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Defect recognition plays a crucial role in investigating a panel. Mostly the recent manual 

investigating methods are time consuming and high expense.  The fast recurrent neural 

network is enhanced and is less time consuming. The faster R-CNN has been proposed in the 

research work. A feature pyramid network associated with ResNet-50 has been efficiently able 

to detect the defects in a precise manner. In this manuscript for localization of defects we have 

used Region of Interest Align in place of pooling ROI. Then an enhanced feature network has 

been used to precisely detect the defects. Therefore, the k-means clustering algorithm is used to 

cluster the defects so that the defects can be easily detected. In this paper the data set has been 

taken and the algorithms are compared with the existing algorithm to check the accuracy and 

efficiency of the proposed system. The detection accuracy has been converted and detected 

properly and validated in the paper. 
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INTRODUCTION 

In Recent, by 2020 reports the China's current furnishing industry is going to an extent. The market of China is 
booming because of the reason that nowadays people are very concerned about the environmental conditions and 
design and concept of the home. Nowadays to customize furniture increases the market up to twenty percent and is 
also experiencing to attain the marketplace around 2500 trillion till 2025. As the demand of attraction enterprises 
or increase in day by day so the raw material used in the plate manufacturing is also increasing gradually. To meet 
the market requirements there are different types of automated plate manufacturing types that are introduced like 
pet manufacturing, manmade surfaces and high-definition surfaces wooden panels and many more. The production 
stage of the polished prototype from raw, pits, bumps, dents and several other kinds of defects arise at the finalized 
end. The quality of the surface of the steel plates made by man has a certain kind of defect in the manufacturing 
process. The defect and affect the quality of the finished product so to terminate or ignore the defects we need to 
detect the defects caused due to manmade or domestic manufacturing. So, it is required to have the cluster of 
investigation approaches for different detection. Machine vision is a good kind of defect detection approach due to 
high accuracy and fast detection. In this method the image is firstly attained, and the preprocessing is being 
performed the features are extracted and based on that features the defect is classified. The features are in the form 
of shape and size. In the literature several different detection approaches are available. The decision tree approach 
is proposed to detect the defect based on the artificial board. The CART algorithm is used to detect the cost 
complexity and then the synthetic surface defect detection. In the existing review, defect lumber detection an 
approach with NIR spectrum and inverse NN is used for the process. Another method for defect detection is the 
binary method and the binary differential method is used for histogram defect analysis. The artificial board 
detection methods include random forest, region screening detection methods and clustering and there are also 
ensemble machine learning methods for defect detection. The training, testing and validation are the three phases 
of detection. The feature selection is also an important parameter for the whole process. In steel production, defects 
such as cracks, scratches, inclusions, dents, and holes can occur due to various reasons including material defects, 
processing errors, or external damage. Identifying these defects early is essential to avoid costly downstream issues 
and to maintain product standards. Traditional machine vision techniques for defect detection often rely on 
handcrafted features and threshold-based methods, which may fail in complex or noisy environments. The 
development of deep learning-based approaches has shifted the paradigm by allowing models to automatically 
learn relevant features from raw image data, thus improving robustness and accuracy. The "hole" defect on steel 
sheet surfaces often originates from microstructural issues during processes like shearing or punching. In high-
strength steel sheets, hole-related defects, such as micro-ductile cracks, are prone to occur at shear edges where 
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tensile stresses create cleavage fractures, making the steel susceptible to crack propagation. These defects can be 
managed by adjusting tool clearances, which reduces stress and prevents crack initiation. Recent research indicates 
that microstructural examination and simulation models help in predicting and controlling these defects for 
improved steel quality https://doi.org/10.2355/isijinternational.ISIJINT-2019-326.“Dirt" defects on steel sheet 
surfaces are often caused by external particulate contamination or chemical residue left during manufacturing 
processes, especially in casting or rolling phases. These defects manifest as small, embedded particles or dark spots 
on the steel surface, impacting its appearance and quality. Typically, dirt defects originate from the incorporation of 
non-metallic inclusions, dust particles, or chemical residues, often introduced during cooling, handling, or surface 
treatments. Research indicates that such contaminants can be minimized by improving the cleanliness of the 
processing environment and using controlled filtration systems. Studies also suggest that automated detection 
systems based on machine vision and deep learning are increasingly effective for real-time identification and 
categorization of these surface impurities, allowing for faster response and corrective actions in production settings. 
For an in-depth look, recent analyses on the generation mechanisms of such defects, and their detection, are 
discussed in journals like Tetsu to Hagane and MDPI’s Steel Surface Defect Recognition Survey from 2023. A 
"scratch" defect on a steel sheet surface is typically a narrow, linear imperfection caused by friction, mechanical 
handling, or contact with other materials or equipment during manufacturing or transport. These scratches, if not 
addressed, can compromise the steel’s strength, reduce its fatigue resistance, and impact visual quality, which is 
crucial in industries such as automotive and appliance manufacturing. Scratches tend to run along the rolling 
direction of the steel, making them distinctive but often challenging to detect due to their narrow profile. Recent 
advances in defect detection technology are increasingly focusing on the automation of scratch detection. Studies 
have applied convolutional neural networks (CNNs) and deep learning techniques for real-time, high-accuracy 
identification. For example, the modified YOLO-v5 network offers enhanced detection capabilities by incorporating 
multi-scale detection and spatial attention mechanisms, which help in distinguishing fine, narrow scratches from 
other surface textures. This approach aims to improve detection speed and accuracy to meet industrial production 
demands (Ma et al., 2023). Another recent study used a unique U-Net-based model that combines down sampling 
with a spatial-depth module to improve the localization of small scratches, which are otherwise difficult to capture 
due to image resolution limitations (Liu et al., 2024). These developments highlight the importance of real-time, 
precise scratch identification in quality control, enabling manufacturers to minimize defects and optimize 
production efficiency by reducing reliance on manual inspection methods. For more details, refer to research by Ma 
et al. (2023) and Liu et al. (2024) in Processes and Electronics journals, respectively. The "scale" defect in steel 
sheet surfaces, often referred to as "rolled-in scale," originates during the hot rolling process, where iron oxides 
formed on the surface become pressed into the steel due to high temperature and pressure. These oxides, primarily 
consisting of magnetite and hematite, can lead to irregular surface textures and, if not removed, significantly 
impact the steel’s mechanical properties and surface aesthetics. This defect poses challenges in downstream 
processes like coating or painting, where a smooth surface is essential for adhesion and durability. Recent studies in 
defect detection have focused on automated, real-time methods to address scale defects using deep learning 
techniques. For instance, improved multi-scale models, such as an enhanced YOLO-v5, integrate spatial attention 
mechanisms that help localize and identify scale defects across varying image resolutions with high accuracy and 
speed. This approach is particularly effective in distinguishing scale from other defects, offering improvements in 
precision over manual inspection methods. This advancement not only supports quality control but also optimizes 
production by allowing for consistent, non-destructive testing throughout manufacturing lines. For a deeper 
understanding of these detection methods, refer to works by Ma et al. (2023) on real-time detection advancements 
and a comprehensive review by Wen et al. (2023).  

