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1. Introduction 

 
Online services together with the internet have evolved into crucial elements which people use daily [1]. The 
IoT expansion powers this advancement which has revolutionized work practices and communication systems 
and connectivity methods. [2]. A network of connected devices creates IoT through data-sharing capabilities 
over the internet. [3-4]. The transformative power of IoT exists because of its ability to share data in real time 
which affects both business operations and everyday life. [5]. The global IoT device installation count reached 
35.82 billion during 2021 before experts expect it to surpass 75.44 billion by 2025 and exceed 25.4 billion active 
devices by 2030. [6] The quick expansion of IoT demonstrates its influence on multiple business areas and 
market segments. [7] Cyber attackers use IoT's interconnected structure as a means to commit harmful actions 
while enjoying its beneficial aspects. Botnets have become a common tool for launching cyberattacks on 
systems enabled by IoT devices which requires immediate detection for cybersecurity protection. Network 
security and user trust depend on botnet identification followed by their breakdown to stop DDoS attacks and 
data breaches and malware distribution. When security threats get detected early the damage stays under 
control and operational effectiveness increases while cyber defenses become strengthened. Deep learning 
methods strengthen botnet detection through effective recognition of security threats with quick threat 
identification mechanisms which shield infrastructure from financial losses and operational risks. operational 
risks. Deep learning emerges as an effective tool to combat botnet attacks because of its increasing importance 
against growing cyber threats. The detection capabilities of botnets get significantly improved through deep 
learning because it enables automatic intelligent threat analysis. The system implements deep neural networks 
that successfully detects current botnets and those that emerge in the future. Real-time identification of 
malignant actions becomes possible through extracting features from network packets at their headers [8]. The 
technology of deep learning is undergoing modifications to process encrypted data while also detecting new 
botnet architecture patterns. Scientists continue to work on research that improves detection models to handle 
changing botnet patterns and to increase their ability to detect various patterns [9]. The authors create a deep 
learning framework which unites CNN autoencoders with LSTM and MLP to detect IoT botnets. The spatial 
feature extraction of CNN pairs effectively with LSTM’s advanced temporal pattern recognition ability to 
produce enhanced classification performance through MLP thus establishing improved IoT security standards. 
The paper follows this organization: Section 2 reviews literature alongside existing research and technologies. 
Section 3 describes the proposed methodology. The fourth section shows the obtained results while analyzing 
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the consequences of the proposed method implementation. Finally, Section 5 concludes the research. 
 

2. Literature Review 
 
In [10], GWO is applied to improve Intrusion Detection Systems (IDS) by feature selection. GWO was 
integrated with Extreme Learning Machine (ELM) for the optimized classification and was tested on UNSW-
NB15 dataset. Concerned with generic attack detection, their approach brought the crossover error under 30. 
 The authors in [11] applied a combined CNN-LSTM model to detect Distributed Denial of Service (DDoS) 
attacks using CICIDS 2017 dataset. The accuracy of their model was 97.16.  
In [12] the authors combine CNN and LSTM for botnet detection and achieve strong performance. DNNBoT1 
had a training accuracy of 90.71.  
The author in [13] examined the cybersecurity threats in autonomous vehicles (AVs) and proposed a deep 
learning model with CNNs and LSTMs for threat detection. The model achieves high accuracy and low false 
positives on real time vehicle data, and is practically applicable to AV cybersecurity. 
 In [14], the researcher used a Long Short Term Memory Autoencoder (LAE) to compressed large scale IoT 
network traffic while keeping key features. 
 In [15], the authors presented a hybrid deep learning model that uses CNNs for feature extraction and LSTMs 
for temporal pattern discovery in IoT botnet detection. The model was able to achieve high accuracy, precision 
and recall in identifying sophisticated attacks and improving IoT cybersecurity. 
 

3. Proposed Methodology 
This section offers an in-depth analysis of the botnet dataset used, deep learning models used and the proposed 
CLAE-MLP model. 
 
3.1 Dataset Description 
The N-BaIoT dataset, sourced from a machine learning repository, focuses on IoT network traffic for botnet 
detection. It consists of 155 features collected through switch port mirroring from nine commercial IoT devices. 
The dataset captures real network traffic, including botnet attacks such as Mirai and Bashlite. Table 1 presents 
the types and names of IoT devices used, while Table 2 outlines the 23 primary features recorded at intervals 
of 100ms, 500ms, 10s, 1min, and 10min. 
Figure 1 shows the lab setup for collecting IoT botnet attacks. Devices connected via Wi-Fi access points, with 
port mirroring on switches capturing network traffic. Wireshark recorded the activity. Table 3 outlines 
BASHLITE and Mirai attacks—BASHLITE, a C-based DDoS attack, targets IoT cameras, while Mirai, 
discovered in 2016, exploits ARC processors in large-scale IoT networks. 
 

