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Cloud computing being a master in controlling wide variety of virtual resources, incorporated 

scheduling which imprinted its footsteps deeply. For every job, multiple such virtual resources 

from cloud will be utilized. Manual scheduling of resources for each job results in complexity and 

as such remains an impractical solution. During Resource Allocation (RA), a node’s failure could 

cause interruption of cloud service. Present RA techniques struggle to achieve high throughput 

in less execution time. To handle flash crowds thereby serving the aforementioned challenge, an 

appropriate task scheduling algorithm in addition to RA techniques is essential. This work 

focuses on job scheduling and effective resource allocation for flash crowds that used online 

streams of multiple user requests as input. During RA, the exact split of data related to a specific 

user request was recognized and preprocessed. The Closed Frequent Itemset (CFI)from the 

keywords related to the corresponding query were obtained followed by computation of their 

corresponding entropy values. Then, the scheduling process is done using Normalized K- means 

Algorithm (NKMA) and firefly algorithm with respect to the obtained entropy values. Finally, 

Using Genetic algorithm based on Cauchy Mutations (CMGA) appropriate resources were 

allocated to the scheduled tasks. The experimental evaluation of the proposed work 

demonstrates that efficient cloud-based resource allocation and job scheduling can be 

accomplished, resulting maximum throughput and reduced execution time.  

Keywords: Task Scheduling, Resource allocation, Genetic algorithm based on Cauchy 

Mutations (CMGA)Normalized KMA (NKMA). 

 

INTRODUCTION 

Cloud computing provides users easy as well as data access on-demand. It is cost-effective and provides IT services 
[1,2]. Through cloud computing, resources like storage, servers, software, and networking are hosted and rented via 
the Internet [3,4]. As cloud infrastructures expand, managing resources in large, diverse, and distributed 
environments has become a challenging task [5]. Resource management consists of two essential phases: one is 
resource provisioning and the another one is resource scheduling 

 Cloud services aim to provide computing, storage, and networking resources to address the requirements of users in 
remote locations [7]. To enhance both quality of service and resource efficiency [8], Task Scheduling (TS) is utilized 
to assign tasks to Virtual Machines (VMs), which are a core technology in cloud computing [9]. The fundamental 
technology in cloud computing is Load balancing (LB) which is centred around the allocation and scheduling of 
virtual machines (VMs) by assigning them to appropriate servers and distributing resources across server based on 
demand [10]. 

The cloud environment presents several challenges. Researchers from academia, industry, and other sectors are 
exploring key issues such as scheduling and load balancing (LB) that cloud users encounter [11]. A scheduling 
algorithm typically runs in two modes: batcch mode and real-time mode. The timing of task dispatch is the primary 
difference between these two modes [12]. Load balancing (LB) refers to distributing the workload evenly across two 
or more different servers to ensure faster execution and efficient resource usage [13] 

  As a result, Load Balancing (LB) and Task Scheduling (TS) have become critical issues, receiving significant 
attention in recent years. In cloud computing, scheduling resources to attain LB in cloud computing and enhance 
resource utilization is the key research focus [14]. For example, Amazon Elastic Compute Cloud (EC2), an established 
Infrastructure as a Service (IaaS) provider, uses elastic load balancing to distribute customer requests. In a cloud 
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environment, Recognizing is important for Task Scheduling that incorporates balancing the load is classified in to 
different categories as an NP-hard problem [15-18]. To efficiently allocate task to computing resources, LB algorithms 
have been proposed by many researchers. 

LITERATURE REVIEW 

Martin Bichler et al. [19] discussed about the optimal allocation of virtual servers using various capacity planning 
challenges in virtualized IT infrastructures and introduced decision models. The way that IT service providers must 
determine how to partition servers based on predefined objective functions that align with user requirements. The 
system addressed both the Static Servers Allocation issue with variable workloads and the allocation problem 
involving a fixed number of servers. Additionally, it provided evaluations in their first experiments based on traces 
of workloads from an industry partner.  
 