The "crazing" defect on steel sheet surfaces appears as fine, irregular cracks, often caused by stress in the material 
during cooling or forming processes. These cracks are usually superficial but can significantly impact both the 
aesthetic quality and structural performance of the steel, especially in applications requiring high surface integrity. 
Current research leverages deep learning-based models to detect crazing and other microdefects in real-time, with 
methods like multi-scale YOLO networks achieving high accuracy and efficiency in distinguishing complex defect 
patterns on steel surfaces, critical for quality assurance in production lines. For more details, see recent 
advancements in steel defect detection systems (MDPI, 2023). Object detection has evolved significantly with the 
introduction of deep learning techniques. Among the pivotal advancements in this domain is the R-CNN (Regions 
with Convolutional Neural Networks) framework, which has set new standards for accuracy and efficiency in 
detecting objects within images. Object detection is a critical task in computer vision that involves identifying and 
localizing objects within images. Traditional methods relied heavily on hand-crafted features and classifiers. 
However, the rise of deep learning has revolutionized this field, with R-CNN being one of the first to leverage 
Convolutional Neural Networks (CNNs) for this purpose. Introduced by Girshick et al. in 2014, R-CNN combined 
selective search for region proposal with deep learning for classification and localization, achieving remarkable 
performance on benchmark datasets. Defect detection in industrial applications is critical for ensuring product 
quality and operational efficiency. In manufacturing environments, components such as metal plates with complex 
surface textures often present significant challenges for defect detection due to their non-uniformity and variability 
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in defect appearance. Traditional methods rely heavily on manual inspection or conventional image processing 
techniques, which are labour-intensive, time-consuming, and prone to human error. To address these limitations, 
automated defect detection using advanced deep learning techniques has emerged as a promising solution. Among 
deep learning approaches, Faster R-CNN (Region-based Convolutional Neural Network) is a widely adopted object 
detection model due to its robustness and ability to handle diverse object scales and categories. However, when 
applied to plates with complex surface patterns, standard Faster R-CNN may struggle to detect multi-scale defects 
effectively. The variability in defect sizes, shapes, and contrast levels relative to the background necessitates 
modifications to enhance the model's feature extraction and region proposal capabilities. This study introduces a 
Modified Faster R-CNN framework designed to improve defect detection performance on complex surfaces. The 
proposed approach integrates multi-scale feature extraction techniques, enhanced region proposal strategies, and 
domain-specific preprocessing to better accommodate the challenges posed by irregular surfaces. By leveraging 
these modifications, the model achieves superior accuracy and robustness in identifying various types of defects. 
The significance of this research lies in its potential to revolutionize quality control processes in industries such as 
metal fabrication, electronics, and automotive manufacturing. The proposed method not only automates defect 
detection but also provides a scalable and efficient solution adaptable to diverse industrial settings. In the following 
sections, the paper delves into the methodology, implementation, and evaluation of the Modified Faster R-CNN 
model, showcasing its effectiveness in handling multi-scale defect detection for complex surface scenarios. Steel 
plates are critical components in numerous industries, including construction, automotive, and shipbuilding. 
Ensuring the quality of these plates is essential to maintain product integrity and safety. Surface defects such as 
scratches, dents, inclusions, and cracks can significantly impact the functionality and aesthetics of steel products. 
Traditionally, defect detection has relied on manual inspection or rule-based image processing techniques, which 
are often time-consuming, labour-intensive, and prone to human error. With advancements in machine learning 
(ML) and artificial intelligence (AI), automated steel plate surface defect detection has become more accurate, 
efficient, and scalable. Modern approaches leverage machine learning models such as Support Vector Machines 
(SVM) and deep learning architectures like Convolutional Neural Networks (CNN), Recurrent Neural Networks 
(RNN), and Long Short-Term Memory (LSTM) networks. These techniques use advanced algorithms for feature 
extraction and classification to identify and categorize defects effectively. Feature extraction is the foundation of 
any machine learning model. In the context of steel plate defect detection, texture, color, shape, and edge patterns 
are some key features. Traditional methods rely on handcrafted features using techniques like Histogram of 
Gradients (HOG) and Local Binary Patterns (LBP). Deep learning, however, enables automatic feature extraction, 
allowing models to learn hierarchical representations of defects directly from raw image data. SVM is widely used 
for binary and multi-class classification. It works by finding an optimal hyperplane that separates classes with the 
largest margin. In defect detection, SVM can classify extracted features into defect or non-defect categories and is 
particularly effective in scenarios with small datasets. CNNs have revolutionized image-based defect detection due 
to their ability to capture spatial hierarchies in data. A CNN-based model can automatically learn and extract 
complex features from steel plate surface images, outperforming traditional methods in defect identification and 
localization. Although RNNs and LSTMs are primarily designed for sequential data, they are valuable in defect 
detection when combined with spatial-temporal data or sequential images. They help in analysing patterns over 
time, such as evolving surface changes during manufacturing. AI-driven frameworks combine the strengths of these 
machine learning models with techniques like ensemble learning, data augmentation, and optimization algorithms. 
These systems adapt dynamically to different environments and defect patterns, achieving high accuracy and 
robustness in real-world scenarios. the fusion of machine learning techniques like SVM, CNN, RNN, and LSTM 
with advanced AI frameworks offers a transformative approach to steel plate surface defect detection. These 
technologies enable manufacturers to ensure higher product quality, reduce wastage, and improve operational 
efficiency. As research in this field continues to advance, more sophisticated and generalized models are expected to 
emerge, addressing diverse challenges in defect detection with unparalleled precision. 