Table1: Types and names of the devices 
Device type Device name 

Dorbell Daminin 
Emnio 

Thermostat Ecobee 
Baby Monitor Philips B120 N/10 
Security Camera Provision PT-737E 

Provision PT-838 
Simple Home XCS7-1002-WHT 
Simple Home XCS7-1003-WHT  

Webcam Samsung SNH101N 

 
Table 2: Features 

Aggregated by Value Statistic Total No. of 
features 

Source IP Packet size(only outbound) 
Packet Count 

Mean, Variance 
 
Integer 

 
3 

Source 
MAC_IP 

Packet size (only outbound) Mean, Variance  
3 

 Packet Count Integer  
Channel Packet size(only outbound) Mean, Variance  
 Packet Count Integer 10 
 Amount of time between 

packer arrivalas 
Mean,Variance,Integer  

 Packet size (both inbound and 
outbound) 

Magnitude 
radius,covariance,correlation,coefficient 

 

Socket Packet size(only outbound) Mean,Variance  
 Packet count Integer 7 
 Packet size(both inbound and 

outbound) 
  

 Total  23 
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Fig 1:  Lab setup used to collect botnet attacks from IoT devices 

 
Table: Outline of attack patterns 

Major 
attacks 

Subattacks Description 

Bashlite Junk By sending spam data 
 TCP Flood Sends flood of request 
 UDP Flood Sends flood of request 
 Scan  Scan the network for victim devices 
 COMBO Opens connection IP address and network port by sending spam data 
Mirai ACK Sends flood of acknowledgement 
 SYN Sends synchronize- packet-flood 
 Plain UDP UDP flood by optimizing seeding packet per second Scans the network for victim devices 
 Scan  

 
3.2 Deep Learning Models 
The proposed hybrid deep learning model is based on the following three deep learning models i.e. 
Autoencoder, CNN-LSTM and MLP. The hyperparameters used for CNN-LSTM and MLP is shown in Table 4 
and Table 5. 
 
3.2.1 Autoencoders 
Autoencoders are neural networks tailored for performing unsupervised learning. Autoencoders are made up 
of an encoder and a decoder, aiming to compress and then reconstruct the input data. This approach can be 
useful for tasks such as dimensionality reduction, feature extraction, or data reconstruction. 
Encoder function: Let's represent the encoder as the function f(x), where x is the input data. The encoder 
transforms the input data into a lower-dimensional latent space (or space vector) representation. 
z=f(x)                                                                                                                                                  (1) 
 Decoder Function: The decoder function is represented as g(z), where z is the compressed latent 
representation. The decoder reconstructs the compressed representation, transforming it back to the original 
input space. 
 (𝑥̂=g(z))                                                                                                                                       (2) 
 Objective Function: One of the objectives of an autoencoder is typically to minimize the reconstruction 
error, which is the difference between the input data x and the output generated by the decoder 𝑥̂. This error 
can also be used to detect anomalies or attacks. The objective function, often referred to as the loss function, 
can be expressed as: 
 (L(x, 𝑥̂)=||x-𝑥̂||2)                                                                                                                        (3) 
where ∥⋅∥ represents an appropriate norm, like the Euclidean norm. 
 

Table 4: Hyperparameters of CNN-LSTM 
Hyperparameters Value 
Convolution Filters 192 
Kernel size of filter 6 
Fully connected layers 4 
Activation function Relu 
Classification function Sigmoid 
Optimizer Adam 
Epochs 100 

 



623  
 

 J INFORM SYSTEMS ENG, 10(32s) 

Table 5: Hyperparameters of MLP model 
Hyperparameters Value 
Dense layers size 256,128,64 
Activation function  Relu for hidden layers (Softmax for output layer 
Dropout rate 0.3 

 
3.2.2 CNN-LSTM networks 
A CNN-LSTM network combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks to process sequential data with spatial features. The CNN extracts spatial patterns, while the 
LSTM captures temporal dependencies. In this architecture, CNN layers generate feature maps that retain 
spatial hierarchies, which are then processed by LSTM layers to model sequential patterns. 

• CNN Feature Extraction: 
 The input sequence (e.g., a frame from a video or a segment of a time series) is processed by the CNN layers 
to extract spatial features: 
 ft= CNN(xt) 
where xt is the input at time step t and ft is the feature map output from the CNN. 