A Genetic Algorithm (GA) scheduling technique was presented by Jinhua Hu et al. [20] to balance the workload of 
Virtual Machine (VM) resources. By contrasting the existing scheduling approach with the ideal one, the system first 
computes a cost gene. The scheduling strategy is then decided upon based on this cost gene. To minimize the impact 
on the system's load after scheduling, the scheduling option through the minimal rate is selected as the ultimate 
decision. This method minimizes dynamic migration while achieving load balancing at the lowest possible cost. The 
outcomes show that the approach also improves resource use. 
A Genetic Algorithm (GA) was created by Chandrasekaran K. and Usha Divakarla [21] to schedule Virtual Machine 
(VM) resources on a cloud computing environment. Tasks on virtual machines were scheduled using the GA, which 
produced efficient load balancing. VM migrations were less necessary by intelligently assigning virtual machines 
(VMs) to real machines based on a fitness function. The system determined the node's load once the virtual machines 
were installed and came up with a plan that offered the best load balancing. This method's effectiveness was assessed 
by analyse with Eucalyptus's Greedy and Round-Robin algorithm 
Using heterogeneous multi-cloud environment, Mohanty and Tamanna Jena [22] proposed a Task Scheduling (TS) 
approach called GA-based Customer-Conscious Scheduling task and Allocation Resources (RA). The main two stages 
of the algorithm were designated as RA and TS. Resource allocation was done by GA and the shortest task first method 
was employed for scheduling. The trial findings showed that the model performed better than the current algorithms 
regarding the multi-cloud platform makespan time and customer satisfaction rate. 
An adaptive task allocation approach was presented by Sambit Kumar Mishra et al. [23] for cloud work scheduling. 
User-provided tasks are initially routed to the Cloud Service Providers alongside other submitted jobs in the work 
queue. These tasks are then directed to appropriate task queries. Critical jobs are prioritized by SCHEDULER1 for 
urgent and SCHEDULER2 for urgent IO-bound tasks.The results indicate that this methodology exhibited energy 
efficiency in the cloud environment when compared to alternative alternatives. 
For resource allocation (RA), Raed and Muamer [24] suggested combining an efficient load balancing (LB) strategy 
using adapted dynamic energy efficient cloudlets framework. The Krill Herd optimization method used was that 
determined by variables such task cost, speed, and weight, to improve LB. In addition, to lower service times and 
energy usage for mobile devices, enhanced dynamic energy efficient mobile cloud computing cloudlets-based 
architecture was applied. The purpose of effective resource allocation and energy cost awareness were attained with 
this strategy. The Round Robin, Honey Bees Behaviour-LB, and Krill Herd algorithms were used to compare the 
outcome of the suggested Krill-LB algorithm. 

PROPOSED METHODOLOGY 

One common computing is Cloud computing (CC) model in the modern information economy. The cloud must 
regularly distribute jobs among servers and manage computing resources flexibly to satisfy user demands because it 
is a complicated system with many servers and users. This article suggests a method for allocating resources and 
scheduling tasks to manage cloud flash crowds. The first stage of the suggested method uses online streaming data 
that is seasonal. The cloud receives seasonal requests or inquiries from different users, and each request is broken 
down into a series of tasks overseen by a task manager. Each user's request data is analyzed to extract keywords and 
eliminate stop words. There are two preprocessing stages for this divided data: Closed Frequent Itemsets (CFI) are 
initially identified. The proposed structural design is illustrated in the following Figure 1.  
 
Management of Flash Crowd 

Data that is continuously created from multiple sources is referred to as streaming data. Stream processing processes 
this data piecemeal, avoiding the need to access the full dataset all at once. Another way to define data streaming 
technology is as a means by which consumers can instantly access content from the internet on their devices without 
having to wait for it to download. Seasonal online streaming data is examined in this paper, with a particular emphasis 
on seasonal requests from various consumers. 
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 Task Manager 

The Task Managers oversee a series of jobs that are created from the seasonal requests from various users. Process 
ID, Waiting Time (WT), Task Cost, Turnaround Time (TAT), Speed, Weight, and Size are just a few of the capabilities 
that are available in the Task Manager. Below is a description of a few of these features. 

