
Journal of Information Systems Engineering and Management
2025, 10(32s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2025 by Author/s and Licensed by IADITI. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CLAE-MLP: A Deep Learning Framework for Botnet
Detection in IoT Network Using N-BaIoT Dataset

Rituparna Borah1, Satyajit Sarmah2* , Manas Pratim Kalita3, Ranjan Patowary4

1Department of Information Technology, Gauhati University. Email: r264porna@gmail.com
2*Department of Information Technology, Gauhati University. Email: ss@gauhati.ac.in

3Department of Information Technology, Gauhati University. Email: manaspratimkalita4@gmail.com
4Central Institute of Technology, Kokrajhar. Email: r.patowary@cit.ac.in

Citation: Satyajit Sarmah, et al. (2025), CLAE-MLP: A Deep Learning Framework for Botnet Detection in IoT Network Using N-BaIoT
Dataset, Journal of Information Systems Engineering and Management, 10(30s), xyz,

1. Introduction

Online services together with the internet have evolved into crucial elements which people use daily [1]. The
IoT expansion powers this advancement which has revolutionized work practices and communication systems
and connectivity methods. [2]. A network of connected devices creates IoT through data-sharing capabilities
over the internet. [3-4]. The transformative power of IoT exists because of its ability to share data in real time
which affects both business operations and everyday life. [5]. The global IoT device installation count reached
35.82 billion during 2021 before experts expect it to surpass 75.44 billion by 2025 and exceed 25.4 billion active
devices by 2030. [6] The quick expansion of IoT demonstrates its influence on multiple business areas and
market segments. [7] Cyber attackers use IoT's interconnected structure as a means to commit harmful actions
while enjoying its beneficial aspects. Botnets have become a common tool for launching cyberattacks on
systems enabled by IoT devices which requires immediate detection for cybersecurity protection. Network
security and user trust depend on botnet identification followed by their breakdown to stop DDoS attacks and
data breaches and malware distribution. When security threats get detected early the damage stays under
control and operational effectiveness increases while cyber defenses become strengthened. Deep learning
methods strengthen botnet detection through effective recognition of security threats with quick threat
identification mechanisms which shield infrastructure from financial losses and operational risks. operational
risks. Deep learning emerges as an effective tool to combat botnet attacks because of its increasing importance
against growing cyber threats. The detection capabilities of botnets get significantly improved through deep
learning because it enables automatic intelligent threat analysis. The system implements deep neural networks
that successfully detects current botnets and those that emerge in the future. Real-time identification of
malignant actions becomes possible through extracting features from network packets at their headers [8]. The
technology of deep learning is undergoing modifications to process encrypted data while also detecting new
botnet architecture patterns. Scientists continue to work on research that improves detection models to handle
changing botnet patterns and to increase their ability to detect various patterns [9]. The authors create a deep
learning framework which unites CNN autoencoders with LSTM and MLP to detect IoT botnets. The spatial
feature extraction of CNN pairs effectively with LSTM’s advanced temporal pattern recognition ability to
produce enhanced classification performance through MLP thus establishing improved IoT security standards.
The paper follows this organization: Section 2 reviews literature alongside existing research and technologies.
Section 3 describes the proposed methodology. The fourth section shows the obtained results while analyzing

ARTICLE INFO ABSTRACT

Received: 29 Dec 2024

Revised: 15 Feb 2025

Accepted: 24 Feb 2025

Modern industries and day-to-day activities have experienced major progress from
the Internet of Things because it links devices instantly to share real-time data.
Internet of Things devices connecting to each other creates exposure to cyber-
attacks and produces botnet attacks that damage network security while spreading
data breaches and blocking service access. To protect IoT networks you must detect
and stop botnet threats. This research creates a deep learning model that combines
CNN autoencoders with LSTMs and MLPs to better find botnet attacks in IoT
networks. The CNN module generates spatial understanding of data patterns while
the LSTM module finds temporal sequences. The MLP module helps make better
predictions and reduces incorrect findings. Our system can check network traffic
quickly to find botnets that protect digital security. Experimental tests prove that
this model finds both familiar and new security threats to strengthen IoT protection.