The R-CNN framework consists of several key components: 

1. Region Proposal: R-CNN uses an external algorithm called selective search to generate about 2,000 region 
proposals from an image. These regions likely contain objects and serve as candidates for further analysis. 

2. Feature Extraction: Each proposed region is warped into a fixed size and fed into a pre-trained CNN 
(typically Alex Net) to extract feature vectors. This step is computationally intensive but critical for capturing the 
spatial hierarchies of the images. 

3. Classification and Bounding Box Regression: The extracted features are then fed into a set of SVM 
classifiers to determine the object classes. Additionally, a linear regression model is used to refine the bounding box 
coordinates, improving localization accuracy. 

Post-processing: Finally, non-max suppression is applied to eliminate duplicate detections and ensure that each 
object is represented by a single bounding box. 
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Fig.1. RCNN Architecture 

High Accuracy: R-CNN significantly improves object detection accuracy by utilizing deep learning for feature 
extraction. 

Flexibility: The framework can be adapted to various CNN architectures, enhancing its applicability across different 
tasks. 

Computationally Intensive: The need to extract features for each proposed region makes R-CNN slow, rendering it 
impractical for real-time applications. 

Storage Requirements: The model requires considerable storage due to the necessity of storing CNN features for 
each region proposal. 

Evolution and Successors 

Following R-CNN, several variants emerged to address its limitations: 

Fast R-CNN: Introduced a unified architecture that shares convolutional features across proposals, significantly 
speeding up the process. 

Faster R-CNN: Integrated a Region Proposal Network (RPN) that generates proposals more efficiently, further 
reducing computational overhead. 

Mask R-CNN: Extended Faster R-CNN to perform instance segmentation, allowing for pixel-level predictions in 
addition to bounding box detection. 

R-CNN has played a foundational role in the advancement of object detection using deep learning. Its innovative 
approach to combining region proposals with CNNs has paved the way for more efficient and accurate models. 
Despite its limitations, the principles established by R-CNN continue to influence modern object detection 
techniques. Future research may focus on further enhancing efficiency and accuracy, especially in real-time 
applications and resource-constrained environments. 