Figure 1. The Structure of the proposed Model 

 

Speed of the task: The speed of the task is refers to the ratio between Turnaround Time (TAT) required for 
completing a request and the waiting time of the request. It is stated as: 

      (1) 

Where, S represents the speed of the task, T denotes the Turnaround Time (TAT) for fulfilling the request and W is 
the waiting time for the request.  

 Task Cost: This refers to the prepayment required before a request can be fulfilled. The cost of the task is computed 
using the formula: 

                                              
   (2) 

Here C stands for cost of the task. R signifies the rate of the data for the task requirements along with T representing 
time needed for the task.  
 
Task Weight: The weight assigned to a task which is based on both the cost and speed of the request is defined by 
the following expression:  

     (3) 
Where W represents the task weight, C represent the task cost, S stands for the task speed and K remains a constant 
value. 
Data Size: The datasize for a request is calculated by using a formula: 

      (4) 
Where D represents data size, S denotes the overall proportion of consumer’s request along with P denoting the 
allowable error probability when choosing a small demonstrative subset of the users request. 

Preprocessing 

Here, users’ requests are managed as individual items. Itemset is a group of distinct items. Then, the Closed Frequent 
Itemset (CFI) for all user requests is identified. The CFI helps to find similar queries from different users. Entropy 
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values are calculated, based on the CFI. Frequent itemsets (FI) are first identified. and then the CFI is computed from 
the FI, as detailed as follows: 

Frequent Itemsets 

Take in to account the quantity of items in an itemset as, 

                                                        (5)
 

Where N indicates the quantity of items, The Frequent Itemsets (F1) is calculated by the complete number of times 
for a specific item appears in the itemset. To calculate F1:  

                               (6) 

The CFI is then calculated to assess the frequent items with in dataset. This process involves identifying a subset of 
frequent itemsets known as CFI. It helps in recognizing the large number of frequent itemsets. Once the CFI is 
determined, all frequent itemsets (F1) can be directly obtained from the CFI collection without needing to re-scan the 
original data. 

                                               (7)                                                                                 
where, CFI represents the subset of frequent itemsets derived from the original dataset.  

 Entropy of CFI 

Empirical entropy is the mean value of an information characteristic. Each attribute information generates a random 
variable that may reflect the anticipated or average value, termed as 

  

                                                 (8)

 

In CFI, where P(i) denotes probability of itemset I, n indicates the complete number of itemsets. This entropy formula 
measures the uncertainty or randomness in the distribution of itemsets with in the CFI.  

NORMALIZED K-MEANS CLUSTERING ALGORITHM 

In this context, requests from the users are scheduled using NKMA based on entropy values. First, the randomness 
value of the CFI, which includes both minimum and maximum values, is considered. Normalization is then 
performed to obtain accurate and useful information about the CFI's entropy value. The normalization is expressed 
as: 

          (9) 

 In this context,  represents the normalized value,
 

  denotes the maximum value, and   indicates 

the minimum value of the attributes A. Using K-Means clustering Algorithm (KMA), the quantity of clusters and 
initial centroids are initially established. This methodology has been widely used clustering methodology that 
operates as an unsupervised learning approach. This method divides the dataset into k predetermined, separate, and 
non-overlapping clusters in an looping behaviour, allocating each data point to a single cluster precisely. The ideal 
number of clusters K that achieves the highest level of separation among the clusters is not pre-established and must 
be derived directly from the data.  

 The goal of KMA is to minimize the total variance within clusters commonly measured by the su, of squared errors. 
The procedure for KMA is outlined as follows: 

▪ Start by initializing the number of entropy values  and a set of cluster centers where 

 

▪ Select k centers of the cluster as ( cC ) to partition the selected features in a random manner into n clusters. 
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▪ Measure the interval among each data point b and cC   all cluster center, assigning each point to the adjacent 

center based on the minimum distance. 

▪ Update the cluster centers cC    by determining the average of all data points b   assigned to each cluster. 

▪ Repeat step 3 with the new cluster centers. If the cluster assignments b change, continue iterating; otherwise, 
terminate the process. 