• LSTM Unit Representation: 
The extracted features ft are then fed into the LSTM unit, which can be represented as follows: 
o Input Gate(i): 
  it=𝜎(Wiift+bii+Whiht-1+bhf)                                                                               (5) 
o Forget Gate(f): 
             ft= 𝜎(𝑊ifft+bif+Whfht-1+bhf)                                                                       (6) 
o Cell Gate(g) 
              gt= tanh(Wigft+big+Whght-1+bhg)                                                               (7) 
o Output Gate (o) 
ot= 𝜎(Wioxt+bio+Whoht+bho)                                                                                   (8) 
o Cell Gate (g) 
Ct=ftCt-1+itgt                                                                                                                                                                            (9) 
o Hidden State(h) 
         ht=ottanh(Ct)                                                                                              (10)  
 
3.2.3 MLP (Multilayer Perceptron) 
A Multilayer Perceptron (MLP) is an artificial neural network with multiple layers that model complex data 
relationships. Used for classification and regression, it consists of an input layer, hidden layers, and an output 
layer. The input layer represents dataset features and passes data to the hidden layers. Each hidden layer 
neuron applies a weighted sum, bias, and activation function. The output layer generates final predictions. 
 
3.3 Proposed CLAE-MLP model 
The CLAE-MLP (CNN-LSTM-Autoencoder-Multilayer Perceptron) model is a hybrid framework combining 
CNN-LSTM for sequence analysis and feature extraction with an MLP decoder for classification. The CNN-
LSTM Autoencoder efficiently captures spatial and temporal dependencies, encoding crucial sequential 
patterns in the data. As shown in Figure 2, the model consists of a CNN-LSTM encoder and an MLP decoder, 
leveraging deep hierarchical feature learning to enhance IoT botnet detection. Integrating CNN, LSTM, and 
MLP strengthens anomaly detection by combining spatial feature extraction, sequential pattern recognition, 
and non-linear classification. This hybrid approach improves IoT intrusion detection by efficiently managing 
data dimensionality and boosting detection accuracy, ensuring robust security against evolving cyber threats. 

 
Fig. 2: Proposed hybrid CLAE-MLP Model 
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CLAE-MLP Algorithm 
Input:  

• Training dataset with labeled instances (xtrain,ytrain) 

• Testing dataset for evaluation (xtest) 
Output: 

• Anomaly predictions for the testing dataset. 
Step 1: Initialize CNN-LSTM Autoencoder (CLAE) and MLP with specified architecture 
Step 2: Training the CNN-LSTM: 
1. For each epoch t and sequence (xi,yi): 

• Forward pass-through CNN: f(t)=CNN(X(t)) 

• Forward pass-through LSTM: h(t)=LSTM(f(t)) 
• Compute loss: ℒCLSTM=Loss (𝑦, 𝑦̂) 

• Backpropagation to compute gradients: 
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑊𝐶𝐿𝑆𝑇𝑀
,
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑏𝐶𝐿𝑆𝑇𝑀
 

• Update CNN-LSTM weights: 

                                     𝑊𝐶𝐿𝑆𝑇𝑀 ← 𝑊𝐶𝐿𝑆𝑇𝑀 − 𝛼𝐶𝐿𝑆𝑇𝑀
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑊𝐶𝐿𝑆𝑇𝑀
            

                                         𝑏𝐶𝐿𝑆𝑇𝑀 ← 𝑏𝐶𝐿𝑆𝑇𝑀 − 𝛼𝐶𝐿𝑆𝑇𝑀
𝜕ℒ𝐶𝐿𝑆𝑇𝑀

𝜕𝑏𝐶𝐿𝑆𝑇𝑀
 

 Step 3: Encode Sequences with Autoencoder (CLAE) 
1. For each sequence xi in xtrain 

• Forward pass through CNN: f(t)=CNN(X(t)) 

• Forward pass through LSTM: h(t)=LSTM(f(t)) 
    Step 4: Train MLP 

• Feed sequence into Autoencoder (CLAE): 𝑧𝐶𝐿𝐴𝐸=CLAE(h(t)) 

• Forward pass through MLP: 𝑧𝑙+1=𝜎(W(t)z(l)+b(l)) 

• Compute loss: ℒMLP= Loss (𝑦, 𝑦̂) 

• Backpropagation to compute gradients: 
𝜕ℒ𝑀𝐿𝑃

𝜕𝑊𝑡 ,
𝜕ℒ𝑀𝐿𝑃

𝜕𝑏𝑡  

• Update MLP weights:  

                                       𝑊(𝑡) ← 𝑊(𝑡) − 𝛼𝑀𝐿𝑃
𝜕ℒ𝑀𝐿𝑃

𝜕𝑊𝑡  

b(l) ← b(l) −𝛼
𝜕ℒ𝑀𝐿𝑃

𝜕𝑏(𝑙)  