Layers in architecture  

Input Layer: The input to a CNN is usually a 3D array (height, width, depth) representing an image. For example, a 
color image might be represented as a 224x224x3 array, where 3 corresponds to the RGB color channels. 

Convolutional Layers: These layers perform the core operation of a CNN. They apply convolution operations to the 
input data using small filters (kernels). Each filter slides (convolves) over the input image, computing dot products 
to create a feature map that highlights specific patterns, such as edges or textures. 

Activation Function: After each convolution, an activation function (often ReLU - Rectified Linear Unit) is applied 
to introduce non-linearity into the model. This helps the network learn complex patterns. 

Pooling Layers: Pooling (typically max pooling) is applied after some convolutional layers to reduce the spatial 
dimensions (height and width) of the feature maps. This down-sampling helps to decrease computational load and 
makes the representation more invariant to small translations. 

Fully Connected Layers: After several convolutional and pooling layers, the high-level reasoning in the CNN is done 
through fully connected layers. Here, the feature maps are flattened into a one-dimensional vector and passed 
through one or more dense layers, leading to the final output. 
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Output Layer: The final layer provides the network's predictions, such as class probabilities for classification tasks. 

R-CNN (Regions with Convolutional Neural Networks) is an innovative framework for object detection that builds 
on the principles of CNNs but introduces additional steps to address the specific challenges of detecting and 
localizing objects within images. Here’s a breakdown of how R-CNN functions and how it differs from standard 
CNNs. 

Functioning of R-CNN 

Input Image: R-CNN starts with an input image, just like a CNN. 

Region Proposal: 

Instead of processing the entire image at once, R-CNN uses a method called selective search to generate 
approximately 2,000 region proposals. These proposals are candidate bounding boxes that are likely to contain 
objects. 

Classification: 

The extracted feature vectors are then input into a set of SVM (Support Vector Machine) classifiers. Each SVM is 
trained to identify specific object classes (e.g., cars, dogs). 

The classifiers output probabilities for each class, determining the presence of objects in each region. 

Bounding Box Regression: 

Alongside classification, a linear regression model is applied to refine the bounding box coordinates of each 
proposed region. This step improves the accuracy of object localization. 

Post-processing: 

Non-maximum suppression (NMS) is applied to eliminate duplicate detections. This process ensures that each 
object is represented by a single bounding box in the final output. 

Key Differences Between R-CNN and CNN 

While R-CNN builds on CNN architecture, there are several fundamental differences: 

Purpose: 

CNN: Primarily used for tasks like image classification, where the goal is to assign a single label to the entire image. 

R-CNN: Designed specifically for object detection, requiring both classification (which objects are present) and 
localization (where they are located). 

Region Proposal Mechanism: 

CNN: Processes the entire image without distinguishing regions; the whole image is fed into the network for 
classification. 

R-CNN: Uses selective search to generate region proposals, allowing the model to focus only on parts of the image 
that may contain objects. 

Feature Extraction: 

CNN: A single forward pass through the network extracts features for the entire image. 

R-CNN: Multiple forward passes are required—one for each region proposal—resulting in a feature vector for each 
candidate region. 

Post-Processing Steps: 

CNN: Generally, does not require additional processing steps after classification. 

R-CNN: Involves additional steps like bounding box regression and non-maximum suppression to refine the results 
and eliminate redundancies. 