The Euclidean distance (ED) is the interval among two points A(x1,y1) and B(x2,y2) is given by: 

                                                                                       (10) 

To determine the ideal quantity of clusters k in Normalized K-Means algorithm, the Silhouette Method is used. For 
centroid initialization, the k++ method is employed. After clustering the queries using entropy values, the clusters 
are organized using the Firefly algorithm. 

CAUCHY MUTATION-BASED GA 

Through CMGA, the requests from the user are distributed among the cloud servers. Multiple servers are available 
in which each server has different information pertaining to these requests. A cluster of requests is sorted using an 
optimization technique to determine which requests are the most appropriate. The chosen requests or resources are 
then distributed among several cloud servers, each of which has data pertinent to the request that was selected. Which 
request, with all the necessary information, gets assigned to a cloud server is decided by the system. This ensures that 
the tasksare allotted to the active cloud server that is in use. Following allocation, the relevant data pertaining to the 
user's request is given. Resources are allocated in an economically efficient way among various workloads. 

 CMGA  

Genetic Algorithms (GAs) are a method designed to address both constrained and unconstrained optimization 
problems. They mimic the natural selection process observed in biological evolution. By repeatedly modifying a 
population of individual solutions, GAs drive a series of points towards the optimal solution.  

In Genetic Algorithms (GAs), solutions are represented as chromosomes, and a collection of these solutions is 
referred to as a population. The algorithm begins with an initial population of solutions. These solutions are 
designated based on their suitability, and a new population is created with the expectation that it will be better than 
the previous one [27] This process continues iteratively until an improved solution is found or a specified condition 
is met [28] 

A random mutation process is applied in Genetic Algorithms (GAs), based on the mutation rate is mentioned in 
equation (25). However, one common matter with GAs is the occurrence of local optima in various optimization 
problems. To tackle this issue, the integration of Cauchy Mutation technique has led to development of Cauchy 
Mutation Genetic Algorithm (CMGA). CMGA process includes the following phases: 

Step 1: Assign the positions of the chromosomes with in the population as .   

Step 2: By applying the formula, determine the fitness value for each chromosome in p 

                                                                                                                               (11)                                                                                                       

 

whereby ,  denotes the backward and forward time delay, implies a constant value, and shows the threshold 

value. If so, the algorithm will be ended. 
Step 3: Continue doing so until a new population is created. 
By applying the equation below, choose "2" parent chromosomes according to the fitness value of the population. 

    (12)
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where, denotes next generation’s the fitness value. The chromosomes are selected using the equation (22) 

A crossover probability is used to cross over the parents to produce a new offspring [29]. If the cross-over happens, 
children will be identical copies of their parents. The adaptive cross-over probability may be determined in one of the 
following ways: 

  (13) 

where    indicates the fitness of a single chromosome that is greater than another during the crossover phase. F 

suggests the level of fitness of the individual which will be a crossover. are the metrics,
 

 denote the 

ultimate generation's maximum fitness and average fitness, respectively. 

Next, Cauchy mutation is employed to carry out the mutation. Such a mutation operator is used to increase the 
likelihood of escaping the local optimum. The Cauchy density function, with its center at the origin, is represented 
by the equation below 
 

  (14) 

Here t > 0 represents the proportional parameter and its corresponding distribution function is illustrated below: 

   (15) 

In order to prevent local optima, this mutation increases population variety and facilitates large-scale searches by 
producing random numbers over a broad range. Therefore, in comparison to conventional Genetic Algorithms, the 
Cauchy Mutation-Genetic Algorithm (CMGA) converges more quickly. 
Using a Java implementation, we examine the suggested Resource Allocation (RA) scheme's performance for flash 
crowds in this phase. This work addresses seasonal user requests that pertain to specific fields during particular times 
of the year, such as election-related queries during elections or cricket-related queries during the World Cup. For this 
evaluation, we use user requests related to the National Football League (NFL) and process these NFL-related 
requests. Process ID, Waiting Time (WT), and Turnaround Time (TAT) are included with every user request. First, 
Evaluate the proposed NKMA algorithm performs by comparing other mythologies like KMA and fuzzy C-means 
(FCM), which are used in the clustering process. Next, we assess how well the suggested CMGA technique for RA 
performs in comparison to other approaches, such as PSO and GA. 