Keywords: IoT Security, Botnet Detection, Deep Learning, CNN-LSTM- MLP,
Cybersecurity Threats

621

 J INFORM SYSTEMS ENG, 10(32s)

the consequences of the proposed method implementation. Finally, Section 5 concludes the research.

2. Literature Review

In [10], GWO is applied to improve Intrusion Detection Systems (IDS) by feature selection. GWO was
integrated with Extreme Learning Machine (ELM) for the optimized classification and was tested on UNSW-
NB15 dataset. Concerned with generic attack detection, their approach brought the crossover error under 30.
 The authors in [11] applied a combined CNN-LSTM model to detect Distributed Denial of Service (DDoS)
attacks using CICIDS 2017 dataset. The accuracy of their model was 97.16.
In [12] the authors combine CNN and LSTM for botnet detection and achieve strong performance. DNNBoT1
had a training accuracy of 90.71.
The author in [13] examined the cybersecurity threats in autonomous vehicles (AVs) and proposed a deep
learning model with CNNs and LSTMs for threat detection. The model achieves high accuracy and low false
positives on real time vehicle data, and is practically applicable to AV cybersecurity.
 In [14], the researcher used a Long Short Term Memory Autoencoder (LAE) to compressed large scale IoT
network traffic while keeping key features.
 In [15], the authors presented a hybrid deep learning model that uses CNNs for feature extraction and LSTMs
for temporal pattern discovery in IoT botnet detection. The model was able to achieve high accuracy, precision
and recall in identifying sophisticated attacks and improving IoT cybersecurity.

3. Proposed Methodology
This section offers an in-depth analysis of the botnet dataset used, deep learning models used and the proposed
CLAE-MLP model.

3.1 Dataset Description
The N-BaIoT dataset, sourced from a machine learning repository, focuses on IoT network traffic for botnet
detection. It consists of 155 features collected through switch port mirroring from nine commercial IoT devices.
The dataset captures real network traffic, including botnet attacks such as Mirai and Bashlite. Table 1 presents
the types and names of IoT devices used, while Table 2 outlines the 23 primary features recorded at intervals
of 100ms, 500ms, 10s, 1min, and 10min.
Figure 1 shows the lab setup for collecting IoT botnet attacks. Devices connected via Wi-Fi access points, with
port mirroring on switches capturing network traffic. Wireshark recorded the activity. Table 3 outlines
BASHLITE and Mirai attacks—BASHLITE, a C-based DDoS attack, targets IoT cameras, while Mirai,
discovered in 2016, exploits ARC processors in large-scale IoT networks.

Table1: Types and names of the devices
Device type Device name

Dorbell Daminin
Emnio

Thermostat Ecobee
Baby Monitor Philips B120 N/10
Security Camera Provision PT-737E

Provision PT-838
Simple Home XCS7-1002-WHT
Simple Home XCS7-1003-WHT

Webcam Samsung SNH101N

Table 2: Features

Aggregated by Value Statistic Total No. of
features

Source IP Packet size(only outbound)
Packet Count

Mean, Variance

Integer

3

Source
MAC_IP

Packet size (only outbound) Mean, Variance
3

 Packet Count Integer
Channel Packet size(only outbound) Mean, Variance
 Packet Count Integer 10
 Amount of time between

packer arrivalas
Mean,Variance,Integer

 Packet size (both inbound and
outbound)

Magnitude
radius,covariance,correlation,coefficient

Socket Packet size(only outbound) Mean,Variance
 Packet count Integer 7
 Packet size(both inbound and

outbound)

 Total 23

622

 J INFORM SYSTEMS ENG, 10(32s)

Fig 1: Lab setup used to collect botnet attacks from IoT devices

Table: Outline of attack patterns

Major
attacks

Subattacks Description

Bashlite Junk By sending spam data
 TCP Flood Sends flood of request
 UDP Flood Sends flood of request
 Scan Scan the network for victim devices
 COMBO Opens connection IP address and network port by sending spam data
Mirai ACK Sends flood of acknowledgement
 SYN Sends synchronize- packet-flood
 Plain UDP UDP flood by optimizing seeding packet per second Scans the network for victim devices
 Scan

3.2 Deep Learning Models
The proposed hybrid deep learning model is based on the following three deep learning models i.e.
Autoencoder, CNN-LSTM and MLP. The hyperparameters used for CNN-LSTM and MLP is shown in Table 4
and Table 5.