II. LITERATURE REVIEW  

Faster R-CNN, introduced by Ren et al. (2015), is a state-of-the-art object detection framework that combines 
region proposal networks (RPN) with CNN-based classification. It improves upon earlier R-CNN models by 
integrating the proposal generation process with the detection network, allowing for faster computation while 
maintaining high detection accuracy. Wang et al. (2019) applied Faster R-CNN to detect surface defects in hot-
rolled steel strips. They demonstrated that the model could accurately detect defects such as scratches, holes, and 
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scale, even under challenging conditions like noise and varying lighting. The researchers compared Faster R-CNN 
with traditional machine vision methods and showed a significant improvement in detection accuracy and 
processing speed. Huang et al. (2020) focused on improving the Faster R-CNN model for defect detection in cold-
rolled steel sheets. They modified the backbone network by incorporating ResNet architecture to enhance feature 
extraction, which led to better performance in detecting subtle defects like minor cracks and scratches. Sun et al. 
(2021) employed Faster R-CNN in combination with a data augmentation strategy to increase the robustness of 
defect detection under different conditions. They applied this model to a steel defect dataset and reported 
improvements in defect classification, especially for smaller or less visible defects. Liu et al. (2022) used Faster R-
CNN for automated visual inspection in a steel mill. They proposed a multi-scale detection method by incorporating 
feature pyramids to better handle defects of varying sizes. This method was effective in detecting defects such as 
pitting and edge cracks, which often vary in scale. Detecting surface defects on industrial plates is critical for 
maintaining product quality. Faster R-CNN, with its robust two-stage architecture, is widely used in defect 
detection. However, challenges such as multi-scale defects, intricate textures, and varying lighting conditions 
necessitate modifications for enhanced performance. Modifications to Faster R-CNN often incorporate feature 
pyramid networks (FPN) or enhanced feature extraction to improve detection of small and large defects. Improved 
anchor box generation techniques tailored to defect size ranges, combined with attention mechanisms, effectively 
address small defect detection issues. Enhanced pre-processing methods and custom loss functions (e.g., focal loss) 
improve model robustness against textured surfaces. Using deeper backbones, such as ResNet-50 or ResNet-101, 
enhances feature extraction capabilities, crucial for complex surfaces. Adjusting the Region Proposal Network 
(RPN) with optimized proposals enhances localization accuracy for defects of varied scales. Rapid R-CNN includes 
four sections. The planned enhanced rapid R-CNN module integrates an adjustable convolution remaining 
network, ResNet 50 with an enhanced trail combination feature pyramid network and fodder plots into focus area 
proposed system with a fused convolutional focus model.Mia et. al proposes the paper proposes a novel Deformable 
Attention Network (DANet) that integrates several state-of-the-art techniques to enhance the detection of small 
objects, such as defects and cracks, in manufacturing environments. The authors proposed a novel model called 
DANet that integrates Faster R-CNN with cutting-edge methods to enhance small object detection in 
manufacturing environments. - The proposed DANet model outperformed other state-of-the-art object detection 
models on the NEU-DET dataset, achieving the highest mean Average Precision (mAP) of 78.27%.  Taewook Wi et. 
al proposed that proposed an efficient framework that combines deep learning-based defect detection and 
segmentation to accurately identify and analyse surface defects in the steel manufacturing process, using only 
bounding box annotations to generate detailed segmentation labels and reduce the high cost of manual annotation. 
The study proposes an efficient framework to detect and segment steel surface defects using only bounding box 
annotations, reducing the cost and time required for detailed pixel-level annotations. The framework uses recursive 
learning with bounding box annotations and the GrabCut algorithm to train a segmentation model, which 
progressively improves the segmentation predictions. - The proposed framework can effectively detect and 
accurately define steel surface defects in randomly collected images, contributing to improved quality control and 
cost reduction in the steel manufacturing industry. Researchers have incorporated FPNs into Faster R-CNN to 
enhance multi-scale feature extraction. This approach improves the model's ability to identify small defects while 
maintaining robustness against background noise. Attention-based modules such as Convolutional Block Attention 
Module (CBAM) have been added to focus on defect-prone areas, improving the detection accuracy of subtle 
anomalies. Baizhan Xia et. al proposes an improved Faster R-CNN algorithm for detecting surface defects on plates, 
with key improvements including texture background smoothing, multiscale feature extraction, attention-based 
region proposal, and deformable convolution. An enhanced dual riddling step to swift the picture surface backup 
that is feature layers network with shape diversified form convolution of Resnet to determine the faults which is 
aligned for precise fault finding. The focus on defects and suppress complex background - K-means clustering to 
derive better anchor frames for the region proposal network.  An improved Faster R-CNN algorithm for multi-scale 
defect detection in steel surfaces, utilizing a path aggregation network and an enhanced ResNet50 backbone, 
achieving a mean average precision of 80.2% and addressing challenges of complex surface characteristics. Xang et. 
al the paper does not provide a literature review on "Multi-Scale Defect Detection Using Modified Faster R-CNN for 
Plates with Complex Surfaces." It focuses on an AINDANE-Faster R-CNN method for metal plate defect detection 
under complex.  Chen et. al focuses on a novel multi-scale defect detection model for bottled products using 
variable receptive fields and feature fusion. Baizhanzia et. al proposes an improved Faster R-CNN model 
incorporating a feature pyramid network, attention mechanisms, and deformable convolutions to enhance multi-
scale defect detection on plates with complex surfaces, achieving high accuracy and real-time performance 
compared to existing methods. Faiyang et. al.  It does not provide a literature review on "Multi-Scale Defect 
Detection Using Modified Faster R-CNN for Plates with Complex Surfaces." It focuses on a multisite plate detection 
algorithm using an improved Mask RCNN for plate processing.It focuses on a deep learning model that 
incorporates multiscale features and parameter compression for surface defect inspection in complex. Image Pre-
filtering computation includes the two sections: Consistency backup levelling and dataset improvement. 
consistency backup swiftness algorithm that distortions the feel backup to a certain level while managing 
constructional corner elaboration to decrease the influence of complicated and adjustable feel backup on raw fault 
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detection. The wooden panel superficial has a complicated and adjustable texture backup, and the panel faults for a 
tiny ratio of the entire imagery depends on dual which can impact the fault recognition impact. Thus, an efficient 
feel swiftly procedure is needed at the time of image precomputation to haze the texture backup to some amount 
while upholding the particulars of the construction corners. It will enhance the precision and sturdiness for 
recognition faults includes the distinct consistent backups. Recently, consistency swiftly is basically performed by 
utilizing riddling approaches, that is chiefly categorized as Gaussian filtering, bilateral riddling and international 
optimizing riddling algorithms. Gaussian riddling is an improved for consistency backup swiftly but that gives some 
distant view of construction corner detailing that is not better for fault feature holding. International optimization 
riddling is needed in the procedure of consistency swiftly to assure that the distinction among the imageries after 
consistency swiftly and the initial image is decreased. The worldwide optimization riddling can attain very robust 
incline consistency swiftly with the shortcoming that it could not be swift scale changing surfaces. Dual riddling 
algorithm enhances the area of surface swiftly. It is basis on the gaussian riddling assuming both the gray 
parameter surrounding the pixel indications and the location relation among the resolution indications estimating 
that can be elaborated as:    

