
Journal of Information Systems Engineering and Management
2025, 10(32s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adaptive Task Scheduling and Resource Management for

Managing Flash Crowds in Cloud Environment

1 *S.Prathiba, 2 Dr.Sharmila Sankar

1* Research Scholar, Department of Information Technology, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai,

India. ORCID Id: https://orcid.org/0000-0002-1257-2589, prathibasakthivel@gmail.com

2Professor, Department of Computer Science and Engineering, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai,

India. sharmilasankar@crescent.education

ARTICLE INFO ABSTRACT

Received: 29 Dec 2024

Revised: 15 Feb 2025

Accepted: 24 Feb 2025

Cloud computing being a master in controlling wide variety of virtual resources, incorporated

scheduling which imprinted its footsteps deeply. For every job, multiple such virtual resources

from cloud will be utilized. Manual scheduling of resources for each job results in complexity and

as such remains an impractical solution. During Resource Allocation (RA), a node’s failure could

cause interruption of cloud service. Present RA techniques struggle to achieve high throughput

in less execution time. To handle flash crowds thereby serving the aforementioned challenge, an

appropriate task scheduling algorithm in addition to RA techniques is essential. This work

focuses on job scheduling and effective resource allocation for flash crowds that used online

streams of multiple user requests as input. During RA, the exact split of data related to a specific

user request was recognized and preprocessed. The Closed Frequent Itemset (CFI)from the

keywords related to the corresponding query were obtained followed by computation of their

corresponding entropy values. Then, the scheduling process is done using Normalized K- means

Algorithm (NKMA) and firefly algorithm with respect to the obtained entropy values. Finally,

Using Genetic algorithm based on Cauchy Mutations (CMGA) appropriate resources were

allocated to the scheduled tasks. The experimental evaluation of the proposed work

demonstrates that efficient cloud-based resource allocation and job scheduling can be

accomplished, resulting maximum throughput and reduced execution time.

Keywords: Task Scheduling, Resource allocation, Genetic algorithm based on Cauchy

Mutations (CMGA)Normalized KMA (NKMA).

INTRODUCTION

Cloud computing provides users easy as well as data access on-demand. It is cost-effective and provides IT services
[1,2]. Through cloud computing, resources like storage, servers, software, and networking are hosted and rented via
the Internet [3,4]. As cloud infrastructures expand, managing resources in large, diverse, and distributed
environments has become a challenging task [5]. Resource management consists of two essential phases: one is
resource provisioning and the another one is resource scheduling

 Cloud services aim to provide computing, storage, and networking resources to address the requirements of users in
remote locations [7]. To enhance both quality of service and resource efficiency [8], Task Scheduling (TS) is utilized
to assign tasks to Virtual Machines (VMs), which are a core technology in cloud computing [9]. The fundamental
technology in cloud computing is Load balancing (LB) which is centred around the allocation and scheduling of
virtual machines (VMs) by assigning them to appropriate servers and distributing resources across server based on
demand [10].

The cloud environment presents several challenges. Researchers from academia, industry, and other sectors are
exploring key issues such as scheduling and load balancing (LB) that cloud users encounter [11]. A scheduling
algorithm typically runs in two modes: batcch mode and real-time mode. The timing of task dispatch is the primary
difference between these two modes [12]. Load balancing (LB) refers to distributing the workload evenly across two
or more different servers to ensure faster execution and efficient resource usage [13]

 As a result, Load Balancing (LB) and Task Scheduling (TS) have become critical issues, receiving significant
attention in recent years. In cloud computing, scheduling resources to attain LB in cloud computing and enhance
resource utilization is the key research focus [14]. For example, Amazon Elastic Compute Cloud (EC2), an established
Infrastructure as a Service (IaaS) provider, uses elastic load balancing to distribute customer requests. In a cloud

506

 J INFORM SYSTEMS ENG, 10(32s)

environment, Recognizing is important for Task Scheduling that incorporates balancing the load is classified in to
different categories as an NP-hard problem [15-18]. To efficiently allocate task to computing resources, LB algorithms
have been proposed by many researchers.

LITERATURE REVIEW

Martin Bichler et al. [19] discussed about the optimal allocation of virtual servers using various capacity planning
challenges in virtualized IT infrastructures and introduced decision models. The way that IT service providers must
determine how to partition servers based on predefined objective functions that align with user requirements. The
system addressed both the Static Servers Allocation issue with variable workloads and the allocation problem
involving a fixed number of servers. Additionally, it provided evaluations in their first experiments based on traces
of workloads from an industry partner.