Figure 2. Pseudo code for CMGA 

Input: Entropy values 
 Output: Optimized Entropy values 
Begin 
Initialize the position of n chromosomes in the population as P={p1,p2,….pn} 
Compute the fitness value for each chromosome using equation (22) 
While iteration < max iteration do 
    Iteration=iteration+1 
    Select two parent chromosomes according to their fitness 
    Perform crossover with the probability Pcr 
     Perform Cauchy mutation using equation (25) 
     Update the population for next generation 
End while 
End 
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RESULTS AND DISCUSSION 

Performance analysis of NKMA  

As indicated in Table 1, the effectiveness of the suggested NKMA methodology is assessed by contrasting it with other 
techniques, such as KMA and FCM, in terms of precision (Prc), f-measure (Fms), accuracy (Acr), recall (Rca), and 
clustering time (Ct). The evaluation of these factors is based on the values of "true positive," "true negative," "false 
positive," and "false negative." 

Table 1. Performance Analysis of proposed CMGA and existing Methods 

(a) 

Number of 
tasks 

 

Proposed NKMA KMA FCM 

rcP  caR  rcP  caR  rcP  caR  

5000 87.6588 91.0235 86.47856 90.5689 84.6332 90.2345 
6000 90.9874 92.2658 90.67885 91.3256 90.1244 90.1245 

7000 91.8856 92.3258 91.67885 91.4578 91.1248 90.7415 
8000 93.9856 93.8978 92.85742 92.5645 92.1475 91.2356 
9000 96.7856 96.2356 95.87445 95.6321 94.6352 94.5645 

(b) 

Number of 
tasks 

 

Proposed NKMA KMA FCM 

msF  crA  msF  crA  msF  crA  

5000 90.98567 91.8645 90.4578 90.3256 90.1247 85.6245 
6000 91.65784 92.8547 90.7454   91.7845 90.1523 87.6545 

7000 93.42564 94.8965 92.1245 93.5678 91.4578 89.8475 
8000 94.23554 95.6587 93.4578 93.7548 92.1247 91.8475 
9000 95.12457 95.8741 94.2547 94.6589 93.4578 93.5645 

                
  Therefore, the proposed NKMA yields superior results compared to other techniques. The precision (Prc), recall 
(Rca), accuracy (Acr), and f-measure (Fms) performance metrics for the proposed NKMA strategy are shown in Table 
1 along with comparisons to the current KMA and FCM approaches over a range of task counts (5000–9000). The 
NKMA shows the greatest values for 5000 tasks: Acr (91.8645), Fms (90.9856), Rca (91.0235), and Prc (87.6588). 
Lower values are found using the KMA and FCM methods, respectively: Acr (90.3256 and 85.6245), Fms (90.4578 
and 90.1247), Rca (90.5689 and 90.2345), and Prc (86.4785 and 84.6332). The results show that the NKMA 
continues to beat the current KMA and FCM techniques for task counts between 6000 and 9000. Consequently, when 
compared to alternative methods, the suggested NKMA produces better outcomes. 
 

 

Figure 3. Performance Analysis of clustering time 
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The above Figure 3 compares the clustering time values of proposed NKMA approach with existing KMA and FCM 
methods across different task numbers. For all task sizes ranging from 5000 to 9000, the NKMA consistently shows 
shorter clustering times compared to KMA and FCM. 

By contrasting it with current GA and PSO approaches in a number of measures, including response time, average 
waiting times (WTs), process time, latency, throughput, and average turnaround times (TATs), the effectiveness of 
the CMGA technique is assessed. The ensuing sections contain thorough explanations of each metric as well as 
performance analyses of both suggested and current methods. 
 