𝑚 = 𝑒𝑥𝑝 [
(𝑥 − 𝑧)2 + (𝑦 − 𝑙)2

2𝜎𝑑
2 −

‖𝑋(𝑥, 𝑦) − 𝑋(𝑧, 𝑙)‖2

2𝜎𝑟
2

] 

𝑋𝐷(𝑥, 𝑦) =
∑ 𝑋(𝑧. 𝑙)𝑚𝑧.𝑙

∑ 𝑙𝑚𝑧,
 

Where x,y, and z are the resolution locating attainment. X (x,y) is the grayscale value of the (x,y) resolution points. 
σd is the smoothed weight value associated with the spatial location. σr is the smoothed weight value associated 
with the pixel. XD(x,y) is the grayscale value of the pixel point after smoothing. After testing, it was found that the 
defect also become blurred after the bilateral filtering algorithm for the wood panel images.  

𝐿(𝑧, 𝑙) = {𝑚𝑎𝑥(𝐿(𝑤, 𝑡) + 1)} 

 

Where σl is the value of the smoothing weight associated with the pixel edge length. The improved bilateral filtering 
algorithm smooth the texture background, while the thin scratches on the wood panel surface are better 
maintained, as shown in Figure 2. To quantitatively evaluate the effect of texture smoothing of the improved 
bilateral filtering algorithm, the higher the similarity of the two images. As can be seen from Table 1, the improved 
bilateral filtering algorithm can maintain the defect characteristics better while smoothing the texture background. 

III. METHODOLOGY 

Rapid R-CNN includes of four stages. The planned enhanced faster R-CNN model associates a variable CNN 
residual channel, ResNet50 with an enhanced path aggregation features layers network (PA-FPN) and feeds the 
extracted multiple feature maps into attention area proposed network with a fused CNN focus module. The module 
construction is illustrated below: Faster R-CNN (Region-based Convolutional Neural Network) is a powerful deep 
learning framework widely used for object detection, including the identification of steel defects. It integrates 
feature extraction, region proposal, and classification into a unified network, making it efficient and accurate for 
defect detection tasks. In this approach, a pre-trained CNN backbone (e.g., ResNet or VGG) extracts features from 
steel surface images, which are then analyzed by a Region Proposal Network (RPN) to generate candidate bounding 
boxes for potential defects. These regions are refined through Region of Interest (RoI) pooling, ensuring 
compatibility with subsequent classification and bounding box regression layers. Faster R-CNN can identify 
different types of defects, such as cracks, dents, scratches, and corrosion, while accurately localizing them within 
the image. To enhance performance, the model benefits from data augmentation, fine-tuning on defect-specific 
datasets, and optimization techniques such as smooth L1 loss for regression and cross-entropy loss for 
classification. Its robustness and precision make it a valuable tool for automated quality inspection in steel 
manufacturing, enabling efficient, real-time defect detection and reducing reliance on manual inspection. 
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Fig.2. Modified Architecture of R-CNN 

Multiscale Feature Extraction Network. the work in this paper detects defects in plate images. However, cut plate 
defects are characterized by large scale variations and different shapes. e existing Faster R-CNN directly utilizes the 
features output as the subsequent classification regression. As the feature information contained in the shallow 
layer network is easily lost, there will be small defects appearing as missed detections.  