A Genetic Algorithm (GA) scheduling technique was presented by Jinhua Hu et al. [20] to balance the workload of
Virtual Machine (VM) resources. By contrasting the existing scheduling approach with the ideal one, the system first
computes a cost gene. The scheduling strategy is then decided upon based on this cost gene. To minimize the impact
on the system's load after scheduling, the scheduling option through the minimal rate is selected as the ultimate
decision. This method minimizes dynamic migration while achieving load balancing at the lowest possible cost. The
outcomes show that the approach also improves resource use.
A Genetic Algorithm (GA) was created by Chandrasekaran K. and Usha Divakarla [21] to schedule Virtual Machine
(VM) resources on a cloud computing environment. Tasks on virtual machines were scheduled using the GA, which
produced efficient load balancing. VM migrations were less necessary by intelligently assigning virtual machines
(VMs) to real machines based on a fitness function. The system determined the node's load once the virtual machines
were installed and came up with a plan that offered the best load balancing. This method's effectiveness was assessed
by analyse with Eucalyptus's Greedy and Round-Robin algorithm
Using heterogeneous multi-cloud environment, Mohanty and Tamanna Jena [22] proposed a Task Scheduling (TS)
approach called GA-based Customer-Conscious Scheduling task and Allocation Resources (RA). The main two stages
of the algorithm were designated as RA and TS. Resource allocation was done by GA and the shortest task first method
was employed for scheduling. The trial findings showed that the model performed better than the current algorithms
regarding the multi-cloud platform makespan time and customer satisfaction rate.
An adaptive task allocation approach was presented by Sambit Kumar Mishra et al. [23] for cloud work scheduling.
User-provided tasks are initially routed to the Cloud Service Providers alongside other submitted jobs in the work
queue. These tasks are then directed to appropriate task queries. Critical jobs are prioritized by SCHEDULER1 for
urgent and SCHEDULER2 for urgent IO-bound tasks.The results indicate that this methodology exhibited energy
efficiency in the cloud environment when compared to alternative alternatives.
For resource allocation (RA), Raed and Muamer [24] suggested combining an efficient load balancing (LB) strategy
using adapted dynamic energy efficient cloudlets framework. The Krill Herd optimization method used was that
determined by variables such task cost, speed, and weight, to improve LB. In addition, to lower service times and
energy usage for mobile devices, enhanced dynamic energy efficient mobile cloud computing cloudlets-based
architecture was applied. The purpose of effective resource allocation and energy cost awareness were attained with
this strategy. The Round Robin, Honey Bees Behaviour-LB, and Krill Herd algorithms were used to compare the
outcome of the suggested Krill-LB algorithm.

PROPOSED METHODOLOGY

One common computing is Cloud computing (CC) model in the modern information economy. The cloud must
regularly distribute jobs among servers and manage computing resources flexibly to satisfy user demands because it
is a complicated system with many servers and users. This article suggests a method for allocating resources and
scheduling tasks to manage cloud flash crowds. The first stage of the suggested method uses online streaming data
that is seasonal. The cloud receives seasonal requests or inquiries from different users, and each request is broken
down into a series of tasks overseen by a task manager. Each user's request data is analyzed to extract keywords and
eliminate stop words. There are two preprocessing stages for this divided data: Closed Frequent Itemsets (CFI) are
initially identified. The proposed structural design is illustrated in the following Figure 1.

Management of Flash Crowd

Data that is continuously created from multiple sources is referred to as streaming data. Stream processing processes
this data piecemeal, avoiding the need to access the full dataset all at once. Another way to define data streaming
technology is as a means by which consumers can instantly access content from the internet on their devices without
having to wait for it to download. Seasonal online streaming data is examined in this paper, with a particular emphasis
on seasonal requests from various consumers.

507

 J INFORM SYSTEMS ENG, 10(32s)

 Task Manager

The Task Managers oversee a series of jobs that are created from the seasonal requests from various users. Process
ID, Waiting Time (WT), Task Cost, Turnaround Time (TAT), Speed, Weight, and Size are just a few of the capabilities
that are available in the Task Manager. Below is a description of a few of these features.

Figure 1. The Structure of the proposed Model

Speed of the task: The speed of the task is refers to the ratio between Turnaround Time (TAT) required for
completing a request and the waiting time of the request. It is stated as:

 (1)

Where, S represents the speed of the task, T denotes the Turnaround Time (TAT) for fulfilling the request and W is
the waiting time for the request.

 Task Cost: This refers to the prepayment required before a request can be fulfilled. The cost of the task is computed
using the formula:

 (2)

Here C stands for cost of the task. R signifies the rate of the data for the task requirements along with T representing
time needed for the task.