3.2.1 Autoencoders
Autoencoders are neural networks tailored for performing unsupervised learning. Autoencoders are made up
of an encoder and a decoder, aiming to compress and then reconstruct the input data. This approach can be
useful for tasks such as dimensionality reduction, feature extraction, or data reconstruction.
Encoder function: Let's represent the encoder as the function f(x), where x is the input data. The encoder
transforms the input data into a lower-dimensional latent space (or space vector) representation.
z=f(x) (1)
 Decoder Function: The decoder function is represented as g(z), where z is the compressed latent
representation. The decoder reconstructs the compressed representation, transforming it back to the original
input space.
 (𝑥̂=g(z)) (2)
 Objective Function: One of the objectives of an autoencoder is typically to minimize the reconstruction
error, which is the difference between the input data x and the output generated by the decoder 𝑥̂. This error
can also be used to detect anomalies or attacks. The objective function, often referred to as the loss function,
can be expressed as:
 (L(x, 𝑥̂)=||x-𝑥̂||2) (3)
where ∥⋅∥ represents an appropriate norm, like the Euclidean norm.

Table 4: Hyperparameters of CNN-LSTM
Hyperparameters Value
Convolution Filters 192
Kernel size of filter 6
Fully connected layers 4
Activation function Relu
Classification function Sigmoid
Optimizer Adam
Epochs 100

623

 J INFORM SYSTEMS ENG, 10(32s)

Table 5: Hyperparameters of MLP model
Hyperparameters Value
Dense layers size 256,128,64
Activation function Relu for hidden layers (Softmax for output layer
Dropout rate 0.3

3.2.2 CNN-LSTM networks
A CNN-LSTM network combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks to process sequential data with spatial features. The CNN extracts spatial patterns, while the
LSTM captures temporal dependencies. In this architecture, CNN layers generate feature maps that retain
spatial hierarchies, which are then processed by LSTM layers to model sequential patterns.

• CNN Feature Extraction:
 The input sequence (e.g., a frame from a video or a segment of a time series) is processed by the CNN layers
to extract spatial features:
 ft= CNN(xt)
where xt is the input at time step t and ft is the feature map output from the CNN.

• LSTM Unit Representation:
The extracted features ft are then fed into the LSTM unit, which can be represented as follows:
o Input Gate(i):
 it=𝜎(Wiift+bii+Whiht-1+bhf) (5)
o Forget Gate(f):
 ft= 𝜎(𝑊ifft+bif+Whfht-1+bhf) (6)
o Cell Gate(g)
 gt= tanh(Wigft+big+Whght-1+bhg) (7)
o Output Gate (o)
ot= 𝜎(Wioxt+bio+Whoht+bho) (8)
o Cell Gate (g)
Ct=ftCt-1+itgt (9)
o Hidden State(h)
 ht=ottanh(Ct) (10)

3.2.3 MLP (Multilayer Perceptron)
A Multilayer Perceptron (MLP) is an artificial neural network with multiple layers that model complex data
relationships. Used for classification and regression, it consists of an input layer, hidden layers, and an output
layer. The input layer represents dataset features and passes data to the hidden layers. Each hidden layer
neuron applies a weighted sum, bias, and activation function. The output layer generates final predictions.