Response Time and Process Time  

The technique's response time tR  is the amount of time it takes to reply to a user request, and it is assessed in the 

manner described below: 

ttrq

rs

t
AvN

N
R

−
=

                                                       (16) 

Here, the number of resources represented as Nrs, Number of requests denoted as Nrq and AVtt refers average travel 
time 

The processing time tP  shows the variation between the total requests time to travel and the time taken to respond 

which is evaluated as, 

rstrt TTP −=
                                                  (17) 

Table 2. Performance metric of Response and Processing time  

Number of tasks 
 

Proposed CMGA Existing GA Existing PSO 

tR  tP  tR  tP  tR  tP  

5000 4374 6012 5544 7122 6321 8896 
6000 5784 9224 6384    10556 7124 11785 
7000 6021 15177 6847 17554 7952 19553 
8000 6328 21661 7132 23557 8472 25778 
9000 7124 29885 7966 30885 8989 32556 

 

Table 2 presents a comparison of response time (Rt) and process time (Pt) between the CMGA approach, GA, and 
PSO. While GA and PSO take longer, recording 5544 ms for Rt and 7122 ms for Pt, and PSO recording 6321 ms for 
Rt and 8896 ms for Pt, CMGA completes 5000 tasks in 4374 ms for Rt and 6012 ms for Pt. In comparison to CMGA, 
the current approaches continue to exhibit greater Rt and Pt for task sizes ranging from 6000 to 9000. Based on this 
data, it can be summarized that the suggested CMGA outperforms than the current methods. 
Average waiting time  
Waiting Time of the task (WT) is the duration of a task which remains in the line sequence (queue) of each assigned 
virtual machine before it can be executed. The mean waiting time Awt is determined using the following formula: 

n

T
A

wt

wt


=       (18) 

Table 3. Average waiting time in Milliseconds 

Number of tasks Existing PSO Existing GA Proposed CMGA 

5000 580 400 300 

6000 620 600 400 

7000 980 800 550 

8000 1200 980 800 

9000 1500 1400 1180 
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Table 3 presents the performance metrics of the proposed CMGA methodology in terms of average waiting time over 
a variety of task counts, spanning from 5000 to 9000, in contrast to GA and PSO. GA typically takes 400 ms to 
complete 5000 jobs, PSO takes 580 ms, and CMGA takes 300 ms. The CMGA algorithm generates an average waiting 
time of 1180 ms for 9000 actions, while the PSO and GA algorithms need 1500 ms and 1400 ms, respectively. This 
study shows that the suggested CMGA system provides similar performance, but with quite extended waiting time 
for job assigned in comparison with current systems.   
 
The average waiting time (WT) for a range of work counts, from 5000 to 9000, is compared between the suggested 
CMGA and the current GA and PSO in Figure 4. The CMGA has a WT of 292 ms on average for 5000 tasks, but the 
average WTs of PSO and GA are higher at 548 ms and 412 ms, respectively. Likewise, when it comes to task numbers 
between 2000 and 5000, CMGA maintains its minimum average WT when compared with GA and PSO. When 
compared to other solutions, this investigation shows that the suggested CMGA delivers noticeably shorter waiting 
times for work allocation in a cloud server. 

 
Figure. 4 Performance metric of Average Waiting Time  

Average turnaround time 
 
Total Active Time (TAT) is the cumulative duration needed for a process to transition from its starting stage of 
preparedness to its final state of completion. The sum of the execution time and WT is determined by mathematical 
calculation. 

 

tasks

timetime

tat
N

WE
A

 +
=      (19) 

where,  timeW  and timeE  - waiting and execution time of the network,  

tasksN  - Number of jobs 

Table 4. Average Turnaround time in milliseconds 

Number of tasks Existing PSO Existing GA Proposed CMGA 

5000 580 400 250 

6000 750 600 400 

7000 900 800 700 

8000 1190 980 880 

9000 1600 1380 1210 

 

 Table 4 presents an average turnaround time (TAT) comparison between the CMGA approach and the current GA 
and PSO methodologies. The suggested CMGA obtains an average TAT of 250 ms for 5000 tasks, while the TATs of 
GA and PSO are higher, at 400 ms and 580 ms, respectively. CMGA has average TATs of 400 ms, 700 ms, 880 ms, 
and 1210 ms for task sizes between 6000 and 9000, whereas GA and PSO show higher TATs: GA with 600 ms, 800 
ms, 980 ms, and 1380 ms, and PSO with 750 ms, 900 ms, 1190 ms, and 1600 ms. This comparison shows that, in 
comparison to CMGA, the TATs of both the current GA and PSO approaches are higher. As a result, the suggested 
CMGA shows a task scheduling system that is more efficient. 
 