Task Weight: The weight assigned to a task which is based on both the cost and speed of the request is defined by
the following expression:

 (3)
Where W represents the task weight, C represent the task cost, S stands for the task speed and K remains a constant
value.
Data Size: The datasize for a request is calculated by using a formula:

 (4)
Where D represents data size, S denotes the overall proportion of consumer’s request along with P denoting the
allowable error probability when choosing a small demonstrative subset of the users request.

Preprocessing

Here, users’ requests are managed as individual items. Itemset is a group of distinct items. Then, the Closed Frequent
Itemset (CFI) for all user requests is identified. The CFI helps to find similar queries from different users. Entropy

508

 J INFORM SYSTEMS ENG, 10(32s)

values are calculated, based on the CFI. Frequent itemsets (FI) are first identified. and then the CFI is computed from
the FI, as detailed as follows:

Frequent Itemsets

Take in to account the quantity of items in an itemset as,

 (5)

Where N indicates the quantity of items, The Frequent Itemsets (F1) is calculated by the complete number of times
for a specific item appears in the itemset. To calculate F1:

 (6)

The CFI is then calculated to assess the frequent items with in dataset. This process involves identifying a subset of
frequent itemsets known as CFI. It helps in recognizing the large number of frequent itemsets. Once the CFI is
determined, all frequent itemsets (F1) can be directly obtained from the CFI collection without needing to re-scan the
original data.

 (7)
where, CFI represents the subset of frequent itemsets derived from the original dataset.

 Entropy of CFI

Empirical entropy is the mean value of an information characteristic. Each attribute information generates a random
variable that may reflect the anticipated or average value, termed as

 (8)

In CFI, where P(i) denotes probability of itemset I, n indicates the complete number of itemsets. This entropy formula
measures the uncertainty or randomness in the distribution of itemsets with in the CFI.

NORMALIZED K-MEANS CLUSTERING ALGORITHM

In this context, requests from the users are scheduled using NKMA based on entropy values. First, the randomness
value of the CFI, which includes both minimum and maximum values, is considered. Normalization is then
performed to obtain accurate and useful information about the CFI's entropy value. The normalization is expressed
as:

 (9)

 In this context, represents the normalized value,

 denotes the maximum value, and indicates

the minimum value of the attributes A. Using K-Means clustering Algorithm (KMA), the quantity of clusters and
initial centroids are initially established. This methodology has been widely used clustering methodology that
operates as an unsupervised learning approach. This method divides the dataset into k predetermined, separate, and
non-overlapping clusters in an looping behaviour, allocating each data point to a single cluster precisely. The ideal
number of clusters K that achieves the highest level of separation among the clusters is not pre-established and must
be derived directly from the data.

 The goal of KMA is to minimize the total variance within clusters commonly measured by the su, of squared errors.
The procedure for KMA is outlined as follows:

▪ Start by initializing the number of entropy values and a set of cluster centers where

▪ Select k centers of the cluster as (cC) to partition the selected features in a random manner into n clusters.

minmax

min

r
AA

AA
N

−

−
=

rN maxA
minA

 n21 e,....e,eE =

 n21 c,....c,cc =

509

 J INFORM SYSTEMS ENG, 10(32s)

▪ Measure the interval among each data point b and cC all cluster center, assigning each point to the adjacent

center based on the minimum distance.

▪ Update the cluster centers cC by determining the average of all data points b assigned to each cluster.

▪ Repeat step 3 with the new cluster centers. If the cluster assignments b change, continue iterating; otherwise,
terminate the process.

The Euclidean distance (ED) is the interval among two points A(x1,y1) and B(x2,y2) is given by:

 (10)

To determine the ideal quantity of clusters k in Normalized K-Means algorithm, the Silhouette Method is used. For
centroid initialization, the k++ method is employed. After clustering the queries using entropy values, the clusters
are organized using the Firefly algorithm.

CAUCHY MUTATION-BASED GA

Through CMGA, the requests from the user are distributed among the cloud servers. Multiple servers are available
in which each server has different information pertaining to these requests. A cluster of requests is sorted using an
optimization technique to determine which requests are the most appropriate. The chosen requests or resources are
then distributed among several cloud servers, each of which has data pertinent to the request that was selected. Which
request, with all the necessary information, gets assigned to a cloud server is decided by the system. This ensures that
the tasksare allotted to the active cloud server that is in use. Following allocation, the relevant data pertaining to the
user's request is given. Resources are allocated in an economically efficient way among various workloads.