   Step 5: Inference Phase: 
1. For each instance xi in xtest 

• Forward pass through CNN: f(t)=CNN(X(t)) 

• Forward pass through LSTM: h(t)=LSTM(f(t)) 
• Encode the sequence with Autoencoder (CLAE): 𝑧𝐶𝐿𝐴𝐸=CLAE(h(t)) 

• Forward pass through MLP:𝑧𝑙+1= 𝜎(W(t)z(l)+b(l)) 
Initializing and Training CNN-LSTM: The process begins with initializing a CNN-LSTM network, 
including setting of hyperparameters like the number of epochs, layers, units, batch size, and learning rate. 
The CNN extracts spatial features from the input data, which are then passed to the LSTM to capture temporal 
dependencies. For each epoch and sequence (xi,yi) a forward pass through the CNN-LSTM generates hidden 
states h(t). The loss ℒCLSTM is computed by comparing the predicted output 𝑦̂ with the true label y. Gradients are 
calculated via backpropagation, and the CNN-LSTM weights (WCLSTM) and biases (bCLSTM) are updated 
accordingly. 
Encode Sequences with Autoencoder (CLAE): For each sequence xi in the training set, the process 
begins with a forward pass through the CNN, which extracts spatial features f(t) from the input x(t). These 
features are then passed through the LSTM to capture temporal patterns, resulting in hidden states h(t). Finally, 
the hidden states h(t) is fed into the Autoencoder (CLAE) to encode the sequence into a lower-dimensional 
representation 𝑧𝐶𝐿𝐴𝐸 , which preserves the essential features of the sequence for further processing. 
Train MLP: For each epoch t and instance (xi,yi), the MLP performs a forward pass where the input z(l) is 
processed through the network using weights W(t) and biases b(l), applying the activation function σ to produce 
the output z(l+1). The loss ℒMLP  is calculated by comparing the predicted output 𝑦̂ with the actual label y. 
Backpropagation is then used to compute the gradients of the loss with respect to the weights and biases. 
Finally, the MLP weights and biases are updated using these gradients to improve the model's accuracy. 
Inference Phase: 
For each test instance xi, the model first processes the input through the CNN to extract spatial features f(t). 
These features are then passed through the LSTM to capture temporal dependencies, resulting in hidden states 
h(t). The hidden states are encoded using the Autoencoder (CLAE) into a compact representation  𝑧𝐶𝐿𝐴𝐸. Finally, 
this encoded sequence is passed through the MLP, where it undergoes a forward pass using the weights W(t) 
and biases b(l) to produce the final prediction zl+1. 
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4. Results and Discussion 
 
In this section, we present a brief summary of the results obtained. 
 
4.1 Environment Setup 
The proposed system was developed utilizing the hardware and software environment outlined in Table 6. 

Table 6: Hardware and Software Environment 

Hardware/Software Requirement 

Operating System Windows 10 
CPU 2.40 GHz 
Memory 8GB 
Development environment Jupyter Python 3.9.12 
Matplotlib Version 3.5.1 
NumPy Version 1.21.5 
Pandas Version 1.4.2 
Scikit-learn Version 1.0.2 
Keras  Version 2.9.0 

Tensorflow Version 2.9.1 

 
4.2 Evaluation Metric 
The metrics used to evaluate the system for botnet attack detection include Accuracy, Precision, Recall, and 
F1-Score, all of which are defined by the following equations: 
     Accuracy = (TP+TN)/(FP+FN+TP+TN) 
     Precision=(TP+FP)/TP 
     Recall= TP/(TP+FN) 
               F1-Score= 2*(Precision*Recall)/(Precision+Recall) 
Where: 

• TP (True Positive) indicates the number of correctly identified positive instances. 

• TN (True Negative) indicates the number of correctly identified negative instances. 

• FP (False Positive) indicates the number of negative instances incorrectly classified as positive. 

• FN (False Negative) indicates the number of positive instances incorrectly classified as negative. 
 
4.3 Results 
The experiment involved two trials in different IoT environments to evaluate the CLAE-MLP model's 
effectiveness in detecting botnets. Using the N-BaIoT dataset, the data was split into 70% for training and 30% 
for testing with Scikit-learn’s dataset split function. Details of the three tested devices are provided in the next 
section. 
 