3.3 Proposed CLAE-MLP model
The CLAE-MLP (CNN-LSTM-Autoencoder-Multilayer Perceptron) model is a hybrid framework combining
CNN-LSTM for sequence analysis and feature extraction with an MLP decoder for classification. The CNN-
LSTM Autoencoder efficiently captures spatial and temporal dependencies, encoding crucial sequential
patterns in the data. As shown in Figure 2, the model consists of a CNN-LSTM encoder and an MLP decoder,
leveraging deep hierarchical feature learning to enhance IoT botnet detection. Integrating CNN, LSTM, and
MLP strengthens anomaly detection by combining spatial feature extraction, sequential pattern recognition,
and non-linear classification. This hybrid approach improves IoT intrusion detection by efficiently managing
data dimensionality and boosting detection accuracy, ensuring robust security against evolving cyber threats.

Fig. 2: Proposed hybrid CLAE-MLP Model

624

 J INFORM SYSTEMS ENG, 10(32s)

CLAE-MLP Algorithm
Input:

• Training dataset with labeled instances (xtrain,ytrain)

• Testing dataset for evaluation (xtest)
Output:

• Anomaly predictions for the testing dataset.
Step 1: Initialize CNN-LSTM Autoencoder (CLAE) and MLP with specified architecture
Step 2: Training the CNN-LSTM:
1. For each epoch t and sequence (xi,yi):

• Forward pass-through CNN: f(t)=CNN(X(t))

• Forward pass-through LSTM: h(t)=LSTM(f(t))
• Compute loss: ℒCLSTM=Loss (𝑦, 𝑦̂)

• Backpropagation to compute gradients:
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑊𝐶𝐿𝑆𝑇𝑀
,
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑏𝐶𝐿𝑆𝑇𝑀

• Update CNN-LSTM weights:

 𝑊𝐶𝐿𝑆𝑇𝑀 ← 𝑊𝐶𝐿𝑆𝑇𝑀 − 𝛼𝐶𝐿𝑆𝑇𝑀
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑊𝐶𝐿𝑆𝑇𝑀

 𝑏𝐶𝐿𝑆𝑇𝑀 ← 𝑏𝐶𝐿𝑆𝑇𝑀 − 𝛼𝐶𝐿𝑆𝑇𝑀
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑏𝐶𝐿𝑆𝑇𝑀

 Step 3: Encode Sequences with Autoencoder (CLAE)
1. For each sequence xi in xtrain

• Forward pass through CNN: f(t)=CNN(X(t))

• Forward pass through LSTM: h(t)=LSTM(f(t))
 Step 4: Train MLP

• Feed sequence into Autoencoder (CLAE): 𝑧𝐶𝐿𝐴𝐸=CLAE(h(t))

• Forward pass through MLP: 𝑧𝑙+1=𝜎(W(t)z(l)+b(l))

• Compute loss: ℒMLP= Loss (𝑦, 𝑦̂)

• Backpropagation to compute gradients:
𝜕ℒ𝑀𝐿𝑃

𝜕𝑊𝑡 ,
𝜕ℒ𝑀𝐿𝑃

𝜕𝑏𝑡

• Update MLP weights:

 𝑊(𝑡) ← 𝑊(𝑡) − 𝛼𝑀𝐿𝑃
𝜕ℒ𝑀𝐿𝑃

𝜕𝑊𝑡

b(l) ← b(l) −𝛼
𝜕ℒ𝑀𝐿𝑃

𝜕𝑏(𝑙)

 Step 5: Inference Phase:
1. For each instance xi in xtest

• Forward pass through CNN: f(t)=CNN(X(t))

• Forward pass through LSTM: h(t)=LSTM(f(t))
• Encode the sequence with Autoencoder (CLAE): 𝑧𝐶𝐿𝐴𝐸=CLAE(h(t))