 CMGA

Genetic Algorithms (GAs) are a method designed to address both constrained and unconstrained optimization
problems. They mimic the natural selection process observed in biological evolution. By repeatedly modifying a
population of individual solutions, GAs drive a series of points towards the optimal solution.

In Genetic Algorithms (GAs), solutions are represented as chromosomes, and a collection of these solutions is
referred to as a population. The algorithm begins with an initial population of solutions. These solutions are
designated based on their suitability, and a new population is created with the expectation that it will be better than
the previous one [27] This process continues iteratively until an improved solution is found or a specified condition
is met [28]

A random mutation process is applied in Genetic Algorithms (GAs), based on the mutation rate is mentioned in
equation (25). However, one common matter with GAs is the occurrence of local optima in various optimization
problems. To tackle this issue, the integration of Cauchy Mutation technique has led to development of Cauchy
Mutation Genetic Algorithm (CMGA). CMGA process includes the following phases:

Step 1: Assign the positions of the chromosomes with in the population as .

Step 2: By applying the formula, determine the fitness value for each chromosome in p

 (11)

whereby , denotes the backward and forward time delay, implies a constant value, and shows the threshold

value. If so, the algorithm will be ended.
Step 3: Continue doing so until a new population is created.
By applying the equation below, choose "2" parent chromosomes according to the fitness value of the population.

 (12)

 pn,...2p,1pP =

() b

f

t
T1zzz

zT
F

++
=

fT






 +






 −

+=

maxee

maxee

FH
z

z

z
z

t

510

 J INFORM SYSTEMS ENG, 10(32s)

where, denotes next generation’s the fitness value. The chromosomes are selected using the equation (22)

A crossover probability is used to cross over the parents to produce a new offspring [29]. If the cross-over happens,
children will be identical copies of their parents. The adaptive cross-over probability may be determined in one of the
following ways:

 (13)

where indicates the fitness of a single chromosome that is greater than another during the crossover phase. F

suggests the level of fitness of the individual which will be a crossover. are the metrics,

 denote the

ultimate generation's maximum fitness and average fitness, respectively.

Next, Cauchy mutation is employed to carry out the mutation. Such a mutation operator is used to increase the
likelihood of escaping the local optimum. The Cauchy density function, with its center at the origin, is represented
by the equation below

 (14)

Here t > 0 represents the proportional parameter and its corresponding distribution function is illustrated below:

 (15)

In order to prevent local optima, this mutation increases population variety and facilitates large-scale searches by
producing random numbers over a broad range. Therefore, in comparison to conventional Genetic Algorithms, the
Cauchy Mutation-Genetic Algorithm (CMGA) converges more quickly.
Using a Java implementation, we examine the suggested Resource Allocation (RA) scheme's performance for flash
crowds in this phase. This work addresses seasonal user requests that pertain to specific fields during particular times
of the year, such as election-related queries during elections or cricket-related queries during the World Cup. For this
evaluation, we use user requests related to the National Football League (NFL) and process these NFL-related
requests. Process ID, Waiting Time (WT), and Turnaround Time (TAT) are included with every user request. First,
Evaluate the proposed NKMA algorithm performs by comparing other mythologies like KMA and fuzzy C-means
(FCM), which are used in the clustering process. Next, we assess how well the suggested CMGA technique for RA
performs in comparison to other approaches, such as PSO and GA.

Figure 2. Pseudo code for CMGA

Input: Entropy values
 Output: Optimized Entropy values
Begin
Initialize the position of n chromosomes in the population as P={p1,p2,….pn}
Compute the fitness value for each chromosome using equation (22)
While iteration < max iteration do
 Iteration=iteration+1
 Select two parent chromosomes according to their fitness
 Perform crossover with the probability Pcr
 Perform Cauchy mutation using equation (25)
 Update the population for next generation
End while
End

H

'F

2cr1cr andP,P mxF

agF

()
()

+
+

= cr2

cr

2cr P- ,
Pt

t1
Pf



() 







+=

t

P
arctan

1

2

1
Pf cr

cr


511

 J INFORM SYSTEMS ENG, 10(32s)

RESULTS AND DISCUSSION

Performance analysis of NKMA

As indicated in Table 1, the effectiveness of the suggested NKMA methodology is assessed by contrasting it with other
techniques, such as KMA and FCM, in terms of precision (Prc), f-measure (Fms), accuracy (Acr), recall (Rca), and
clustering time (Ct). The evaluation of these factors is based on the values of "true positive," "true negative," "false
positive," and "false negative."