 
Fig.3. Multiscale RCNN  

{C2, C3, C4, C5}. The compact indications give the reverse processing of the fast forward network to produce the 
features. It sums up the reverse processing to construct a feature addition to attain the feature with efficacy of the 
material {U2, U3, U4, U5}. Fast providing network restricts the processing and side connection to form the feature 
layers to attain the multiple feature maps with the efficient material. To reserve the low feature of the image, a 
reverse path additional model that sums up as illustrated by the virtual arrows in the figure 4, to better improve the 
reserve the shallow feature extraction info that has decreased number of stages of network constructions involves 
VGG-16, ResNet50, and ResNet101. Res Net system gives the less interactions to address the tests of slope 
disappearing and slope explosive while going down the network to assure the enhancement of the entire network 
pursuance. Thus, ResNet50 is applied to use as a feature extraction stage in this manuscript. To enhance the 
efficiency of recognition of distinct T2 shapes of the wooden panels, deformity of the CNN that are making them 
familiar in the work. RCNN (Region-based Convolutional Neural Network) is a pioneering object detection 
framework that effectively combines region proposals with deep learning techniques. The process begins with an 
input image, which undergoes selective search to generate potential bounding boxes that may contain objects. Each 
proposed region is then fed into a Convolutional Neural Network (CNN) for feature extraction, resulting in fixed-
length feature vectors. These vectors are classified using a Support Vector Machine (SVM) to identify the object 
class within each region. To enhance localization, a bounding box regression model is applied to refine the 
coordinates of the proposed boxes. Finally, non-maximum suppression is employed to eliminate overlapping 
detections, yielding a final output that includes the detected objects along with their corresponding classes and 
refined bounding boxes. This innovative approach laid the groundwork for subsequent advancements in object 
detection, influencing models like Fast RCNN and Faster RCNN. The structure of an RCNN (Region-based 
Convolutional Neural Network) comprises several essential components designed for effective object detection. It 
begins with an input image, which is processed using a selective search algorithm to generate a set of region 
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proposals bounding boxes that potentially contain objects. Each of these proposed regions is then passed through a 
Convolutional Neural Network (CNN) for feature extraction, producing a fixed-length feature vector that captures 
important visual information. These feature vectors are subsequently classified using Support Vector Machines 
(SVMs) to determine the presence and class of objects within the regions. To improve the accuracy of the bounding 
boxes, a bounding box regression model refines the initial coordinates. Finally, non-maximum suppression is 
applied to filter out redundant overlapping detections, resulting in a final output that includes the detected objects 
along with their class labels and refined bounding box coordinates. This structured approach enables RCNN to 
effectively identify and localize objects within images, setting the stage for further advancements in the field of 
object detection. 

 

Fig.4. Residual block after introducing deformable convolution 

 

Fig.5. Regional recommendation network detection model with fused attention CBAM 
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Fig.6. Flowchart of the Proposed System  

Region based CNN algorithm for defect detection in steel plate manufacturing plant.  

Work Flow  

1. Data base creation using plant and online steel plate data. 
2. Feature extraction  
3. Training of proposed algorithm 
4. Testing of proposed algorithm with different numbers of images  
5. Performance calculations 

Accuracy: Accuracy measures how often the model correctly classifies both positives and negatives out of all 
predictions. It is calculated as: 

 

Precision 

Precision focuses on the correctness of positive predictions. It is defined as: 

 

Recall (Sensitivity or True Positive Rate) 

Recall measures the ability of a model to identify all relevant instances. It is expressed as: 

 

Confusion Matrix 

A confusion matrix is a tabular representation of a model's predictions, helping evaluate its 
performance. It has four components: 

• True Positives (TP): Correctly predicted positive cases. 

• True Negatives (TN): Correctly predicted negative cases. 

• False Positives (FP): Negative cases wrongly predicted as positive. 

• False Negatives (FN): Positive cases wrongly predicted as negative. 

 Predicted Posotve Predicted Negative 
Actual positive True positive False Negative (FN) 
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Actual negative False positive True Negative (TN) 
The confusion matrix enables detailed performance analysis, helping compute metrics like precision, recall, F1-
score, and accuracy. 

IV. PROPOSED WORK  

Step- 1 Create data set using plant images and online images data set. 

Step-2 Creation of feature matrix using dataset. 

Step-3 Training of Proposed Algorithm using 70 percent of data. 

Step 4 Classification of defects using data test. 

Step 5 Performance calculation  

V. RESULTS & DISCUSSION  

Material & Methods  

The database is a collection of the five most common types of errors encountered during the steel mill 
manufacturing process. These flaws have been mentioned before in this publication. A total of 3000 photos are 
considered for database preparation. Consider 3500 faulty photos and 1000 non-defected images while validating 
proposed methods. For training the suggested system, 1500 images are considered, with 1000 images representing 
a combination of the key five faults. 200 photographs are captured for each fault, while the remaining 500 images 
are non-defective. Feature matrix is created by determining the features of each image.  

RESULTS   

This section provides a detailed analysis of the validation results obtained from the proposed system. To evaluate 
the system's effectiveness, the training dataset is first fed into the proposed network to initiate the training process. 
During this phase, the system's accuracy is continually monitored to assess its learning capabilities. To further 
establish the reliability of the proposed framework, the accuracy of detecting each defect type is calculated 
independently. This ensures that the system performs consistently across various defect categories, highlighting its 
robustness and precision in identifying diverse steel surface anomalies. 

