the condition that their values are less than or 
equal to zero. 

This figure serves to decode the model's decision-making process for the given instance, providing insights into which 
features promote or inhibit the class prediction of 'synergy'. It simplifies the interpretability of the model by 
quantifying the influence of individual features, making it evident which factors are driving the prediction, and 
thereby offering a transparent basis for understanding and validating the model's predictions. 

 

Fig. (6). Lime bar chart 

Our proposed Ex-HGNN model shown in the result is a good trade-off between predictive accuracy and 
interpretability feature which are great requirements for its use in drug combinations efficacy prediction. However, 
the incremental increase in both the AUC and AUPR scores demonstrates the focused usage of accurate prediction 
and the increase in the importance of several features after later training rounds. The SHAP and LIME analyses 
clearly illustrate how the features which feed the predictions are most impactful, giving more utilization into the 
models rationality. The prototypal opinion or logical thought of the model is a significant value in the pharmaceutical 
industry, because a physician needs to understand the why behind predictions in the practice of medicine. The robust 
performance of the model on different metrics and its clear interpretation functionality are promising features for 
researchers and practitioners in the AI community who need to apply the prediction power of AI in different medicine 
and drug development fields. 
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CONCLUSION 

Our study is the first to involve a sophisticated method using Hyper Graph Neural Network to predict drug 
combination efficacy. Our study has a solid methodological foundation and a detailed evaluation. Our HGNN model’s 
results are robust and accurate; our model can predict drug synergy and antagonism. Our model’s accuracy, precision, 
recall, and f1-score are outstanding. Our approach began with EDA to gain insights into the data, and we did thorough 
data preparation, including feature encoding and dataset splitting. The Ex-HGNN model was trained carefully to get 
the most out of it and to generalize better. We have closely focused on model interpretability through SHAP and 
LIME, which clearly describes the decision-making process. It builds trust and transparency in our findings, vital in 
drug discovery and healthcare. As evidenced by our experiments, our model’s performance improves and AUC and 
AUPR scores continue to increase. Our Ex-HGNN model effectively pairs cutting-edge machine learning 
methodologies with interest in explainable AI to predict drug efficacy. Our study will enhance bioinformatics 
predictive modeling and open avenues for future study in areas where element synergy and antagonism are critical. 
The methodologies, as well as the knowledge, will generate a baseline for the creation of dependable, interpretable 
AI systems in healthcare and other fields in the future. 
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