Table 1. Performance Analysis of proposed CMGA and existing Methods

(a)

Number of
tasks

Proposed NKMA KMA FCM

rcP caR rcP caR rcP caR

5000 87.6588 91.0235 86.47856 90.5689 84.6332 90.2345
6000 90.9874 92.2658 90.67885 91.3256 90.1244 90.1245

7000 91.8856 92.3258 91.67885 91.4578 91.1248 90.7415
8000 93.9856 93.8978 92.85742 92.5645 92.1475 91.2356
9000 96.7856 96.2356 95.87445 95.6321 94.6352 94.5645

(b)

Number of
tasks

Proposed NKMA KMA FCM

msF crA msF crA msF crA

5000 90.98567 91.8645 90.4578 90.3256 90.1247 85.6245
6000 91.65784 92.8547 90.7454 91.7845 90.1523 87.6545

7000 93.42564 94.8965 92.1245 93.5678 91.4578 89.8475
8000 94.23554 95.6587 93.4578 93.7548 92.1247 91.8475
9000 95.12457 95.8741 94.2547 94.6589 93.4578 93.5645

 Therefore, the proposed NKMA yields superior results compared to other techniques. The precision (Prc), recall
(Rca), accuracy (Acr), and f-measure (Fms) performance metrics for the proposed NKMA strategy are shown in Table
1 along with comparisons to the current KMA and FCM approaches over a range of task counts (5000–9000). The
NKMA shows the greatest values for 5000 tasks: Acr (91.8645), Fms (90.9856), Rca (91.0235), and Prc (87.6588).
Lower values are found using the KMA and FCM methods, respectively: Acr (90.3256 and 85.6245), Fms (90.4578
and 90.1247), Rca (90.5689 and 90.2345), and Prc (86.4785 and 84.6332). The results show that the NKMA
continues to beat the current KMA and FCM techniques for task counts between 6000 and 9000. Consequently, when
compared to alternative methods, the suggested NKMA produces better outcomes.

Figure 3. Performance Analysis of clustering time

512

 J INFORM SYSTEMS ENG, 10(32s)

The above Figure 3 compares the clustering time values of proposed NKMA approach with existing KMA and FCM
methods across different task numbers. For all task sizes ranging from 5000 to 9000, the NKMA consistently shows
shorter clustering times compared to KMA and FCM.

By contrasting it with current GA and PSO approaches in a number of measures, including response time, average
waiting times (WTs), process time, latency, throughput, and average turnaround times (TATs), the effectiveness of
the CMGA technique is assessed. The ensuing sections contain thorough explanations of each metric as well as
performance analyses of both suggested and current methods.

Response Time and Process Time

The technique's response time tR is the amount of time it takes to reply to a user request, and it is assessed in the

manner described below:

ttrq

rs

t
AvN

N
R

−
=

 (16)

Here, the number of resources represented as Nrs, Number of requests denoted as Nrq and AVtt refers average travel
time

The processing time tP shows the variation between the total requests time to travel and the time taken to respond

which is evaluated as,

rstrt TTP −=
 (17)

Table 2. Performance metric of Response and Processing time

Number of tasks

Proposed CMGA Existing GA Existing PSO

tR tP tR tP tR tP

5000 4374 6012 5544 7122 6321 8896
6000 5784 9224 6384 10556 7124 11785
7000 6021 15177 6847 17554 7952 19553
8000 6328 21661 7132 23557 8472 25778
9000 7124 29885 7966 30885 8989 32556

Table 2 presents a comparison of response time (Rt) and process time (Pt) between the CMGA approach, GA, and
PSO. While GA and PSO take longer, recording 5544 ms for Rt and 7122 ms for Pt, and PSO recording 6321 ms for
Rt and 8896 ms for Pt, CMGA completes 5000 tasks in 4374 ms for Rt and 6012 ms for Pt. In comparison to CMGA,
the current approaches continue to exhibit greater Rt and Pt for task sizes ranging from 6000 to 9000. Based on this
data, it can be summarized that the suggested CMGA outperforms than the current methods.
Average waiting time
Waiting Time of the task (WT) is the duration of a task which remains in the line sequence (queue) of each assigned
virtual machine before it can be executed. The mean waiting time Awt is determined using the following formula:

n

T
A

wt

wt


= (18)

Table 3. Average waiting time in Milliseconds

Number of tasks Existing PSO Existing GA Proposed CMGA

5000 580 400 300

6000 620 600 400

7000 980 800 550

8000 1200 980 800

9000 1500 1400 1180

513

 J INFORM SYSTEMS ENG, 10(32s)

Table 3 presents the performance metrics of the proposed CMGA methodology in terms of average waiting time over
a variety of task counts, spanning from 5000 to 9000, in contrast to GA and PSO. GA typically takes 400 ms to
complete 5000 jobs, PSO takes 580 ms, and CMGA takes 300 ms. The CMGA algorithm generates an average waiting
time of 1180 ms for 9000 actions, while the PSO and GA algorithms need 1500 ms and 1400 ms, respectively. This
study shows that the suggested CMGA system provides similar performance, but with quite extended waiting time
for job assigned in comparison with current systems.