 



514  

 
 J INFORM SYSTEMS ENG, 10(32s) 

 

Figure. 5 Average Turnaround Time Performance metric 

Table 5. Latency Comparison in ms 
Number of tasks Existing PSO Existing GA Proposed CMGA 

5000 2100 1500 1000 

6000 3500 2800 2200 

7000 4900 3900 3000 

8000 5900 4800 4000 

9000 7200 6200 5200 

 
The time taken to move a data or request from its source to its destination is known as latency (Lcy). It is a crucial 
component in determining how effectively a network or execution plan operates and is measured in milliseconds. 
Since lower latency enables more throughput and more efficient connections, it suggests a more successful 
approach. Equation (30) is used to calculate the latency 

CDFTcy TAL +=
    

 (20) 

 whereas, AFT is the finishing time taken for tasks, and TCD indicates task completion delay.  

Table 5 presents a comparison of the latency (Lcy) metric performance of CMGA, GA, and PSO. CMGA obtains a 
latency of 1000 ms for 5000 tasks, while GA and PSO achieve greater latencies of 1500 ms and 2100 ms, respectively. 
Similarly, when compared to GA and PSO, CMGA consistently shows the lowest latency for task numbers of 6000, 
7000, 8000, and 9000. This reduced latency for CMGA suggests that its efficiency surpasses that of the current 
systems. 

 

Figure 6.  Latency Performance metric for the proposed methodology 

Throughput 

Throughput (Tp) is a key parameter for evaluaing the network performance as it measures the amount of data 
transferred over time. It reflects how efficiently tasks are completed. As the proportion of successfully completed jobs 
rises, throughput also increases. The throughput is calculated using the formula: 
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tst

tasks

p
A

*R
T


=      (21) 

wherein, β denotes the quantity of the data, Atst denotes thetotal task simulation time, and Rtasks denotes the number 
of allocated or arrived jobs data at the destination time. 

Table 7. Throughput Performance metric for the proposed methodology 

Number of tasks Existing PSO Existing GA Proposed CMGA 
5000 1000 1100 1150 
6000 790 900 1000 
7000 590 700 800 
8000 400 500 600 
9000 200 220 300 

 

In terms of throughput (Tp), Table 6 compares the performance of the suggested CMGA with GA and PSO. Reducing 
the duration required to finish a task is the main objective of Tp optimization. While GA and PSO achieve lesser 
throughputs of 1100 and 1000, respectively, for 5000 tasks, CMGA gets a throughput of 1150. In a similar vein, CMGA 
achieves the maximum throughput of 300 for 9000 tasks, whilst PSO and GA reach throughputs of 200 and 220, 
respectively. While throughput figures do decline when the overall number of jobs grow, CMGA consistently achieves 
higher throughput than both GA and PSO. This suggests that the proposed CMGA outperforms than the current 
systems. See Figure 7 for an illustration of throughput performance. 

 

Figure 7. Throughput Performance metric for the proposed methodology 

 CONCLUSION 

This paper proposes a seasonal requests RA approach based on the CMGA technique. Through comparison with the 
most recent approaches, the outcome of the proposed CMGA methods is evaluated. In specific, the precision (Prc), 
recall (Rca), accuracy (Acr), f-measure (Fms), and clustering time (Ct) spanning up to 9000 tasks are used to compare 
the NKMA with KMA and FCM. The NKMA consistently attains the shortest clustering time (Ct) and yields the 
greatest values for Prc, Rca, Fms, and Acr. Regarding response time (Rt), process time (Pt), average waiting time 
(Awt), latency (Lcy), and throughput (Tp), average turnaround time (Atat), the CMGA approach is likewise contrasted 
with GA and PSO. CMGA shows the better performance in terms of the lowest values for Rt, Pt, Awt, and other metrics 
across all task sizes. 
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