• Forward pass through MLP:𝑧𝑙+1= 𝜎(W(t)z(l)+b(l))
Initializing and Training CNN-LSTM: The process begins with initializing a CNN-LSTM network,
including setting of hyperparameters like the number of epochs, layers, units, batch size, and learning rate.
The CNN extracts spatial features from the input data, which are then passed to the LSTM to capture temporal
dependencies. For each epoch and sequence (xi,yi) a forward pass through the CNN-LSTM generates hidden
states h(t). The loss ℒCLSTM is computed by comparing the predicted output 𝑦̂ with the true label y. Gradients are
calculated via backpropagation, and the CNN-LSTM weights (WCLSTM) and biases (bCLSTM) are updated
accordingly.
Encode Sequences with Autoencoder (CLAE): For each sequence xi in the training set, the process
begins with a forward pass through the CNN, which extracts spatial features f(t) from the input x(t). These
features are then passed through the LSTM to capture temporal patterns, resulting in hidden states h(t). Finally,
the hidden states h(t) is fed into the Autoencoder (CLAE) to encode the sequence into a lower-dimensional
representation 𝑧𝐶𝐿𝐴𝐸 , which preserves the essential features of the sequence for further processing.
Train MLP: For each epoch t and instance (xi,yi), the MLP performs a forward pass where the input z(l) is
processed through the network using weights W(t) and biases b(l), applying the activation function σ to produce
the output z(l+1). The loss ℒMLP is calculated by comparing the predicted output 𝑦̂ with the actual label y.
Backpropagation is then used to compute the gradients of the loss with respect to the weights and biases.
Finally, the MLP weights and biases are updated using these gradients to improve the model's accuracy.
Inference Phase:
For each test instance xi, the model first processes the input through the CNN to extract spatial features f(t).
These features are then passed through the LSTM to capture temporal dependencies, resulting in hidden states
h(t). The hidden states are encoded using the Autoencoder (CLAE) into a compact representation 𝑧𝐶𝐿𝐴𝐸. Finally,
this encoded sequence is passed through the MLP, where it undergoes a forward pass using the weights W(t)
and biases b(l) to produce the final prediction zl+1.

625

 J INFORM SYSTEMS ENG, 10(32s)

4. Results and Discussion

In this section, we present a brief summary of the results obtained.

4.1 Environment Setup
The proposed system was developed utilizing the hardware and software environment outlined in Table 6.

Table 6: Hardware and Software Environment

Hardware/Software Requirement

Operating System Windows 10
CPU 2.40 GHz
Memory 8GB
Development environment Jupyter Python 3.9.12
Matplotlib Version 3.5.1
NumPy Version 1.21.5
Pandas Version 1.4.2
Scikit-learn Version 1.0.2
Keras Version 2.9.0

Tensorflow Version 2.9.1

4.2 Evaluation Metric
The metrics used to evaluate the system for botnet attack detection include Accuracy, Precision, Recall, and
F1-Score, all of which are defined by the following equations:
 Accuracy = (TP+TN)/(FP+FN+TP+TN)
 Precision=(TP+FP)/TP
 Recall= TP/(TP+FN)
 F1-Score= 2*(Precision*Recall)/(Precision+Recall)
Where:

• TP (True Positive) indicates the number of correctly identified positive instances.

• TN (True Negative) indicates the number of correctly identified negative instances.

• FP (False Positive) indicates the number of negative instances incorrectly classified as positive.

• FN (False Negative) indicates the number of positive instances incorrectly classified as negative.

4.3 Results
The experiment involved two trials in different IoT environments to evaluate the CLAE-MLP model's
effectiveness in detecting botnets. Using the N-BaIoT dataset, the data was split into 70% for training and 30%
for testing with Scikit-learn’s dataset split function. Details of the three tested devices are provided in the next
section.

4.3.1 Experiment 1 for Doorbell devices
CLAE-MLP model was applied to network data from Danmini and Ennio doorbell devices to detect various
anomalies. The results of the model are shown in Tables 6(a) and 6(b). The proposed approach achieved
accuracy of 92% precision, 86% recall, and 83% F1-score for detecting attack anomalies from the Danmini
doorbell. Similarly, the system demonstrated its ability to identify intrusions from the Ennio doorbell, with
accuracy, 83% precision, 86% recall and 85% F1-score. Figure 3 and 4 shows the confusion metrics for both
danminin and ennio.