The average waiting time (WT) for a range of work counts, from 5000 to 9000, is compared between the suggested
CMGA and the current GA and PSO in Figure 4. The CMGA has a WT of 292 ms on average for 5000 tasks, but the
average WTs of PSO and GA are higher at 548 ms and 412 ms, respectively. Likewise, when it comes to task numbers
between 2000 and 5000, CMGA maintains its minimum average WT when compared with GA and PSO. When
compared to other solutions, this investigation shows that the suggested CMGA delivers noticeably shorter waiting
times for work allocation in a cloud server.

Figure. 4 Performance metric of Average Waiting Time

Average turnaround time

Total Active Time (TAT) is the cumulative duration needed for a process to transition from its starting stage of
preparedness to its final state of completion. The sum of the execution time and WT is determined by mathematical
calculation.

 

tasks

timetime

tat
N

WE
A

 +
= (19)

where, timeW and timeE - waiting and execution time of the network,

tasksN - Number of jobs

Table 4. Average Turnaround time in milliseconds

Number of tasks Existing PSO Existing GA Proposed CMGA

5000 580 400 250

6000 750 600 400

7000 900 800 700

8000 1190 980 880

9000 1600 1380 1210

 Table 4 presents an average turnaround time (TAT) comparison between the CMGA approach and the current GA
and PSO methodologies. The suggested CMGA obtains an average TAT of 250 ms for 5000 tasks, while the TATs of
GA and PSO are higher, at 400 ms and 580 ms, respectively. CMGA has average TATs of 400 ms, 700 ms, 880 ms,
and 1210 ms for task sizes between 6000 and 9000, whereas GA and PSO show higher TATs: GA with 600 ms, 800
ms, 980 ms, and 1380 ms, and PSO with 750 ms, 900 ms, 1190 ms, and 1600 ms. This comparison shows that, in
comparison to CMGA, the TATs of both the current GA and PSO approaches are higher. As a result, the suggested
CMGA shows a task scheduling system that is more efficient.

514

 J INFORM SYSTEMS ENG, 10(32s)

Figure. 5 Average Turnaround Time Performance metric

Table 5. Latency Comparison in ms
Number of tasks Existing PSO Existing GA Proposed CMGA

5000 2100 1500 1000

6000 3500 2800 2200

7000 4900 3900 3000

8000 5900 4800 4000

9000 7200 6200 5200

The time taken to move a data or request from its source to its destination is known as latency (Lcy). It is a crucial
component in determining how effectively a network or execution plan operates and is measured in milliseconds.
Since lower latency enables more throughput and more efficient connections, it suggests a more successful
approach. Equation (30) is used to calculate the latency

CDFTcy TAL +=

 (20)

 whereas, AFT is the finishing time taken for tasks, and TCD indicates task completion delay.

Table 5 presents a comparison of the latency (Lcy) metric performance of CMGA, GA, and PSO. CMGA obtains a
latency of 1000 ms for 5000 tasks, while GA and PSO achieve greater latencies of 1500 ms and 2100 ms, respectively.
Similarly, when compared to GA and PSO, CMGA consistently shows the lowest latency for task numbers of 6000,
7000, 8000, and 9000. This reduced latency for CMGA suggests that its efficiency surpasses that of the current
systems.

Figure 6. Latency Performance metric for the proposed methodology

Throughput

Throughput (Tp) is a key parameter for evaluaing the network performance as it measures the amount of data
transferred over time. It reflects how efficiently tasks are completed. As the proportion of successfully completed jobs
rises, throughput also increases. The throughput is calculated using the formula:

515

 J INFORM SYSTEMS ENG, 10(32s)

tst

tasks

p
A

*R
T


= (21)

wherein, β denotes the quantity of the data, Atst denotes thetotal task simulation time, and Rtasks denotes the number
of allocated or arrived jobs data at the destination time.