4.3.1 Experiment 1 for Doorbell devices 
CLAE-MLP model was applied to network data from Danmini and Ennio doorbell devices to detect various 
anomalies. The results of the model are shown in Tables 6(a) and 6(b). The proposed approach achieved 
accuracy of 92% precision, 86% recall, and 83% F1-score for detecting attack anomalies from the Danmini 
doorbell. Similarly, the system demonstrated its ability to identify intrusions from the Ennio doorbell, with  
accuracy, 83% precision, 86% recall and 85% F1-score. Figure 3 and 4 shows the confusion metrics for both 
danminin and ennio. 
 

Table 6(a): Detection of different attacks from doorbell (danminin) device through CLAE-
MLP model 

Dorbell(Danminin) 
Attacks Precision Recall F1-Score 
Benign 100 100 100 
Mirai_udp 96 93 95 
Gafgyt combo 93 96 95 
Gafgyt_junk 100 1001 100 
Gafgyt scan 100 0 0 
Gafgyt tcp 53 100 69 
Gafgyt udp 73 99 84 
Mirai ack 100 100 100 
Mirai scan 100 100 100 
Mirai syn 99 59 74 
Mirai udpplain 100 100 100 
Accuracy 87   
Weighted avg 92 87 85 
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Table 6(b) : Detection of different attacks from doorbell (Ennio) device through CLAE-MLP 

model 
Dorbell(Ennio) 
Attacks Precision Recall F1-Score 
Benign 100 100 100 
Mirai_udp 98 93 96 
Gafgyt combo 94 98 96 
Gafgyt_junk 100 100 100 
Gafgyt scan 0 0 0 
Gafgyt tcp 54 100 70 
Gafgyt udp 73 99 84 
Mirai ack 100 100 100 
Mirai scan 100 100 100 
Mirai syn 99 57 72 
Mirai udpplain 100 100 100 
Accuracy 88   
Weighted avg 85 88 85 

 

 
Figure 3: Confusion Metrics for Danminin 

 
4.3.2 Experiment 2 for Baby monitor 
Using network data from Baby monitor our proposed model CLAE-MLP was employed to detect various 
anomalies. For Baby monitor CLAE-MLP model reached an accuracy of 87%, precision of 84%, recall 87% and 
f1-score 85%. The results of the model is shown in Tables 7. Figure 5  shows the confusion metrics. 
 

 
Figure 4: Confusion Metrics for Ennio 
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Table 7 : Detection of different attacks from Baby Monitor device through CLAE-MLP model 

Baby Monitor 
Attacks Precision Recall F1-Score 
Benign 100 99 100 
Mirai_udp 97 89 93 
Gafgyt combo 90 97 93 
Gafgyt_junk 99 100 100 
Gafgyt scan 0 0 0 
Gafgyt tcp 53 100 73 
Gafgyt udp 72 99 83 
Mirai ack 100 100 100 
Mirai scan 100 100 100 
Mirai syn 98 58 73 
Mirai udpplain 100 100 100 
Accuracy 87   
Weighted avg 85 87 85 

 
5. Discussion 

 
In this study, botnet attack is detected using the N-BaIoT dataset which employed the CLAE-MLP model. For 
the first experiment, the model achieved 92% on Danmini doorbell devices (Table 6(a)) and 83% on Ennio 
(Table 6(b)). In the second experiment, we tested on Baby Monitor device (Table 7), where we achieved 87% 
accuracy, but deteriorated our performance for Scan and TCP attack where 53% precision and 73% F1-score 
were obtained. Table 8 also compares the CLAE-MLP model’s F1 score against existing systems in ensuring 
IoT security is still important. To this end, we evaluate results from nine IoT devices on datasets, and our 
results indicate that CLAE-MLP outperforms other prior CNN and LSTM-based models in most categories. 
 

 
Figure 4: Confusion Metrics for Baby Monitor 

Table 8. Comparision of the F1 score of the proposed model with the existing one [16] 
Model Dorbell Baby Monitor 
CNN 0.91 0.91 
LSTM 0.62 0.54 
CLAE-MLP(Proposed) 0.88 0.85 

 
6. Conclusion 

 
To detect IoT botnet attacks, we propose a CLAE-MLP encoder framework and apply it on different IoT devices. 
The framework also consists of a botnet dataset as well as training and detection models. We focused on the 
Danmini, Ennio, and thermostats judging Bashlite and Mirai attacks targeted upon, with the help of the N-
BaIoT dataset which covers nine IoT devices. The junk, scan, combo, TCP flood, and UDP flood attacks 
comprised Bashlite; while in the case of Mirai, SYN, ACK, scan, plain UDP and UDP flood attacks were 
involved. Early DDoS attack detection is enhanced in this study in the context of network security. The CLAE-
MLP model has a high accuracy, and future work will improve the model’s performance and test it on other 
datasets. 
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