Table 6(a): Detection of different attacks from doorbell (danminin) device through CLAE-
MLP model

Dorbell(Danminin)
Attacks Precision Recall F1-Score
Benign 100 100 100
Mirai_udp 96 93 95
Gafgyt combo 93 96 95
Gafgyt_junk 100 1001 100
Gafgyt scan 100 0 0
Gafgyt tcp 53 100 69
Gafgyt udp 73 99 84
Mirai ack 100 100 100
Mirai scan 100 100 100
Mirai syn 99 59 74
Mirai udpplain 100 100 100
Accuracy 87
Weighted avg 92 87 85

626

 J INFORM SYSTEMS ENG, 10(32s)

Table 6(b) : Detection of different attacks from doorbell (Ennio) device through CLAE-MLP

model
Dorbell(Ennio)
Attacks Precision Recall F1-Score
Benign 100 100 100
Mirai_udp 98 93 96
Gafgyt combo 94 98 96
Gafgyt_junk 100 100 100
Gafgyt scan 0 0 0
Gafgyt tcp 54 100 70
Gafgyt udp 73 99 84
Mirai ack 100 100 100
Mirai scan 100 100 100
Mirai syn 99 57 72
Mirai udpplain 100 100 100
Accuracy 88
Weighted avg 85 88 85

Figure 3: Confusion Metrics for Danminin

4.3.2 Experiment 2 for Baby monitor
Using network data from Baby monitor our proposed model CLAE-MLP was employed to detect various
anomalies. For Baby monitor CLAE-MLP model reached an accuracy of 87%, precision of 84%, recall 87% and
f1-score 85%. The results of the model is shown in Tables 7. Figure 5 shows the confusion metrics.

Figure 4: Confusion Metrics for Ennio

627

 J INFORM SYSTEMS ENG, 10(32s)

Table 7 : Detection of different attacks from Baby Monitor device through CLAE-MLP model

Baby Monitor
Attacks Precision Recall F1-Score
Benign 100 99 100
Mirai_udp 97 89 93
Gafgyt combo 90 97 93
Gafgyt_junk 99 100 100
Gafgyt scan 0 0 0
Gafgyt tcp 53 100 73
Gafgyt udp 72 99 83
Mirai ack 100 100 100
Mirai scan 100 100 100
Mirai syn 98 58 73
Mirai udpplain 100 100 100
Accuracy 87
Weighted avg 85 87 85

5. Discussion

In this study, botnet attack is detected using the N-BaIoT dataset which employed the CLAE-MLP model. For
the first experiment, the model achieved 92% on Danmini doorbell devices (Table 6(a)) and 83% on Ennio
(Table 6(b)). In the second experiment, we tested on Baby Monitor device (Table 7), where we achieved 87%
accuracy, but deteriorated our performance for Scan and TCP attack where 53% precision and 73% F1-score
were obtained. Table 8 also compares the CLAE-MLP model’s F1 score against existing systems in ensuring
IoT security is still important. To this end, we evaluate results from nine IoT devices on datasets, and our
results indicate that CLAE-MLP outperforms other prior CNN and LSTM-based models in most categories.

Figure 4: Confusion Metrics for Baby Monitor

Table 8. Comparision of the F1 score of the proposed model with the existing one [16]
Model Dorbell Baby Monitor
CNN 0.91 0.91
LSTM 0.62 0.54
CLAE-MLP(Proposed) 0.88 0.85

6. Conclusion

To detect IoT botnet attacks, we propose a CLAE-MLP encoder framework and apply it on different IoT devices.
The framework also consists of a botnet dataset as well as training and detection models. We focused on the
Danmini, Ennio, and thermostats judging Bashlite and Mirai attacks targeted upon, with the help of the N-
BaIoT dataset which covers nine IoT devices. The junk, scan, combo, TCP flood, and UDP flood attacks
comprised Bashlite; while in the case of Mirai, SYN, ACK, scan, plain UDP and UDP flood attacks were
involved. Early DDoS attack detection is enhanced in this study in the context of network security. The CLAE-
MLP model has a high accuracy, and future work will improve the model’s performance and test it on other
datasets.