Table 7. Throughput Performance metric for the proposed methodology

Number of tasks Existing PSO Existing GA Proposed CMGA
5000 1000 1100 1150
6000 790 900 1000
7000 590 700 800
8000 400 500 600
9000 200 220 300

In terms of throughput (Tp), Table 6 compares the performance of the suggested CMGA with GA and PSO. Reducing
the duration required to finish a task is the main objective of Tp optimization. While GA and PSO achieve lesser
throughputs of 1100 and 1000, respectively, for 5000 tasks, CMGA gets a throughput of 1150. In a similar vein, CMGA
achieves the maximum throughput of 300 for 9000 tasks, whilst PSO and GA reach throughputs of 200 and 220,
respectively. While throughput figures do decline when the overall number of jobs grow, CMGA consistently achieves
higher throughput than both GA and PSO. This suggests that the proposed CMGA outperforms than the current
systems. See Figure 7 for an illustration of throughput performance.

Figure 7. Throughput Performance metric for the proposed methodology

 CONCLUSION

This paper proposes a seasonal requests RA approach based on the CMGA technique. Through comparison with the
most recent approaches, the outcome of the proposed CMGA methods is evaluated. In specific, the precision (Prc),
recall (Rca), accuracy (Acr), f-measure (Fms), and clustering time (Ct) spanning up to 9000 tasks are used to compare
the NKMA with KMA and FCM. The NKMA consistently attains the shortest clustering time (Ct) and yields the
greatest values for Prc, Rca, Fms, and Acr. Regarding response time (Rt), process time (Pt), average waiting time
(Awt), latency (Lcy), and throughput (Tp), average turnaround time (Atat), the CMGA approach is likewise contrasted
with GA and PSO. CMGA shows the better performance in terms of the lowest values for Rt, Pt, Awt, and other metrics
across all task sizes.

REFERENCES

[1] Sukhpal Singh Gill., Rajkumar Buyya, “Resource provisioning-based scheduling framework for execution of

Heterogeneous and Clustered Workloads in Clouds: From Fundamental to Autonomic offering”, J of Grid

Computing, 17(3):385-417,2019.

[2] Samaresh Bera., Sudip Misra, and Joel JPC Rodrigues, “Cloud computing Applications for Smart Grid: A

survey”, in 2014 IEEE Transactions on Parallel and Distributed Systems.26(5):1477-1494,2014

[3] Sanjaya Panda K., and Prasanta K. Jana, “An Efficient Resource Allocation Algorithm for Iaas Cloud”, in

the International Conference on Distributed Computing and Internet Technology Springer Cham 351-

355,2015.

[4] Edington Alex., M,Kishore R, “Forensics Framework for Cloud computing in Computers & Electrical

Engineering 60”, 193-205,2017.

516

 J INFORM SYSTEMS ENG, 10(32s)

[5] Gill,S.S.Chana,I.,Singh,M.et.al, “CHOPPER: An Intelligent QoS-aware Autonomic Resource Management

Approach for Cloud Computing”, Cluster Comput 21, 1203-1241,2018.

[6] Sukhpal Singh & Inderveer Chana, “A Survey on Resource Scheduling in Cloud Computing: Issues and

challenges” in the Journal of Grid Computing,14, 217-264,2016.

[7] Rosy Aoun., Elias A., Doumith., & Maurice Gagnaire,"Resource Provisioning for Enriched Services in Cloud

Environment” in the IEEE Second International Conference on Cloud Computing Technology and Science

IEEE,296-303,2010

[8] Prassanna J., Neelanarayanan Venkataraman, “Adaptive regressive holt–winters workload prediction and

firefly optimized lottery scheduling for load balancing in Cloud”, Wireless Networks 1(1) 1-19,2019.

[9] Jing Xiao., Zhiyuan Wang , “A priority based Scheduling Strategy for Virtual Machine Allocations in Cloud

Computing Environment”,in International Conference on Cloud and Service Computing IEEE, 50-55,2012.

[10] Keng-Mao Cho Pang-Wei Tsai., Chun-Wei Tsai., Chu-Sing Yang, “A Hybrid Meta-Heuristic Algorithm for

VM Scheduling with Load Balancing in Cloud Computing”, Neural Computing and Applications,6(6) 1297-

1309,2015.

[11] Amer Al-Rahayfeh, Saleh Atiewi, Abdullah Abuhussein., & Muder Almiani, “Novel Approach to Task

Scheduling and Load Balancing using the Dominant Sequence Clustering and Mean Shift Clustering

Algorithms”, Future Internet,11(5) 109,2019.

[12] Mao-Lun Chiang, Hui-Ching Hsieh., Wen-Chung Tsai., Ming-Ching Ke, “ An Improved Task Scheduling and

Load Balancing Algorithm under the Heterogeneous Cloud Computing Network”, in IEEE 8th International

Conference on Awareness Science and Technology IEEE. 290-295,2017.