After the completion of the training phase, the system undergoes rigorous testing to validate its performance. 
Multiple performance metrics, including accuracy, precision, recall, and F1-score, are computed to 
comprehensively evaluate the system's efficiency and reliability. The suggested framework is implemented, trained, 
and validated using MatlabR2023 software, which provides a versatile platform for system design and 
experimentation. This software environment facilitates seamless execution of the training and testing procedures 
while offering robust tools for performance analysis. The findings from these validation experiments demonstrate 
the proposed system's capability to deliver accurate and reliable defect detection, making it a promising solution for 
industrial applications. 

Table 1.1 Training Accuracy of proposed system with Considering All Defects 
Number of Images Defected Images Non-Defected Images Accuracy 

500 350 150 90.52 

800 600 200 92.65 

1000 750 250 93.58 
1200 900 300 94.09 

1500 1150 350 96.13 
 

 

Fig.7. Training Accuracy of proposed algorithm with all Defects 
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The results presented in the above table highlight the performance of the proposed system following the completion 
of the training process. To thoroughly evaluate the system's effectiveness, a dataset comprising a mixture of 
defective and non-defective images was input into the model. This approach ensures a comprehensive assessment 
of the system's ability to accurately distinguish between defect-free and defective steel surfaces, thereby allowing for 
a more reliable evaluation of its robustness and durability.The analysis revealed that the proposed system achieved 
an impressive accuracy of 96.13% when tested on a dataset of 1,500 images. This high level of accuracy underscores 
the system’s capability to perform reliably across a diverse range of input conditions, reflecting its suitability for 
practical industrial applications. To provide further insights, a graphical representation of the performance data 
from Table 1.1 was generated using MATLAB software. The resulting curve offers a clear visual depiction of the 
system’s accuracy trends and reinforces the numerical findings. This graphical analysis, combined with the 
statistical results, serves to validate the efficiency and reliability of the proposed framework in accurately 
identifying steel defects while maintaining a high level of performance. 

Table 1.2 Testing Accuracy of Proposed System 

No of Images Type of Defect Overall Accuracy 
500 Crazing & Inclusion  90.35 
800 Folding & Scratch  91.74 
1000 Pitted  & Rolled Surface 92.98 
1500 All Type 94.61 
2000 All Type 96.52 

 

 

Figure8.  Testing accuracy with Different types  

Above table 1.2 and figure is showing testing accuracy of proposed system with considering dual defect and with all 
types of defects. Overall accuracy is 96.52%. In testing, two type similar defect is taking in account for validating 
proposed system performance, when different combination of defect images is considered.Proposed algorithm is 
capable for detection and classification of defect in steel plant manufacturing. Accuracy of both training and testing 
is very high and performance of detection is more accurate. 

Table 1.3 Different performance of proposed system 

No. of Images Accuracy Precision Recall F-Measure 
500 90.31 91.03 84.93 87.25 
800 91.05 92.85 86.63 88.14 
1000 93.02 93.57 88.06 89.02 
1500 94.98 94.00 89.01 91.23 
2000 96.56 95.69 91.35 93.45 

 

The suggested algorithm has a higher F-measure, indicating that it is more accurate at differentiating between 
faulty and non-defective images. Figures 9 and 10 show the performance of the suggested method, which uses 
thirteen features and industrial data. The feature matrix consists of features matrix, which are then fed into the 
classification network. 
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Fig.9.  Curve of different Performance index 

VI. CONCLUSION & FUTURE SCOPE  

An enhanced rapid R-CNN basis on fault recognition steps is planned for detecting and placement surface faults for 
the plates with complicated consistent. To improve the prototype capability to recognize the faults in distinct 
texture experiences the manuscript planned four kinds of enhancements: (i) An enhanced dual riddling procedure 
is planned to swift the image surface backup. (ii) A rapid prototype network that has the capabilityto recognize the 
faults in distinctive manner to amalgamate the features to attain a multitype feature that maps to tends an 
additional multitype feature that is improved for multiple faults recognition specifically for small scale faults. (iii) 
RPN includes the focus model of CBAM to enhance the weight of the channel for crack faults and unidentified 
examples that enhances the model’s capability to detect the faults from the backup and enhances the recognition 
precision also. The outline of the deformity in the system that is to be enhanced by the feature extraction capability 
of the model for distinct scratch figures. The model planned in this manuscript was verified on an actual panel 
surface fault data, and the regular recognition rate of the model has gone up to 95.71% and the optimistic 
recognition ratio was 90% when verified applying a novel surface backup wooden backup illustrating the model that 
consists of versatile common ability. The comparative analysis showed that the enhanced model which has a big 
enhancement in the recognition capability of the board faults.  Validating the model with the existing procedures 
with efficient pursuance confirms the precision of the planned model for the recognition of faults. The very 
following stage will be to proceed the illustration of the high precision of the mark recognition procedures and in 
future discovers how to improve the fault features to overpower the intrusion of the environment.   
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