628

 J INFORM SYSTEMS ENG, 10(32s)

References

[1] A. Shahid, M. Z. Jasni, Z. Mohamad Fadli, and I. Zakira, "A Review Paper on Botnet and Botnet Detection

Techniques in Cloud Computing," 2014, Accessed: May 03, 2024.
[Online].Available:https://www.researchgate.net/profile/Shahid_Anwar3/publication/283257776_A_R
eview_Paper_on_Botnet_and_Botnet_Detection_Techniques_in_Cloud_Computing/links/562f525308
ae4742240abe a7.pdf.

[2] A. Darem, Anti-phishing awareness delivery methods, Eng., Technol. Appl. Sci. Res.11 (6) (2021) 7944–
7949.

[3] Sahni, Y., Cao, J., Zhang, S., & Yang, L.: Edge mesh: A new paradigm to enable distributed intelligence in
internet of things. IEEE access, 5, 16441-16458 (2017).

[4] B. K. Sovacool and D. D. F. Del Rio.: Smart home technologies in Europe: A critical review of concepts,
benefits, risks and policies. Renewable and Sustainable Energy RA. Al-Fuqaha, et al., Internet of things: a
survey on enabling technologies,

[5] protocols, and applications, IEEE Commun. Surv. Tutor. 17 (4) (2015) 2347–2376eviews, vol. 120, p.
109663, 2020.

[6] The Ultimate List of Internet of Things Statistics for 2022, https://findstack.com/internet-of-things-
statistics/, last accessed: 2024/5/21.

[7] A. Holst, Number of Iot Connected Devices Worldwide 2019-2030 (2022).
[8] T. Hasan, J. Malik, I. Bibi, W. U. Khan, F. N. Al-Wesabi, K. Dev, and G. Huang, “Securing industrial internet

of things against botnet attacks using hybrid deep learning approach,” IEEE Transactions on Network
Science and Engineering, 2022.

[9] D. T. Son, N. T. K. Tram, and P. M. Hieu, “Deep learning techniques to detect botnet,” Journal of Science
and Technology on Information security, vol. 1, no. 15, pp. 85–91, 2022.

[10] A. Alzaqebah, et al., A modified Grey Wolf optimization algorithm for an intrusion detection system,
Mathematics 10 (6) (2022) 999.

[11] B. Nugraha, A. Nambiar, and T. Bauschert, “Performance evaluation of botnet detection using deep
learning techniques,” in 2020 11th International Conference on Network of the Future (NoF), pp. 141–149,
IEEE, 2020.

[12] M. A. Haq and M. A. Rahim Khan, “Dnnbot: Deep neural network-based botnet detection and
classification.,” Computers, Materials & Continua, vol. 71, no. 1, 2022.

[13] T. H. Aldhyani and H. Alkahtani, “Attacks to automatous vehicles: A deep learning algorithm for
cybersecurity,” Sensors, vol. 22, no. 1, p. 360, 2022. [21] M.Y. Alzahraniand A.M. Bamhdi, “Hybriddeep-
learning modelto detect botnet attacks over internet of things environments,” Soft Computing, vol. 26, no.
16, pp. 7721–7735, 2022.

[14] S. I. Popoola, B. Adebisi, M. Hammoudeh, G. Gui, and H. Gacanin, “Hybrid deep learning for botnet attack
detection in the internet-of-things networks,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4944–
4956, 2020.

[15] M.Y.AlzahraniandA.M.Bamhdi,“Hybriddeep-learning modelto detect botnet attacks over internet of things
environments,” Soft Computing, vol. 26, no. 16, pp. 7721–7735, 2022.

[16] Kim, Jiyeon, Minsun Shim, Seungah Hong, Yulim Shin, and Eunjung Choi, “Intelligent detection of iot
botnets using machine learning and deep learning,” Applied Sciences, vol. 10, no. 19 pp.7009, 2020.