[13] Pradeep K, Prem Jacob, “Comparative Analysis of Scheduling and Load Balancing Algorithms in Cloud

Environment”, in International Conference on Control Instrumentation Communication and Computational

Technologies IEEE. 526-531,2016.

[14] Mala Kalra, Sarbjeet Singh, “ A Review of Metaheuristic Scheduling Techniques in Cloud Computing”,

Egyptian Informatics Journal. 16(3) 275-295,2015.

[15] Jiangtao Zhang, Hejiao Huang, Xuan Wang , “ Resource provision algorithms in Cloud Computing”,A survey

Journal of Network and Computer Applications.64 23-42,2016.

[16] Sanjaya Panda K., Prasanta K. Jana, “ Normalization-based Task Scheduling Algorithms for Heterogeneous

Multi-Cloud Environment”,Information Systems Frontiers,20(2) 373-399,2018.

[17] Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin., Zonghua Gu, “ Online Optimization for

Scheduling Preemptable tasks on IaaS Cloud Systems”,Journal of Parallel and Distributed Computing, 72(5),

666-677,2012

[18] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, & Yun Li, “ Cloud

Computing Resource Scheduling and a Survey of its Evolutionary Approaches”,ACM Computing Surveys,

(CSUR), 47(4),63,2015.

[19] Bichler, M., Setzer, T., & Speitkamp, B, “ Capacity Planning for Virtualized Servers”, 1.Corpus ID:

67783611,2008.

[20] Jinhua Hu., Jianhua Gu., Guofei Sun., Tianhai Zhao, “ A Scheduling Strategy on Load Balancing of Virtual

Machine Resources in Cloud computing environment” in 3rd International Symposium on Parallel

Architectures, Algorithms and Programming IEEE 89-96,2010.

[21] Chandrasekaran K., & Usha Divakarla, “ Load balancing of Virtual Machine Resources in Cloud using Genetic

Algorithm”in the Proceedings of ICCN 2013.156-168,2013.

[22] Tamanna Jena., &Mohanty J R, “ GA-based Customer-Conscious Resource Allocation and Task Scheduling

in Multi-Cloud Computing”, in the Arabian Journal for Science and Engineering 43(8) 4115-4130,2018.

[23] Sambit Kumar Mishra., Deepak Puthal., Bibhudatta Sahoo., Sajay Kumar Jena., & Mohammad S. Obaidat, “

An Adaptive Task Allocation Technique for Green Cloud Computing”,in the Journal of Supercomputing,

74(1)370-385,2018.

[24] Raed Abdulkareem Hasan., & Muamer N Mohammed, “A Krill Herd Behaviour Inspired Load Bbalancing of

tasks in Cloud Computing”, Studies in Informatics and Control 26(4) 413-424,2017.

[25] 25.Mohit Agarwal., & Gur Mauj Saran Srivastava, “A Genetic Algorithm Inspired Task Scheduling in Cloud

Computing”,in the International Conference on Computing, Communication and Automation (ICCCA),

IEEE, pp. 364-367,2016.

517

 J INFORM SYSTEMS ENG, 10(32s)

[26] 26.Mehran Ashouraie.,& Nima Jafari Navimipour, “Priority-based task scheduling on heterogeneous

resources in the Expert Cloud”, Kybernetes 44(10):1455-1471,2015. DOI: 10.1108/K-12-2014-02931.

[27] 27.A. Jayanthiladevi,Mohamed Uvaze Ahamed Ayoobkhan,”Implementation of multicloud strategies for

healthcare organisations to avoid cloud sprawl”, International Journal of Cloud ComputingVol. 11, No. 5-

6,January 27, 2023pp 529-536https://doi.org/10.1504/IJCC.2022.128699

[28] 28.Mahendra Bhatu Gawali., & Subhash K. Shinde, “Task Scheduling and resource Allocation in Cloud

computing using a Heuristic Aapproach”, Journal of Cloud Computing, vol. 7(1) 4,2018.

[29] 29.Bahman Keshanchi, Alireza Souri, and Nima Jafari Navimipour, “An improved genetic

[30] algorithm for task scheduling in the cloud environments using the priority queues: formal verification,

simulation, and statistical testing”, Journal of Systems and Software, vol. 124, pp. 1-21, 2017.

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1108%2FK-12-2014-0293
https://www.inderscienceonline.com/doi/10.1504/IJCC.2022.128699
https://www.inderscienceonline.com/doi/10.1504/IJCC.2022.128699
https://www.inderscienceonline.com/journal/ijcc
https://www.inderscienceonline.com/toc/ijcc/11/5-6
https://www.inderscienceonline.com/toc/ijcc/11/5-6
https://doi.org/10.1504/IJCC.2022.128699

